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In this paper, the rotational motion of a gyrostat about a fixed point in a central Newtonian force field is 

considered. This body is acted upon by a gyrostatic moment vector  . We consider the motion of the body in a 

case analogous to Lagrange's case.  The analytical periodic solutions of the equations of motion are obtained 
using the Poincaré’s small parameter method. A geometric interpretation of motion is given by using Euler’s 

angles to describe the orientation of the body at any instant of time. The graphical representations of these 

solutions are presented when the different parameters of the body are acted.  The fourth order Runge-Kutta 

method is applied to investigate the numerical solutions of the autonomous system. A comparison between the 

analytical and the numerical solutions shows a good agreement between them and the deviations are very small. 

MSC (2000): 70E15, 70D05, 73V20 

Keywords: Euler's Equations, Gyrostat, Newtonian force field, Perturbation methods 

 

I. Introduction 
The rotational motion of a gyrostat about a 

fixed point in a uniform force field or in a Newtonian 

one is one of the important problems in the theoretical 
classical mechanics. This problem had shed the interest 

of many outstanding researchers e. g. [1-14]. In fact 

this problems require complicated mathematical 

techniques. It is known that this motion is governed by 

six non-linear differential equations with three first 

integrals [15].  

Many attempts were made by outstanding 

scientists to find the solution of these equations but 

they have not found it in its full generality, except for 

three special cases (Euler-Poinsot, Lagrange-Poisson 
and Kovalevskaya). These cases have certain 

restrictions on the location of the body’s centre of mass 

and on the values of the principal moments of inertia 

[1-3]. Arkhangel’skii, Iu. A. [1] showed that this fourth 

algebraic integral exists only in two special cases 

analogous to those of Euler and Lagrange and that, 

other cases with single-valued integrals are not 

additional cases but it can be reduced to previous 

cases. The  necessary and sufficient condition for some 

functions to be a first integral for the Euler- Poisson 
equations when the motion of a rigid body is acted 

upon by a central Newtonian force field is investigated 

in [4].  The Hess’s case for the motion of a rigid body 

was studied in [5] having the assumption of giving 

initial high value for the angular velocity about some 

axis, is imparted to the body. 

The motion of Kovalevskaya gyroscope was 

studied in [6-11]. In [8], the existance of periodic 

solutions for the equation of motion of a rigid body in 

a Kovalevskaya top are obtained and it has been 

extended in [9]. The periodic solutions nearby 

equilibrium points for the same problem are 

investigated in [10] using the Liapunov theorem of 

holomorphic integral when the body moves under the 

influence of a central Newtonian field. The author 

generalized this problem in [11] when the body acted 
by potential and groscopic forces. An exceptional case 

of motion of this gyroscope was treated in [12].  

In [16], the authors have obtained the ten 

classical integrals for the generalized problem of the 

roto-translatory motion of n  gyrostats 2n . This 

problem was studied in [17], when a system was made 

of two gyrostats attracting one another according to 

Newton’s law. The problem of the earth’s rotation, 

using a symmetrical gyrostat as a model was 

considered in [18]. The authors considered the first two 

components of the gyrostatic moment are null and the 

third component is chosen as a constant. This study 
was extended and was generalized in [19]. 

The small parameter method of Poincaré [20] 

was used to find the first terms of the series expansion 

of the periodic solutions of the equations of motion of 

a rotating heavy rigid body about a fixed point when 

the body spins rapidly about the dynamically 

symmetric axis [21,22 ] and acted by the gravitaional 

and Newtonian force field respectively. This problem 

was generalized in [23] when the body moves under 

the unfluence of Newtonian force field and the third 

component of gyrostatic moment vector. 

