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Abstract 
In this paper we use an artificial immune 

optimization algorithm in conjunction with the 

universal generating function (UGF) to solve the 

preventive maintenance (PM) problem for multi-

state series-parallel system. In this work, we 

consider the situation where system and its 

components have several ranges of performance 

levels. Such systems are called multi-state systems 

(MSS). To enhance system availability or 

(reliability), scheduled preventive maintenance 

actions are performed to equipments. These PM 

actions affect strongly the effective age of 

components and increase system reliability. The 

MSS measure is related to the ability of the system 

to satisfy the demand. The objective is to develop 

an algorithm to generate an optimal sequence of 

maintenance actions for providing a system 

working with the desired level of availability or 

(reliability) during its lifetime with minimal 

maintenance cost. To evaluate the MSS system 

availability, a fast method based on UGF is 

suggested. The immune algorithm (IA) approach 

is applied as an optimization technique and 

adapted to this PM optimization problem. 
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I. INTRODUCTION 
A necessary precondition for high 

production is availability of the technical equipment.  

 

In addition, reliability engineers have to build a 

reliable and efficient production system. The system 

reliability is affected essentially by the reliability of 

its equipments. This characteristic is a function of 

equipment age on system’s operation life. In this 

work, we consider multi-states series-parallel 

systems. To keep the desired levels of availability, it 

is necessary to perform preventive maintenance 

actions to components rather than breakdown repairs. 

This suggestion is supported by a number of case 

studies demonstrating the benefits of PM in [1]. In 

this case, the task is to specify how PM activity 

should be scheduled. One of the commonly used PM 

policies is called periodic PM, which specifies that 

systems are maintained at integer multiple of some 

fixed period. Another PM is called sequential PM, in 

which the system is maintained at a sequence of 

interval that have unequal lengths. The first kind of 

PM is more convenient to schedule. Contrary the 

second is more realistic when the system requires 

more frequent maintenance in relation to equipment’s 

age. A common assumption used in both these PM is 

that minimal repair is conducted on system if it fails 

between successive PM activities. In other words, 

minimal repairs do not change the hazard function or 

the effective age of the system. 

Traditionally PM models assume that the 

system after PM is either as good as new state in this 

case it is called perfect PM or replacement, or as bad 

as old state which is equivalent to minimal repair, 

where only the function of the system is restored 

without affecting the system age [2]. However, the 

more realistic assumption is that the system after PM 

does not return to zero age and remains between as 

good as new and as bad as old. This kind of PM is 

called imperfect PM. The case when equipment fails, 

a corrective maintenance (CM) is performed which 

returns equipment to operating condition without 

reducing system age.  in fact, the task of preventive 

maintenance actions served to adjust the virtual age 

of equipment. Our particular interest under 

investigation is to present an artificial immune 

algorithm which determines the optimal intervals of 

PM actions to minimize maintenance-cost rate while 

achieving desired mission reliability.  

 

1.1. Summuray of previous work 

Several years ago, much work was reported 

on policy optimization of preliminary planned PM 

actions with minimal repair as in [3-4]. Most of these 

Nomenclature: 

MjC : Minimimal repair cost. 

ivA : Availability of j-th MSS devices. 

jh :  Hazard function. 

jQ : Probability of failure of j-th devices. 

iv: Performance of j-th devices of version v . 

W : Demand levels. 

 : Distributive operator. 

 : operator for parallel devices. 

Abbreviations: 

IA : Immune Algorithm. 

PM   : Preventive maintenance. 

MSS : Multi states system. 

UMGF: Universal moment generating function. 
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researches are based on two popular approaches to 

determine the optimal intervals for a PM sequence. 

The first is reliability-based method and the second is 

optimization method. 

In the first one the PM is performed 

whenever the system availability or the hazard 

function of the system reaches a predetermined level 

and the optimal PM intervals will be selected. The 

second is finding the optimal intervals as a decision 

variable in the optimization problem.  

