
G. Sivaram et al. Int. Journal of Engineering Research and Applications www.ijera.com

Vol. 3, Issue 5, Sep-Oct 2013, pp.592-595

www.ijera.com 592 | P a g e

Design of NETWORK Device Driver with NAPI Implementation

G. Sivaram
1
, B. Krishna

2
, K. Prabhu

3

1(Assistant Professor in Department of Electronics and Communication Engineering, St.Martines Engineering

college, Dhullapally, JNTUH)
2 (Assistant Professor in Department of Electronics and Communication Engineering, KITE Women’s College

of Professional Engineering Science, Shabad, JNTUH)
3(Assistant Professor in Department of Electronics and Communication Engineering, Maheswara Inst of

Technology, Patancheru, JNTUH)

ABSTRACT
With the advent of extremely high speed Ethernet interfaces the number of interrupts the NIC receives is

enormously high. To overcome this kind of problem NAPI mixes interrupts with polling and gives higher

performance under high traffic load than the old approach, by reducing significantly the load on the CPU. NAPI
is a technique to improve network performance on Linux. In this paper, the design of network device driver

includes with NAPI implementation in Linux operating system based on ARM920T processor is implemented on

the S3C2410-S development platform made in Beijing universal pioneering technology.

Keywords - ARM9 processor; embedded linux; network device driver; e100

I. INTRODUCTION
One of the many advantages of free operating

systems, as typified by Linux, is that their internals are

open for all to view. The Linux kernel remains a large

and complex body of code. Often, device drivers

provide that gateway. Network interface must register
itself within specific kernel data structures in order to

be invoked when packets are exchanged with the

outside world by receiving packets asynchronously

and has no such entry point in the /dev directory like

block drivers. Network drivers also have to be

prepared to support setting addresses, modifying

transmission parameters, and maintaining traffic. The

processor is interrupted for every packet received by

your interface. In many cases, that is the desired Mode

of operation, and it is not a problem. High-bandwidth

interfaces, however, can receive thousands of packets

per second. With that sort of interrupt load, the overall
performance of the system can suffer. As a way of

improving the performance of Linux on high-end

systems, the networking subsystem need an alternative

interface (called NAPI) based on polling.

II. INTRODUCTION OF LINUX DEVICE

DRIVER
In computing, a device driver is a computer

program allowing higher-level computer programs to

interact with a hardware device. A driver

communicates with the device through the computer

bus or Communications subsystem to which the

hardware connects to the device. Once the device

sends data back to the driver

The driver may invoke routines in the original calling

program. Drivers are hardware-dependent and

operating system specific. They usually provide

the interrupt Handling required for any necessary

asynchronous time-Dependent. Hardware interface.

Typically Device drivers categorized into three types

Depends upon the entry point in the /dev directory and

also the Type of Data transfer.

1. Character device driver:

2. Block device driver

3. Network device driver

Character device driver having an entry point in the
/dev directory. And also it can transfer one character at

a time synchronously. Block device driver having an

entry point in the /dev directory. And also it can

transfer one character at a time .synchronously.

Network Device Driver has no such entry point. The

normal file operations (read, write, and so on) do not

make sense when applied to network interfaces, so it is

not possible to apply the UNIX “everything is a file”

approach to them.

RESEARCH ARTICLE OPEN ACCESS

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Peripheral
http://en.wikipedia.org/wiki/Computer_bus
http://en.wikipedia.org/wiki/Computer_bus
http://en.wikipedia.org/wiki/Computer_bus
http://en.wikipedia.org/wiki/Interrupt

G. Sivaram et al. Int. Journal of Engineering Research and Applications www.ijera.com

Vol. 3, Issue 5, Sep-Oct 2013, pp.592-595

www.ijera.com 593 | P a g e

III. ARCHITECTURE OF NETWORK

DEVICE DRIVER

.

Thus, network interfaces exist in their own namespace

and export a different set of operations. Although you
may object that applications use the read and write

system calls when using sockets, those calls act on

software object that is distinct from the interface.