The problem of a perturbed rotational motion 
of a heavy solid close to regular precession with 

constant restoring moment was treated in [13] and 

[14]. It is assumed that the angular velocity of the body 

RESEARCH ARTICLE                 OPEN ACCESS 



T. S. Amer et al. Int. Journal of Engineering Research and Applications                        www.ijera.com 

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671 

 

 

www.ijera.com                                                                                                                              656 | P a g e  

is sufficiently high, its direction is close to the axis of 

dynamic symmetry of the body, and the perturbing 

moments are small in comparison with the gravity 

moments. Averaged systems of the equations of 

motion are obtained in the first and second 

approximations in terms of the small parameter. The 
perturbed problem of the rotatory motion of a 

symmetric gyrostat about a fixed point with the third 

non-zero component of a gyrostatic moment vector  

(about the axis of symmetry) and under the action of 

some moments was considered in [24]. This problem is 

generalized in [25]. The problem of existence of 

periodic motions of a solid was studied in [26]. The 

author used the Poincaré’s method of small parameter 

to obtain the periodic solutions of the equations of 

motion. It was assumed that the center of mass of the 

solid differs little from a dynamically symmetric axis. 

This problem was generalized in [27], when the body 
rotates under the action of a central Newtonian force 

field and the third component of the gyrostatic moment 

vector.  

In this work, the rotational motion of a 

gyrostat about a fixed point in a central Newtonian 

force field analogous to Lagrange's case is studied 

when the body is acted upon by a gyrostatic moment 

vector about the moving axes. The equations of motion 

and their first integrals are obtained and have been 

reduced to a quasilinear autonomous system of two 

degrees of freedom with one first integral. Poincaré’s 
small parameter method [20] is applied to investigate 

the analytical periodic solutions of the equations of 

motion of the body with one point fixed, rapidly 

spinning about one of the principal axes of the 

ellipsoid of inertia. A geometric interpretation of 

motion is given by using Euler’s angles [28] to 

describe the orientation of the body at any instant of 

time. The numerical solutions of the autonomous 

system are obtained using the fourth order Runge-

Kutta method [29]. The phase plane diagrams describe 

the stability are presented.  A comparison between the 

analytical and the numerical solutions shows a good 

agreement between them and the deviations are very 

small.  

The model of a gyrostat has a wide range of 

applications in various fields such as satellite, robot 
manipulators, and spacecraft. Moreover, the study of 

the rotational motion of a gyrostat has been motivated 

by industrial applications in many fields. This is 

because the gyrostat provides a convenient model for 

the satellite-gyrostat, spacecraft and like; see [30,31] 

 

II. Equations of Motion and Change of 

Variables 
Consider a rigid body (gyrostat) of mass M , 

with one fixed point O ; its ellipsoid of inertia is 

arbitrary and acted upon by a central Newtonian force 

field arising from an attracting centre 1O  being located 

on a downward fixed axis OZ  passing through the 

fixed point with gyrostatic moment vector 

),,( 321    about yx,  and z  axes respectively. 

 

It is taken into consideration that at the initial 

time, the body rotates about axisz  with a high 

angular velocity 0r , and that this axis makes an angle 

...),2,1,0(2/0  nn  with the Z axis. 

Without loss of generality, we select the positive 

branches of the z axis and of the x axis in a way to 

avoid an obtuse angle with the direction of the 

Z axis. The equations of motion and their three first 

integrals similar to Lagrange case take the forms 

[32,33] 
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BA,  and C  are the principal moments of 

inertia; 00, yx  and 0z  are the coordinates of the 

centre of mass in the moving coordinate system 

 ,);( zyxO  and   are the direction cosines of 

the downwards fixed axisZ  of the fixed frame in 

space  ,);( qpZYXO  and r  are the projections 

of the angular velocity vector of the body on the 

principal axes of inertia; R  is the distance from the 

fixed point O  to the centre of attraction 1O ;   is the 

coefficient of attraction of such centre; 21,   and 3  

are the components of the gyrostatic moment vector 

 ; and  ,,,, 00000  rqp  and 0   are the initial 

values of the corresponding variables. 