Wang [5] and Nakagawa [6] have treated a 

series–parallel configuration as a single piece of 

equipment in order to reduce the complexity of 

planning a PM strategy for multiple components. 

Some studies  have addressed this issue by focusing 

on each system component to determine an overall 

PM strategy [7;8]. 

Due to inherent complexity of solving 

preventive maintenance problems, good results are 

obtained when meta-heuristic algorithms are utilized 

to solve various aspects of the preventive 

maintenance model.  

[9] Presents an algorithm to determine the 

optimal intervals based on the reliability models of 

the effective age reduction and hazard function. [10] 

Presents a genetic algorithm to determine a minimal 

cost plan of the selecting PM actions which provides 

the required levels of power system reliability. A list 

of possible PM actions available for each MSS, are 

used. Each PM action is associated with cost and 

reduction age coefficient of its implementation. 

Shalaby et al (2004) [11] use a combination of 

genetic algorithm and simulation to solve the 

optimization problem for preventive maintenance 

scheduling of multi-component and multi-state 

systems. Suresh and Kumarappan (2006) [12] 

develop an optimization model and use a 

combination of genetic algorithm with simulated 

annealing. The authors apply their method to 

determine the preventive maintenance schedule in a 

power system. Samrout et al (2006) [13] present an 

algorithm based on the combination of an ant colony 

algorithm and genetic algorithm to optimize a large-

scale preventive maintenance problem. However, 

there is still much  work needed for improvements in 

search methods to increase the efficacy of solving 

any specified preventive maintenance problem. 

       

1.2. Approach and outlines 

The proposed approach is based on the 

optimization method using artificial immune 

algorithm, which determines the sequence of PM 

actions to minimize the maintenance-cost subject to 

availability and minimum system performance 

constraints.  The goal of the proposed approach is to 

know when, where, to which component and what 

kind of available PM actions among the set of 

available PM actions should be implemented. To 

evaluate the reliability and the effect of PM actions of 

series-parallel MSS, UGF method is applied. It’s 

proved to be effective at solving problems of MSS 

redundancy and maintenance in [14-15-16]. 

The rest of this paper is outlined as follows. 

We start in section 2 with the general description of 

the preventive maintenance model. Next, we describe 

the optimization problem formulation in section 3. A 

description of availability estimation based on UGF 

method is presented in section 4. In section 5, we 

present the artificial immune algorithm. Illustrative 

example and conclusion are given in section 6. 

 

II. PREVENTIVE MAINTENANCE 
It has been shown that the incorporation of 

the preventive maintenance has an economical 

benefit and the investment in PM not only pays for 

itself but also produces an important return on the 

investment. Also it was observed that the impact of 

the decrease of component failure rate and 

improvement of component reliability is vital to 

maintain efficiency of production. The major subject 

of maintenance is focused on the planning of the 

system maintenance service. However, all actions of 

PM not capable to reduce age component to zero age 

are imperfect. There are two main alternatives for 

modeling an imperfect PM activity. The first one 

assumes that PM is equivalent to minimal repair with 

probability p  and p1  is the equivalent to 

replacement in [17]. The second model directly 

analyzes how the hazard function or the effective age 

change after PM as in [9]. The proposed model is 

based on reduction age concept. Let consider the 

series-parallel MSS system shown in figures 1. 
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FIGURE.1. SERIES-PARALLEL POWER SYSTEM 

 

If the component j  undergoes PM actions 

at chronological calendar as follows: 

( jnj tt ...,,1 )                                                       (1) 

Based on the second model description, the effective 

age after i-th PM actions may be written as: 