Several hundred sockets can be multiplexed on the

same physical interface. Any network transaction is

made through an interface, that is, a device that is able

to exchange data with other hosts. Usually, an

interface is a hardware device, but it might also be a

pure software device, like the loopback interface. A

network interface is in charge of sending and receiving

data packets, driven by the network subsystem of the

kernel, without knowing how individual transactions
map to the actual packets being transmitted. Many

network connections (especially those using TCP) are

stream-oriented, but network devices are, usually,

designed around the transmission and receipt of

packets. A network driver knows nothing about

individual connections; it only handles packets. Not

being a stream-oriented device, a network interface

isn’t easily mapped to a node in the file system, as

/dev/tty1 is. The UNIX way to provide access to

interfaces is still by assigning a unique name to them

(such as eth0),.Communication between the kernel and
a network device driver is completely different from

that used with char and block drivers. Instead of read

and write, the kernel calls functions related to packet

transmission. network device receive data is achieved

through interrupts. Upon receiving the information, an

interrupt is generated, the driver will apply a sk_buff

(skb) in interrupt handler, and the data read from

hardware is placed to applied buffer.A straightforward

method of implementing a network driver is to

interrupt the kernel by issuing an interrupt

request (IRQ) for each and every incoming packet.

However, servicing IRQs is costly in terms of
processor resources and time. Therefore the

straightforward implementation can be very inefficient

in high-speed networks, constantly interrupting the

kernel with the thousands of packets per second.

Overall performance of the system as well as network

throughput can suffer as a result Polling is an

alternative to interrupt-based processing. The kernel
can periodically check for the arrival of incoming

network packets without being interrupted, which

eliminates the overhead of interrupt processing.

Establishing an optimal polling frequency is

important, however. Too frequent polling wastes CPU

resources by repeatedly checking for incoming packets

that have not yet arrived. On the other hand, polling

too infrequently introduces latency by reducing system

reactivity to incoming packets, and it may result in the

loss of packets if the incoming packet buffer fills up

before being processed.

IV. ETHERNET CONTROLLER CHIP

e1000
Provide too many feature to reduce kernel’s

work like Link auto-negotiation, Filters IP addresses,

Compute IP packets’ checksum, Tries to limit the

number of interrupts, Provide effective shutdown
method (a.k.a. Packet of Death).Full customization of

LEDs’ blinking!

V. NAPI ("New API"):
NAPI is a modification to the device driver

packet processing framework, which is designed to

improve the performance of high-speed networking.

NAPI works through:

VI. INTERRUPT MITIGATION
High-speed networking can create thousands

of interrupts per second, all of which tell the system

something it already knew: it has lots of packets to

process. NAPI allows drivers to run with (some)

interrupts disabled during times of high traffic, with a

corresponding decrease in system load.

VII. PACKET THROTTLING

When the system is overwhelmed and must

drop packets, it's better if those packets are disposed of

before much effort goes into processing them. NAPI-

compliant drivers can often cause packets to be

dropped in the network adaptor itself, before the

kernel sees them at all.

VIII. ADVANTAGES OF USING NAPI
The load induced by interrupts is reduced

even though the kernel has to poll. Packets are less

likely to be re-ordered, while out of order packet

handling might be a bottleneck otherwise. In case the

kernel is unable to handle all incoming packets, the

kernel does not have to do any work in order to drop

them: they are simply overwritten in the network

card's incoming ring buffer. Without NAPI, the kernel

has to handle every incoming packet regardless of

Higher protocol instances

Network Device interface

layer

Abstraction layer

Hard ware

http://en.wikipedia.org/wiki/Interrupt_request
http://en.wikipedia.org/wiki/Interrupt_request
http://en.wikipedia.org/wiki/Interrupt_request
http://en.wikipedia.org/wiki/Polling_(computer_science)
http://en.wikipedia.org/wiki/Interrupt_request
http://en.wikipedia.org/wiki/Network_card
http://en.wikipedia.org/wiki/Network_card
http://en.wikipedia.org/wiki/Network_card
http://en.wikipedia.org/wiki/Ring_buffer

G. Sivaram et al. Int. Journal of Engineering Research and Applications www.ijera.com

Vol. 3, Issue 5, Sep-Oct 2013, pp.592-595

www.ijera.com 594 | P a g e

whether there is time to service it, which leads

to thrashing.

IX. A DRIVER USING

THE NAPI INTERFACE WILL
WORK AS FOLLOWS:

Packet receive interrupts are disabled; the

driver provides a poll method to the kernel. That

method will fetch all incoming packets available, on

the network card or a DMA ring, so that they will then

be handled by the kernel. When allowed to, the kernel
calls the device poll method to possibly handle many

packets at once.

X. PERFORMANCE UNDER HIGH

PACKET LOAD
NAPI provides an "inherent mitigation"

which is bound by system capacity as can be seen
from the following data collected by Robert Olsson's

tests on Gigabit ethernet (e1000).