 

III. Reduction of the Equations of Motion 

to a Quasilinear Autonomous System 
 

 

 

From the first two equations of (2), one can express the 

variables 1r  and 1   as 
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Differentiate the first and the fourth equations 

of (1) and use (6) to reduce the four remaining 

equations to the following two second order 

differential equations 
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where   is a new frequency called Ismail and Amer's 

frequency [23] and takes the form 
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Solving the first and the fourth equations of system (1), 

and using (6), we obtain 1q  and 1   in the form 
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Let us introduce new variables 2p  and 
2  such that 
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In terms of the new variables 2p  and 2 , the variables 1q  and 1   take the form 
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where 
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Making use of (11) and (10) into (3), we obtain the following expressions for 1S  and 2S  in terms of power series 
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From (12), (13) and (6), we get 
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Substituting (10), (11), (12), (13) and (14) into (7) and (8), we obtain the following quasilinear 

autonomous system of two degrees of freedom 
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The first integral of system (15) can be obtained from (2) in the form 
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Our aim is to find the periodic solutions of 

system (15) under the condition CBA   or 

CBA   (
2  is positive). This means that, the 

body is set in a fast initial spin 0r  about the major axis 

of the ellipsoid of inertia or about the minor axis of the 

ellipsoid of inertia. 

 

IV. Formal Construction of the Periodic 

Solutions 
Since the system (15) is autonomous, the 

following conditions 
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do not affect the generality of the solutions [23]. The 

generating system of (15) is 
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nT 20   in the form 

,cos,sincos 3

)0(

221

)0(

2  MMMp 

                                                                (20) 

where )3,2,1(, iMi  are constants to be 

determined. So, we suppose the required periodic 

solutions of the initial autonomous system in the form 
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with period ).()( 0  TT  The quantities 1 , 

2  and 3  represent the deviations of the initial 

values of 22, pp   and 2  of system (15) from their 

initial values of system (19); these deviations are 

functions of   and vanish when 0 . The initial 

conditions of (21) can be expressed as 
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Now, we try to find the expressions of the functions 
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Substitution of (25) and (26) into formulas (16), to get 
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Form (24), (27) and (28), the following results are obtained 
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Substituting (22) into (17) for 0 , we obtain 
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Supposing that 0   is independent of ,  we get 3M  and 3  as 
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The independent conditions for the periodicity are [21] 
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where )(1 L  and )(1 N  can be obtained from (28) by replacing 21, MM  and 3M  by 21,   and 

33 M  respectively. Then, we have 

 

),()()()()()()( 43201

2

2

2

11

2

1   WWkWzWNL                         (32) 

 

where 

 

,))(1(])(][1)([
2

1
)( 22

31

1

0

22

1 XaAArXaW      

]},)())((1[1{)( 1

0

2

1223311

211

2

  rAAaMyaaaW    

],)(2))((21[)( 2

1

0

2

1233111

2

13  rAAaMyaAAW   

.]})([2)(41{
4

1

)1()()2()()(

2

2

2

1

1

02

2

2

22

1

4

1

21

21

21

014













XAcXXya

AyXArAaW





 

 

From the condition that the z axis has to be 

directed along the major or the minor axis of the 

ellipsoid of inertia of the body, it follows that 

0)(1 W  for all   under consideration. So, let 

us assume  
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Using (31), the expression of 1  and 2  are obtained 

in the form of a power series of integral powers of  . 

These expansions begin with terms of order higher 

than 
2 . Consequently, the first terms in the 

expansions of the periodic solutions and the quantity 

)(  can be expressed as 
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   (33) 

 

The solutions obtained in [22], [34] and [35] 

have singular points when .,31,21,3,2,1   

These singularities are solved separately in [34], [36], 

[37] and [38]. In our problem when we used Ismail and 

Amer's frequency  [23]  instead of  , there are no 

singular points at all. Moreover, the obtained solutions 

are valid for all rational values of   and are 

considered as a general case of [21], [22] and [23]. 