)()()( jijj tttt     for  nittt jiji   1,1                

                                                                                 (2) 
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and  )()()()( 11 
  jijijijijijijij ttttt   

where )( jij t  is the age of component immediately 

after the i–th PM action which ranges in the interval 

[0, 1]. By definition, we assume that 0)0(j  , 

0t 0j   and i is the age reduction coefficient. Two 

limits for PM actions can be distinguished when 

1i   and 0i  . In the first case the component is 

only restored to “as bad as old” state which assumes 

that PM does not affect the effective age. In the 

second case the model reduce the component age to 

“as good as new”, which means that the component 

age reaches zero age (replacement). In fact, all PM 

actions which improve the component age are 

imperfect. As it is mentioned and demonstrated in 

[9], the hazard function of component j , as function 

of its actual age, can be calculated as 

  0
* )( jjjj hthh                                               (3) 

where )(th j  is the hazard function is defined when 

equipment does not undergo PM actions and 0jh  

correspond to the initial age of equipment. The 

reliability of the equipment j  in the interval between 

PM actions i  and 1i  can be written as: 

 ))(())((exp

)(exp)(
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)(

*

tHtH

dxxhtr

jjjijj
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j

jij
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
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




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








                      (4) 

)(jH  represents the accumulative hazard function. 

Clearly if j itt   in equation (4) the reliability 

reaches the maximum and is equal to 1. 

The Minimal repairs are performed if MSS 

equipment fails between PM actions, and there cost 

expected in interval [0, t] can be given as 



t

jjMj dxxhcC

0

)(                                              (5) 

Possible equipment j , undergoes PM 

actions at each chronological time 
jjnj tt ...,,1 , in this 

case, the total minimal repair cost is the sum of all 

cost can be written as :  

 
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where 00 jt  and Tt
jjn 1  where T represents the 

lifetime. 

 

III. OPTIMIZATION PROBLEM 
Let consider a power system organized with 

components connected in series arrangement. Each 

component contains different component put in 

parallel. Components are characterized by their 

nominal performance rate j, hazard function hj(t) 

and associated minimal repair cost Cj. The system is 

composed of a number of failure prone components, 

such that the failure of some components leads only 

to a degradation of the system performance. This 

system is considered to have a range of performance 

levels from perfect working to complete failure. In 

fact, the system failure can lead to decreased 

capability to accomplish a given task, but not to 

complete failure. An important MSS measure is 

related to the ability of the system to satisfy a given 

demand. 

When applied to electric power systems, 

reliability is considered as a measure of the ability of 

the system to meet the load demand (W), i.e., to 

provide an adequate supply of electrical energy (). 

This definition of the reliability index is widely used 

for power systems: see e.g., [18-19-20-21-22]. The 

Loss of Load Probability index (LOLP) is usually 

used to estimate the reliability index [23]. This index 

is the overall probability that the load demand will 

not be met. Thus, we can write R = Probab(MSS W) 

or R = 1-LOLP with LOLP = Probab(MSSW). This 

reliability index depends on consumer demand W. 

For reparable MSS, a multi-state steady-state 

instantaneous availability A is used as Probab(MSS  

W). While the multi-state instantaneous availability is 

formulated by equation (7):  

  



D

jMSS

j

)t(PW,tA                                       (7) 

where MSS (t) is the output performance of MSS at 

time t . To keep system reliability at desired level, 

preventive and curative maintenance can be realized 

on each MSS. PM actions modify components 

reliability and CM actions does not affect it. The 

effectiveness of each PM actions is defined by the 

age reduction coefficient   ranging from 0 to1. As in 

[10], the structure of the system as defined by an 

available list of possible PM actions  v  for a given 

MSS. In this list each PM actions  v  is associated 

with the cost of its implementation  vCp , and  vM  

is the number of equipment affected corresponding to 

their age reduction  v . Commonly the system 

lifetime T  is divided into y  unequal lengths, and 

each interval have duration y  Yy1  , at each 

end of this latter an PM action is performed. This 

action will be performed if the MSS reliability 

 w,tR   becomes lower than the desirable level 0R .  
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All the PM actions performed to maintain 

the MSS reliability are arranged and presented by a 

vector V  as they appear on the PM list. Each time 

the PM is necessary to improve the system reliability; 

the following action to be performed is defined by the 

next number from this vector. When the scheduled 

PM action iv  was insufficient to improve reliability, 

automatically the 1iv  action should be performed at 

the same time and so on. 

