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Abstract- In this paper a full order observer has been designed using generalized matrix inverse. The design 

method resolves the state vector into two unique components, of which one is known and the other is unknown. 
This method does not assume any structure of the observer and imposes no restriction on the output distribution 

matrix. Condition of existence of such observer is presented with proof. An illustrative numerical example of 

two loop missile autopilot is also included with simulation results. 
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I. INTRODUCTION 
The problem of state estimation of a linear 

time invariant system (LTI) from the knowledge of its 

input and output has been discussed by several authors. 

In 1964 D.G. Luenberger first introduced the concept 

and it has been shown in [1] that the state vector of a 
linear system can be reconstructed from a pre supposed 

dynamics if the difference between the assumed 

structure and actual system forms a homogeneous 

ordinary differential equation. The concept is further 

developed in [2], where the special topics of identity 

observer, reduced order observer, linear functional 

observer, stability properties and dual observers are 

also discussed. In [3] it has been shown that state 

vector of an nth order system with m independent 

outputs can be reconstructed with an observer of order 

(n-m). S.D.G. Cumming [4] also presented a simple 

design of stable state observers with reduced 
dynamics. Such observers with reduced order 

dynamics result in great reduction in observer 

complexity. In [5] O’ Reilly proposed a construction 

method of full order observer which also presupposed 

the observer structure. In 1981 G. Das and T.K. 

Ghoshal presented a novel approach to reduced order 

observer design using generalized matrix inverse [6].  

Here the observer structure is not pre assumed and 

leads to a step by step procedure for observer design. 

In [6] it has been shown that the DGO is 

computationally simple as the use of generalized 
matrix inverse avoids the matrix operations like co-

ordinate transformation and matrix partition to design 

the observer parameter matrices.  In [7] it is shown that 

computation of generalized matrix inverse is not harder 

than matrix multiplication. In [8] a detailed 

comparative study has been carried out between 

reduced order Luenberger observer [1,2] and reduced 

order Das & Ghoshal observer (DGO) [6]. A method 

for designing Luenberger full order observer using 

generalized matrix inverse for both time variant and 

time invariant linear systems is proposed in [9]. Stefen 

Hui and Stanislaw H. Zak [10] used projection 

operator approach (Projection Method Observer or 

PMO) to estimate the states for the systems with both 

known and unknown inputs. Here the construction 

procedure considers the decomposition of the state 

vector into known and unknown components. Unlike 

DGO, where the unknown component is the 
orthogonal projection of the known component, PMO 

considers the components which are skew symmetric 

in nature. A detailed and exhaustive comparative 

study, between the unknown input reduced order DGO 

and the PMO, has been discussed in [11] and it has 

been shown that  the unknown input  DGO is 

computationally simple  compared to  PMO in 

observing the states of a system in presence of 

unknown inputs.. In [12] reduced order Das & Ghoshal 

observer had been extended to full-order observer 

using the principle of generalized matrix inverse. The 
work presented in [12] has been extended in this article 

to obtain simpler and computationally less complex 

design of full order observer using the concept of 

generalized matrix inverse. Similar to [6] & [12], this 

construction procedure also does not pre assume the 

observer structure.  The observer dynamics in the 

proposed design is simpler than that in [12] and 

imposes no restriction on the output distribution 

matrix.  

            The following notations will be used here:- 

𝑅 represents the field of real numbers; m x n  denotes 
the dimension of a matrix with m rows and n columns. 

𝐴𝑔
 denotes the Moore-Penrose generalized inverse of 

matrix 𝐴.  𝐴𝑇 is the transpose of 𝐴 and 𝐼represents the 
identity matrix of appropriate dimension. 

𝑅 𝑋  represents rank of any matrix 𝑋. 
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II. MATHEMATICAL PRELIMINARIES 
If 𝐴 ∈ 𝑅𝑚×𝑛   is a matrix and a matrix 

𝐴𝑔 ∈ 𝑅𝑛×𝑚   exists that satisfies the four conditions 
below, 

𝐴𝐴𝑔 = (𝐴𝐴𝑔)𝑇                                                      (1) 

𝐴𝑔𝐴 = (𝐴𝑔𝐴)𝑇                                                      (2) 

𝐴𝐴𝑔𝐴 = 𝐴                                                               (3) 

𝐴𝑔𝐴𝐴𝑔 = 𝐴𝑔                                                           (4) 

Then the matrix 𝐴𝑔  is called the Moore-Penrose 

generalized matrix inverse of 𝐴 and is unique for each  

𝐴 . If a system of linear equation is given by, 

𝐴𝑥 = 𝑦                                                                     (5) 

Where  𝐴 ∈ 𝑅𝑚×𝑛  is a known matrix,   𝑦 ∈ 𝑅𝑚×1 is a 

known vector  and 𝑥 ∈ 𝑅𝑛×1 is an unknown vector. 