 

 

 

V. Geometric Interpretation of Motion 
In this section, the motion of the rigid body is 

investigated by introducing Euler’s angles  ,  and 

 , which can be determined through the obtained 

periodic solutions. Since the initial system is 

autonomous, the periodic solutions are still periodic if 

t  is replaced by )( 0tt  , where 0t  is an arbitrary 

interval of time. Euler’s angles, in terms of time t , 

take the forms [27,28] 
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Substituting (33) into (34), in which t  has been replaced by 0tt  , and using relations (4), the following 

expressions for the angles  ,   and   are obtained as 
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It is evident that the Eulerian angles  ,  

and   depend on some arbitrary constants 

000 ,,   and 0r  ( 0r  is large). For ,0  we 

have 0,0     and 0r . This permits 

permanent rotation of the body with spin 0r  

(sufficiently large) about the z axis. 

 

VI. Numerical Solutions Matching of 

Analytical Solutions 
This section is devoted to ascertain accuracy 

of the obtained solutions.  

 

 (i) We introduce the analytical solutions 

through computer program. So, let us consider the 

following data that determine the motion of the body 
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Consider aap 22 ,   denoting the analytical solutions 

22, p . The graphical representations for these 

solutions are given in figures (1)-(5) for the case 

CBA   and figures (6)-(10) for the case 

CBA  . 

 

 (ii) The quasilinear autonomous system (15) is 

solved numerically using the fourth order Runge-Kutta 

method through another program with the same 

previous data and the initial values of the analytical 

solutions. Consider nnp 22 ,   to denote the numerical 

solutions 22, p . The numerical graphical 

representations are given in figures (11)-(15) for the 

case CBA   and figures (16)-(20) for the case 

CBA  . 

 

The comparison between the analytical and 

the numerical solutions shows quite agreement 

between them, see the corresponding figures (1)-(5), 

(11)-(15) and (6)-(10), (16)-(20) for the cases 

CBA   and CBA   respectively. This 

agreement gives powerful ascertain for the analytical 

technique. The corresponding phase plane diagrams for 

some of these solutions describing the stability of the 
solutions are given in figures (4), (5), (9), (10) for the 

analytical solutions and (14), (15), (19), (20) for the 

numerical solutions. 

 

Here, the concerned plots represent the 

functional time dependence of the amplitude of the  

 

 

 

waves revealing when    increases. We conclude 

that when   increases the amplitude of the wave  

increases also and the number of the waves remain 

unchanged, see figures (1), (2), (11) and (12) for the 

case CBA   but for the case CBA  , we 

can see from figures (6), (7), (16) and (17) that the 

amplitude of the wave decreases. Also, the solutions 

a2  and n2  remain unchanged for different values of 

  because these solutions do not include the variables 

BA,,,, 321   and C . 
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VII. Conclusion 
The problem of the three-dimensional motion of 

a gyrostat in the Newtonian force field with a 
gyrostatic moment about one of the principal axes of 

the ellipsoid of inertia, is investigated by reducing the 

six first-order non-linear differential equations of 

motion and their first three integrals into a quasilinear 

autonomous system with two degrees of freedom and 

one first integral. Poincaré’s small parameter method is  

 

 

used to investigate the periodic solutions of the present 
problem up to the first order approximation in terms of 

the small parameter . The periodic solutions (33) are 

considered as a generalization of those obtained in [21] 

(in the case of the uniform force field), [22] (in the 

case of the Newtonian force field) and [23] (in the case 

of presence 3  only). The solutions and the correction 

of the period for the latter problems can be deduced 

from the obtained solutions in this work as limiting 

cases by reducing the Newtonian terms and the 

gyrostatic moment. The introduction of an alternative 

frequency   instead of   avoids the singularities 

traditionally appearing in the solutions of other 

treatments. The analytical solutions are analysed 

geometrically using Euler’s angles to describe the 

orientation of the body at any instant of time. These 

solutions are performed by computer program to get 

their graphical representations. The fourth order 

Runge-Kutta method is applied through another 

computer program to solve the autonomous system and 

represent the obtained numerical solutions. The 
comparison between both the analytical and the 

numerical solutions is considered to show the 

difference between them. These deviations are very 
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small, that is the numerical solutions are in full 

agreement with the analytical ones. The great effect of 

the gyrostatic moment   is shown obviously from the 

graphical representations. 
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