For a given vector V , the total number jn  

and chronological times of PM action in equation (1) 

are determined for each component j Jj 1 . For 

all scheduled PM actions iv V  the total cost of PM 

actions can be expressed as 

   



N

1i
ipp vCVC                                              (8) 

 

and the cost of minimal repair can be calculated as 

   
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The optimization problem can be formulated 

as follows: find the optimal sequence of the PM 

actions chosen from the list of available actions 

which minimizes the total maintenance cost while 

providing the desired MSS availability. That is,  

Minimize: 

     VCVCCVf Mp                           (10) 

Subject To: 

A (V, D, t)  R0                                                (11) 

To solve this combinatorial optimization 

problem, it is important to have an effective and fast 

procedure to evaluate the availability index. Thus, a 

method is developed in the following section to 

estimate the system availability. 

 

IV. RELIABILITY ESTIMATION BASED ON 

USHAKOV’S METHOD 
The last few years have seen the appearance 

of a number of works presenting various methods of 

quantitative estimation of systems consisting of 

devices that have a range of working levels in [24-

25]. Usually one considers reducible systems. In 

general forms the series connection, the level of 

working is determined by the worst state observed for 

any one of the devices, while for parallel connection 

is determined by the best state. However, such the 

approach is not applicable for the majority of real 

systems. 

In this paper the procedure used is based on the 

universal z-transform, which is a modern 

mathematical technique introduced in [26]. This 

method, convenient for numerical implementation, is 

proved to be very effective for high dimension 

combinatorial problems. In the literature, the 

universal z-transform is also called UMGF or simply 

u-transform. The UMGF extends the widely known 

ordinary moment generating function [11]. The 

UMGF of a discrete random variable  is defined as 

a polynomial:  

jzP)z(u
J

1j
j





                                                (12) 

The probabilistic characteristics of the random 

variable  can be found using the function u(z). In 

particular, if the discrete random variable  is the 

MSS stationary output performance, the availability 

A is given by the probability  )WProba(   which 

can be defined as follows:  

 Wz)z(u)W Proba( 
                           (13) 

 

where   is a distributive operator defined by 

expressions (14) and (15):  
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                               (14) 
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It can be easily shown that equations (14)–(15) meet 

condition Proba( W) = 
 W

j

j

P . By using the 

operator  , the coefficients of polynomial u(z) are 

summed for every term with j  W, and the 

probability that  is not less than some arbitrary 

value W is systematically obtained. 

Consider single devices with total failures and 

each device i has nominal performance i and 

reliability Ai. The UMGF of such an device has only 

two terms can be defined as:  

izAz)A1()z(u i
0

ii


 = izA)A1( ii


    (16) 

To evaluate the MSS availability of a series-parallel 

system, two basic composition operators are 

introduced. These operators determine the 

polynomial u(z) for a group of devices. 

Parallel devices: Let consider a system device m 

containing Jm devices connected in parallel. The total 

performance of the parallel system is the sum of 

performances of all its devices. In power systems, the 

term capacity is usually used to indicate the 

quantitative performance measure of a device in [27]. 

Examples: generating capacity for a generator, 

carrying capacity for an electric transmission line, 

etc. Therefore, the total performance of the parallel 

unit is the sum of capacity (performances) in [26]. 

The u-function of MSS device m containing Jm 

parallel devices can be calculated by using the   

operator: 
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))(...,),(),(()( 21 zuzuzuzu np   

where 

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Therefore for a pair of devices connected in parallel: 
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The parameters ai and bj are physically 

interpreted as the performances of the two devices. n 

and m are numbers of possible performance levels for 

these devices. Pi and Qj are steady-state probabilities 

of possible performance levels for devices. One can 

see that the  operator is simply a product of the 

individual u-functions. Thus, the device UMGF is: 





mJ

1j
jp )z(u)z(u . Given the individual UMGF of 

devices defined in equation (11), we have: 







m
i

J

1j
jjp )zAA1()z(u .  