Psiz

e
Ipps Tput Rxint Txint Done

Ndon

e

60
89000

0
409362 17

2762

2
7 6823

128
75815

0
464364 21 9301 10 7738

256
44563

2
774646 42

1550

7
21

1290

6

512

23266

6
994445

24129

2

1914

7

24119

2
1062

102

4

11906

1

100000

3

87251

9

1925

8

87251

1
0

144

0
85193

100000

3

94657

6

1950

5

94656

9
0

Observe that when the NIC receives 890Kpackets/sec

only 17 rx interrupts are generated. The system can't

handle the processing at 1 interrupt/packet at that load
level. At lower rates on the other hand, rx interrupts go

up and therefore the interrupt/packet ratio goes up (as

observable from that table). So there is possibility that

under low enough input, you get one poll call for each

input packet caused by a single interrupt each time.

And if the system can't handle interrupt per packet

ratio of 1, then it will just have to chug along

XI. CONCLUSION
Normally Now a Days Speed is the most

important criteria. In order to meet that we need to use

Gigabyte Ethernet controller .Ethernet controller chip

having more and more throughput .in order to provide

that much throughput Network driver module needs

NAPIApi

ACKNOWLEDGMENT

This research paper is made possible through the help

and support from everyone, including: parents,

teachers, family, friends, and in essence, all sentient

beings.,

Especially, please allow me to dedicate my

acknowledgment of gratitude toward the following

significant advisors and contributors:

I sincerely thank to my parents, family, and friends,

who provide the advice and financial support. The

product of this research paper would not be possible

without all of them.

References
[1] Q.Sun, Developing Detail Explain of

Embedded Linux Application, Beijing, Posts

& Telecom Press, July 2006.

[2] T.Z.Sun and W.J.Yuan, embedded design and

Linux driver development guide, Beijing,

Publishing House of Electronics Industry,

October 2009.

[3] Jonathan Corbet, Alessandro Rubini, Greg

Kroah-Hartman, Linux Device Drivers, 3rd
Edition, O’Reilly Media, February 2005.

 [4] D.Cao and K.Wang, “Research of Network

 Device Driver based on Linux”, Computer

 Knowledge and Technology, 2005(21).

 [5] F.J.Li and W.D.Jin,“Research and

 Implementation of Network Driver in

 Embedded Linux”, Modern Electronic

 Technique, 2005(16)

 [6] M. Barr, Anthony Massa, Programming

 Embedded Systems, second edition,

 O'Reilly, 2006.

 [7] G. C. Buttazzo, Hard Real-Time Computing

 Systems:Predictable Scheduling Algorithms

 and Applications, Second Edition, Springer,

 2005.

 [8] David E. Simon, An Embedded Software

 Primer: Addison-Wesley, 2006.

 [9] Karim Yaghmour, Building Embedded
 Linux Systems: Reilly, 2003.

 [10] W. Wolf, Computers as Components:

 Principles of Embedded Computer Systems

 Design: Morgan Kaufman, 2000.

http://en.wikipedia.org/wiki/Thrashing_(computer_science)
http://en.wikipedia.org/wiki/Direct_memory_access

G. Sivaram et al. Int. Journal of Engineering Research and Applications www.ijera.com

Vol. 3, Issue 5, Sep-Oct 2013, pp.592-595

www.ijera.com 595 | P a g e

Authors

 Mr G.Sivaram has 6 years of teaching

experience and presently working as an Assistant

Professor in the Department of ECE in ST. Martines

EngineeringCollege, Dhullapally, JNTUH,

Hyderabad, AP (India).He received his B.Tech

degree in ECE from JNTU in 2007, M.Tech in

Embedded systems from JNTU, Hyderabad. He has
guided several M.Tech and B.Tech projects. His

areas of interests are Communication Systems, VLSI

System Design and Embedded Systems.

 Mr B.Krishna has 7 years of
teaching experience and presently working as an

Associate Professor in the Department of ECE in

KITE Women’s College of Professional Engineering

Science, Shabad, JNTUH, Hyderabad, AP (India).He

received his B.Tech degree in ECE from JNTU in

2005, M.Tech in VLSI from JNTU, Hyderabad. He

has guided several M.Tech and B.Tech projects. His

areas of interests are Communication Systems, VLSI

System Design and Embedded Systems.

 Mr K.Prabhu has 7 years of

teaching experience and presently working as an

Associate Professor in the Department of ECE in

MaheshwaraInstituteofTechnology, Patancheru,

Hyderabad, AP (India).He received his B.Tech

degree in ECE from JNTU in 2003, M.Tech in

Systems and Signal Processing from JNTU,

Hyderabad. He has guided several M.Tech and
B.Tech projects. His areas of interests are

Communication Systems, VLSI System Design and

Embedded Systems.