Then (5) is consistent if and only if,  

𝐴𝐴𝑔𝑦 = 𝑦                                                             (6) 

If (5) is consistent then general solution of (5) is given 

by,  

𝑥 = 𝐴𝑔𝑦 +  𝐼 − 𝐴𝑔𝐴 𝑣                                         (7) 

([14] Graybill  1969  p.104). Where 𝑣 ∈ 𝑅𝑛×1denotes 

an arbitrary vector having elements as arbitrary 

functions of time. 

 

III. CONSTRUCTION PROCEDURE 
Consider an LTI system described by, 

𝑥 = 𝐴𝑥 + 𝐵𝑢,  𝑥0 = 𝑥(0)                                        (8) 

𝑦 = 𝐶𝑥                                                                      (9) 

Where 𝑥 is an (n x 1) unknown state vector to   be 

estimated, 𝑥0  is the initial condition of 𝑥. 𝑢 is  (b x 1) 

input vector, 𝑦 is (m x 1) output vector. 𝐴, 𝐵, 𝐶 are 

known matrices of appropriate dimensions. We assume 

that the  𝐴, 𝐶  pair is completely observable which 

implies that the simultaneous solution for (8) and  (9) 

for 𝑥 is unique, when 𝑥0, 𝑢 and 𝑦 are given. 

 

Lemma  

For (n x n) matrix 𝐴 and (m x n) matrix 𝐶, the 

pair  𝐴, 𝐶𝐴  is observable if the pair  {𝐴, 𝐶}   is 

observable and 𝐴 is non singular matrix. 

Proof. 

If the pair  𝐴, 𝐶  is observable then the 

observability matrix 𝑄 is of full column rank. 

Where, 𝑄 =  

𝐶
𝐶𝐴.

.
𝐶𝐴𝑛−1

  

Now the observability matrix for the pair  𝐴, 𝐶𝐴  is 

given by, 

             𝑄′ =  

𝐶𝐴
𝐶𝐴2

.

.
𝐶𝐴𝑛

 =  

𝐶
𝐶𝐴.

.
𝐶𝐴𝑛−1

 𝐴 = 𝑄𝐴 

Where, R(𝑄) = n and 𝐴 is  non-singular. 

Hence, R(𝑄′) = n. In other words, 𝑄′ is of full column 

rank if 𝐴 is non-singular. 

This completes the proof. of the lemma. 

  

Now the general solution of (9) can be written as, 

𝑥 = 𝐶𝑔𝑦 +  𝐼 − 𝐶𝑔𝐶 𝑣                                           (10) 

Where 𝐶𝑔  is the (n x m) generalized matrix inverse of 

𝐶  and 𝑣  is an (n x 1) vector whose elements are 

arbitrary functions of time. Let’s consider  
 𝐼 − 𝐶𝑔𝐶 𝑣 = ℎ                                                       (11) 
By putting  (11) in  (10) we get, 

𝑥 = 𝐶𝑔𝑦 + ℎ                                                            (12) 

 

Now, putting (12) in (8) we get, 

ℎ = 𝐴ℎ + 𝐴𝐶𝑔𝑦 + 𝐵𝑢 − 𝐶𝑔𝑦                                  (13) 

Again from (8), (9) and (12) we get, 

                𝑦 = 𝐶𝑥  
         Or, 𝑦 = 𝐶(𝐴𝑥 + 𝐵𝑢) 

Or, 𝑦 = 𝐶𝐴ℎ + 𝐶𝐴𝐶𝑔𝑦 + 𝐶𝐵𝑢                                (14) 
Equation (13) is the dynamic equation and (14) is   the   

output    equation.    ℎ    is  the    state       vector,  

 𝐴𝐶𝑔𝑦 + 𝐵𝑢 − 𝐶𝑔𝑦  is the input vector and            𝑦 −
𝐶𝐴𝐶𝑔𝑦 − 𝐶𝐵𝑢   is the output vector. Thus using 