Series devices: When the devices are connected in 

series, the device with the least performance becomes 

the bottleneck of the system. This device therefore 

defines the total system productivity. To calculate the 

u-function for system containing n devices connected 

in series, the operator   should be used: 

))z(u...,),z(u),z(u()z(u m21s  , where 

 m21m21 ...,,,min)...,,,(   so that  
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Applying composition operators   and   

consecutively, one can obtain the UMGF of the entire 

series-parallel system.  

 

V. ARTIFICIAL IMMUNE SYSTEM 

OPTIMIZATION ALGORITHM 
5.1 Immune system 

The natural immune system is a powerful 

and efficient defence system that exhibits many signs 

of cognitive learning and intelligence [28]. In 

particular the acquired immune system, comprised 

mainly of lymphocytes which are special types of 

white blood cells, is a complex adaptive pattern-

recognition system that defends the body from 

foreign pathogens (bacteria or viruses). The adaptive 

immune system uses lymphocytes, which can quickly 

evolve to destroy invading antigens. Lymphocytes 

exist in two forms, B cells and T cells. Each of this 

has distinct chemical structures and surface receptors 

molecules. The receptors’ molecules attached 

primarily to the surface of B cells are called 

Antibodies whose aim is to recognize and bind to 

antigens (Jerne, 1973) [29]. 

When an antibody (Ab) strongly matches an invading 

antigen (Ag) the corresponding B-cell is selected to 

proliferate and start replicating itself. During this 

self-replicating process, a hyper mutation process 

takes place on the variable region of the B-cell. The 

hypermutation plays a critical role in creating 

diversity, increasing affinity and enhancing 

specificity of antibody. Figs. 3 and 4 [30,31] illustrate 

respectively the antigen recognition, the negative 

selection, clonal selection, expansion, and affinity 

maturation processes. A comprehensive survey of the 

IA theory, including the structure of its basic 

procedures, has been provided by N. de Castro and J. 

Von Zuben [30].  

 
 

 

 

 
 

 

 

 

5.2 Artificial Immune Systems 

Artificial Immune Systems (AIS) are 

adaptive systems based on the emulation of the 

biological immune system behaviour and applied to 

problem solving. This new paradigm has already 

been identified as extremely useful in a wide range of 

engineering applications. The AIS, like genetic 

algorithms and neural nets, is an intelligent tool for 

advanced search procedures. (De Castro and Von 

Zuben, 2002a) [30]. In 1986 the theoretical 

immunologist, J.D. Farmer [32], first suggested a 

possible relationship between biological immunology 

Fig 3: Recognition of an Antigen by a 

B-Cell Receptor. 

Fig 4: Negative and Clonal Selection 

Principle 
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and computing in a paper which compared natural 

immune systems, adaptation and machine learning. 

Since then, the field has expanded quickly, with 

numerous papers published by scientists applying 

AIS to a wide range of topics. Although algorithms 

based on the traits of AIS have been efficiently 

applied in various optimization tasks covering a wide 

range of real-world applications such as scheduling 

[33], buffer allocation problem BAP [34], and  

several other engineering applications 

[35 ;36 ;37 ;38], their application to Preventive 

maintenance problem has not been thoroughly 

explored. This work consists of a first time efficient 

application of an AIS algorithm based on the clonal 

selection paradigm in the PM problem for series-

parallel multi-state systems under availability and 

performance constraint.   

 

Encoding: 

Every solution or antibody Ab is represented 

by a PM matrix .   

  

The matrix has N columns and L lines, where: 

L is the number of elements in the system and N the 

number of PM intervals. Each interval i has duration 

i; ; where T is system lifetime. Thus 

each line in the matrix represents the PM actions to 

be performed in sequence for the corresponding 

element. 

                                    (17) 

 

Overview of the IA Algorithm 

Step 1. Define antigen  

The objective function that we aim to minimize and 

the availability constraint defined in eq. 7 represent 

the antigen. As illustrated in fig.4, the antigen 

represents the configuration of PM actions in the 

optimal solution of the optimization problem, and the 

corresponding segment of the antibody represents a 

trial solution for the variables. The antigen is 

recognised by the antibody receptors in a manner 

similar to a lock and a key relationship. 

 
 

 

 

Step 2. Random initialization of antibody population 

Initial integer-matrix antibody population is 

randomly generated. The antibody population 

represents PM actions vectors for each system 

component. As previously described, a position-

based representation is used in this study to represent 

the antibody. This representation will generate valid 

offspring in the crossover and mutation procedures.  

 

Step 3.  

Evaluate fitness of antibodies to antigen 

The fitness of each antibody to antigen in the 

population is calculated based on its objective 

function value and potential constraint violations. In 

evaluating the fitness of individual antibodies, 

constraint requirements were also examined. When a 

constraint is violated, the degree of violation is 

weighted to penalize the antibody’s fitness. 

Antibodies with high fitness represent good 

individuals. 

The fitness of each antibody is a positive number in 

the range  given by: 

                 (18) 

Where:  

  and   are respectively the cost and the 

availability of the configuration represented by 

antibody . 

 is a penalty factor used to penalize antibodies 

which violate the constraint requirement. In equation 

(20), the antigenic fitness of antibodies satisfying the 

availability constraint  is a function of costs 

only.  

 

STEP 4. Select m best antibodies to be kept in system 

memory (M). 

Select the n,  mn   highest affinity antibodies in 

relation to the antigen for cloning. 

 

STEP 5. Generate clone set (C) 

     Generate clone set (C) for the best n antibodies 

sorted in ascending order [  better individual than 

for all (j>i)].  The number of copies is 

proportional to their affinities: the higher the affinity, 

the larger the clone size. The cloning of best n 

individuals is implemented by the rule: 








 


i

n
roundNCi


 

Where   
iNC  is the number of clones for antibody  

 n      is the number of selected  antibodies 

      is a size factor 

 For 40n and 1 , the highest affinity antibody 

(i=1) will produce 40 clones, while the second highest 

affinity (i=2) produces 20 clones, etc. 

                                                                                                                  

STEP 6. Execute genetic hypermutation and generate 

maturated clone set (C
*
) 

 

 

 

Fig 4. : Lock and Key Relationship 

between Antigen and Antibody 
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6.1 Mutation operations: 

Cloned structures are mutated with a rate 

inversely proportional to their affinities with the 

antigen: the higher the affinity, the smaller the 

mutation rate. Mutation is executed following a 

biased probability rule that enables higher or lower 

mutation rates of antibodies according to their 

affinity with antigen as follows: 

In each iteration j, and for each antibody i, evaluate the 

mutation threshold value as: 

                                   (19) 

 Generate a random number  in interval [0, 1] 

If     then mutate antibody , else move to next 

antibody. 

 

6.2 Crossover operations: 

The crossover operations are performed on 

the parents’ vectors. To illustrate the crossover 

procedure let us consider a PM programme of six 

interventions and consider two parent antibodies 

 and . For illustration we only consider the 

PM vectors of the first element (first line in antibody 

matrix). 

 
 

 
                                                                            

To generate the first line of the offspring 

antibody  , we proceed as follows: the first line 

of antibody parent  is copied in the offspring 

 then the fragment of genes between two 

arbitrary positions  and  of antibody parent   

 are copied to the corresponding 

positions of offspring . The crossover procedure 

for the first element (first line in antibody ) is 

illustrated for   

 
Crossover operations for the other components and 

the buffer vector are performed in a similar manner. 