Luenberger’s equation ([2], 3.4) Observer dynamic 

equation can be directly written as, 

 ℎ  =  𝐴 − 𝐾𝐶𝐴 ℎ +  𝐵 − 𝐾𝐶𝐵 𝑢 +          
 𝐴𝐶𝑔 − 𝐾𝐶𝐴𝐶𝑔 𝑦 + (𝐾 − 𝐶𝑔)𝑦                              (15) 

To estimate state variables using (15) ,  𝐴, 𝐶𝐴   pair 

must be observable. In the lemma, it has been already 

shown that if {𝐴, 𝐶} pair is observable, then   𝐴, 𝐶𝐴  
pair is also observable when 𝐴 matrix is non singular. 

Therefore the proposed observer will be effective only 

if, 𝐴  matrix is of full rank. Then poles can be 
arbitrarily placed with the help of Ackerman’s 

formula.                                                                                

      Here 𝐾 is the gain matrix of (n x m) dimension. It 

can be determined using Ackerman’s pole placement 

algorithm. In any case, if 𝐴, 𝐶𝐴  pair is not observable, 

at least the system should be detectable to make the 

proposed observer work.  

      For arbitrary initial conditions of ℎ , it will tend to ℎ 

as time approaches to infinity. That means ℎ can be 

observed from (15).  

      In order to eliminate the first derivative of 𝑦 from 

(15), we replace ℎ  with     {𝑞 +  𝐾 − 𝐶𝑔 𝑦}. Now the 
observer dynamic equation becomes,       

                 𝑞  =  𝐴 − 𝐾𝐶𝐴 𝑞 +  𝐵 − 𝐾𝐶𝐵 𝑢 
+ 𝐴𝐾 − 𝐾𝐶𝐴𝐾 𝑦                                                    (16) 

This equation is valid for a class of linear time 

invariant systems with observable  𝐴, 𝐶𝐴   pair. 

Observed state vector 𝑥  can be expressed as, 

𝑥 = 𝑞 + 𝐾𝑦                                                              (17) 

𝑥  would tend to 𝑥as ℎ  tends to ℎ when time approaches 
infinity. It is worth mentioning that, the observer is of 

order n. This completes the construction procedure of a 

full order observer. 

 

IV. NUMERICAL EXAMPLE 
Here we have taken the state space model of 

flight path rate demand autopilot in pitch plane as an 

example. It has been obtained from literature [13]. The 

CBA ,,  and D matrices of the state space model are 

written below, 
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State variables of the above state space model are as 

follows, 

1x  (Flight path rate ) 

qx 2  (Body rate in pitch) 

3x  (Elevator deflection) 

4x (Rate of elevator deflection) 

The following numerical data have been taken for the 

class of missile considered here. 
22 sec00142.sec,/6.5sec,85.2  radwT ba

4.1sec,/180,1437.0,6.0  qaba KradwK
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Figure 4.1:  Flight Path Rate 

Figure 4.2: Body Rate in Pitch 

Figure 4.3: Elevator Deflection 

   Figure 4.4: Rate of Elevator Deflection 
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V. DISCUSSIONS 
In this paper the full order observer is 

constructed by applying the theory of generalized 

matrix inverse directly. The two key equations for 
observer construction, (13) and (14) are obtained 

directly from (9) and (8) using generalized matrix 

inverse. Original states and the corresponding 

estimated states of the above missile autopilot system 

are plotted using MATLAB (Figure 4.1 to Figure 4.4). 

The red lines indicate the original system state 

(𝑋𝑖) while the black chain dotted lines indicate the 

estimated states (𝑋𝑖 hat where 𝑖 = 1,2,3,4). System’s 

initial condition is taken as [−.5 −10 5    50]
𝑇
 

Observer poles are placed at -47, -52, -600 and -700. 

Then observer gain is determined by using Ackerman’s 

method. The observer gain is denoted by the symbol

K . Here, 
T

K 













9520233

7993444551013  

The simulation results show that, the observer 

dynamics starts from zero initial condition and merges 

to the system dynamics within a very short time 

period.  
 

VI. CONCLUSION 
An easy and step by step procedure to 

construct full order observer has been proposed in this 

article. The observer is simpler in structure and 

computationally less complex .This method also does 

not presuppose the observer structure and does not 

require any co-ordinate transformation, even if the 

output distribution matrix is not in standard form or not 
of full rank. Numerical example of two loop missile 

autopilot is also given to show the effectiveness of the 

procedure. 
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