For each component, the crossover procedure is 

executed only if the outcome of a randomly 

generated number   is less than a 

specified threshold limit . The value of the 

parameter  can be set to depend on the cycle 

number. Equation (20) sets the threshold value for 

executing a crossover. 

                                      (20) 

Where  is the evaluation number and  the maximal 

evaluation number and   a scaling factor.  was set to 

0.2, so the crossover execution probability varies from 

80% in the early stages of the optimization process to 

17% in the late stages.  

 

Place all antibodies issued of genetic operations in 

maturated clone set (C
*
). 

 

Step 7.  Generate new random population (R). 

Generate new random population (R) to replace the 

eliminated population in repertoire (S) and to avoid 

premature convergence to local optima. 

 

Step 8:  Place antibodies of (C), (C
*
), (M), (R) in 

repertoire (S) and Survey newly generated antibodies 

      The antibody–antigen affinities  of 

antibodies generated in Step 6 and 7 were evaluated. 

Moreover, to retain the antibody diversity in the 

current repertoire, affinity  (hereafter, 

“antibody-antibody affinity”) between antibodies i 

and the best antibody in repertoire (P) were also 

investigated. Antibodies showing high affinity 

beyond a threshold limit TL with the best antibody 

are deleted with a deletion probability P(d) given by: 

  T

G

dP                                                             (21) 

 

Where   is a probability scaling number in the 

range [0, 1], G the evaluation number and T the 

maximal evaluation number.  

It is apparent from Eq. (21) that during early search 

stages antibodies having high “antibody antibody 

affinity” are deleted with high probability 

allowing antibody diversity in the immune system 

memory and causing the search procedure to cover 

uniformly the decision space. At latter search stages 

when the space region likely containing the global 

optimum is located, near optimal individuals are 

allowed to perform fine local search. 

 

The antibody-antibody affinity  in this 

study can be expressed as: 

                                                (22) 

                         






1

1

k

j

jiD    

Where               (23) 

Where iD  is the Hamming distance between 

antibodies i and the best antibody, is the jth 

element in component k of antibody i, and   

is the jth element in component k of the best 

antibody. 

The Hamming distance between two antibodies is the 

number of equivalent locations for which the 

corresponding machines or buffers are different.  

 

Step 10: Generate memory set (M) Reselect m 

highest affinity of these maturated individuals to be 
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kept as memories of the immune system.  Select n 

best affinity candidates for cloning. 

 

Step 11: Repeat steps 6 to 10 until a certain stopping 

criterion is met. The stopping condition applied in 

this work is based on the stagnation feature of the 

algorithm (less than 0.1% change in the cost function 

in ten consecutive generations). 

 

VI. ILLUSTRATIVE EXAMPLE 

Let consider a series-parallel MSS (Nuclear 

power systems) consisting of components connected 

in series arrangement as depicted in figure.3. The 

system contains 10 equipments with different 

performance and reliability, the process is done with 

basic components to transmit the stream energy to the 

electrical generator. The reliability of each 

component is defined by veibull 

function:   0
1

h)t()t(h 
   

MSS lifetime is 20 years. The time for possible 

PM_actions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE.3. SERIES-PARALLEL NUCLEAR POWER 

SYSTEM  

Are spaced by intervals of  = 2 months. The 

problem is to find the best PM plan that achieves a 

system performance and reliability not less than (0, 

R0 ). 

 

TABLE 1 

PARAMETER OF ELEMENTS 

 

 

TABLE 1 

PARAMETER OF  COMPONENTS SYSTEM 

 

 

 

 

 

 

 

 

 

TABLE 2 

PARAMETER OF PM_ACTIONS  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 3 

THE BEST PM PLAN FOR R(T,0.85)0.9 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 4 

THE BEST PM PLAN FOR R(T,0.85)0.95 

 

TABLE 4 

        THE BEST PM PLAN FOR R(T,0.85)0.95 

 

 

 

 

 

 

 

 

 

CONCLUSION 

 

 

 

 

 

t PM_Actions Affected  

Elements 

R (t,0.85) 

02.250 

05.652 

07.120 

09.312 

11.648 

14.046 

16.343 

17.879 

19.671 

8 

13 

20 

5 

17 

12 

4 

8 

2 

4 

7 

10 

3 

9 

7 

2 

4 

1 

0.907 

0.912 

0.917 

0.922 

0.934 

0.939 

0.931 

0.914 

0.918 

 

 Total 

PM Cost          13.9 103 $  

 

 

 

 

   h0 Min repair 

Cost 
 

 

% 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

 

0.05 

0.05 

0.05 

0.05 

0.02 

0.02 

0.02 

0.08 

0.07 

0.05 

 

1.8 

1.8 

1.8 

1.8 

1.3 

1.3 

1.3 

1.6 

1.8 

1.8 

 

0.001 

0.003 

0.003 

0.003 

0.002 

0.002 

0.002 

0.006 

0.005 

0.003 

 

1.02 

0.9 

0.9 

0.9 

0.7 

0.6 

0.7 

0.8 

0.6 

0.8 

 

97 

80 

80 

80 

70 

70 

70 

85 

89 

90 

 

      

 

PM_Action Element 

Number 

Age 

Reduction 

Ɛ  

PM_Cost 

10
3 
$ 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13  

14 

15 

16 

17 

18 

19 

20 

 

 

1 

1 

1 

2 

3 

3 

4 

4 

5 

5 

6 

7 

7 

8 

8 

9 

9 

9 

10 

10 

 

 

 

 

1 

0.6 

0.4 

1 

0.7 

0.4 

1 

0.5 

0.6 

0.3 

0.8 

1 

0.4 

1 

0.5 

1 

0.5 

0.3 

0.8 

0.5 

 

17.2 

3.9 

2.8 

2.4 

1.6 

1.1 

1.9 

1.1 

1.3 

0.5 

0.1 

0.7 

0.1 

2.1 

1.0 

3.7 

2.2 

1.1 

1.3 

0.8 

  0.56  

  0.00  

t PM_Actions Affected  

Elements 

R (t,0.85) 

01.783 

03.547 

06.054 

08.131 

09.894 

11.576 

13.077 

14.634 

15.714 

17.237 

18.368 

19.749 

8 

13 

19 

5 

18 

4 

12 

7 

17 

2 

8 

20 

4 

7 

10 

3 

9 

2 

7 

4 

9 

1 

4 

10 

0.952 

0.959 

0.966 

0.956 

0.951 

0.959 

0.964 

0.954 

0.957 

0.965 

0.955 

0.951 

Total 

PM Cost           18.2 103 $      
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In this paper we formulated the problem of 

imperfect maintenance optimization for series-

parallel nuclear power system structure. This work 

focused on selecting the optimal sequence of 

intervals to perform PM actions to improve the 

system reliability under system performance 

constraint. The model analyzes cost and reliability, to 

construct a strategy to select the optimal maintenance 

intervals, formulating a complex problem. We show 

results for two examples involving different 

reliability levels, to give an indication of how PM 

schedules can vary in response to changes in 

reliability of system. An exhaustive examination of 

all possible solution is not realistic, considering 

reasonable time limitations. Because of this, an 

efficient optimization algorithm based on artificial 

immune system was applied to solve the formulated 

problem. It can be seen from tables 3 and 4 for that 

more than more than 30% in PM spending is required 

to increase the power system reliability from 0.90 to 

0.95 for desired minimum system performance not 

less than 85%. 

To test the consistency of the proposed 

algorithm, the immune algorithm was repeated 50 

times with different starting antibody repertoires and 

clone sizes. All immune procedures converged to the 

same values. The algorithm converged faster to 

optimal values when the antibody repertoire size and 

clone size parameters were set respectively to 250 and 

30.  
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