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Abstract 
In this paper, a controller via sliding 

mode control is applied to a two-wheeled inverted 

pendulum, which is an inverted pendulum on a 

mobile cart carrying two coaxial wheels. The 

controller is developed based upon a class of 

nonlinear systems whose nonlinear part of the 

modeling can be linearly parameterized. The 

tracking errors are defined, then the sliding 

surface is chosen in an explicit form using 

Ackermann’s formula to guarantee that the 

tracking error converge to zero asymptotically. 

The control law is extracted from the reachability 

condition of the sliding surface. In addition, the 

overall control system is developed. The 

simulation and experimental results on a two-

wheel mobile inverted pendulum are provided to 

show the effectiveness of the proposed controller. 

 

Key-Words: - Sliding mode controller, two 

wheeled inverted pendulum. 

 

1  Introduction 
The two-wheeled inverted pendulum is a 

novel type of inverted pendulum. In 2000, Felix 

Grasser et al. [1] built successfully a mobile inverted 

pendulum JOE. SEGWAY HT was invented by 

Dean Kamen in 2001 and made commercially 

available in 2003. The basic concept was actually 

introduced by Prof. Kazuo Yamafuzi in 1986. 

In practice, various inverted pendulum systems 

have been developed. Inverted pendulum systems 

always exhibit many problems in industrial 

applications, for example, nonlinear behaviors under 

different operation conditions, external disturbances 

and physical constraints on some variables. 

Therefore, the task of real time control of an unstable 

inverted pendulum is a challenge for the modern 

control field. 

Chen et al. [2] proposed robust adaptive 

control architecture for operation of an inverted 

pendulum. Though the stability of the control 

strategies can be guaranteed, some prior knowledge 

and constraints were required to ensure the stability 

of the overall system. Huang et al. [3] proposed a 

grey prediction model combined with a PD controller 

to balance an inverted pendulum. The control 

objective is to swing up the pendulum from a stable 

position to an unstable position and to bring its slider  

 

 

 

 

back to the origin of the moving base. However, the 

stability of this control scheme cannot be assured. 

On the other hand, there are many 

literatures on sliding mode control theory, which is 

one of the effective nonlinear robust control 

approaches. Juergen et al. [4] designed a sliding 

mode controller based on Ackermann’s Formula. 

Their simulation results prove that the mobile 

inverted pendulum can be balanced by this controller. 

There is no tracking controller. So tracking controller 

of mobile inverted pendulum is deeply needed. 

In this paper, a practical controller via 

sliding mode control is applied to control two-

wheeled mobile inverted pendulum. The sliding 

surface is chosen in an explicit form using 

Ackermann’s formula, and the control law is 

extracted from the reachability condition of the 

sliding surface [5]. Finally, the simulation and 

experimental results on computer are presented to 

show the effectiveness of the proposed controller. 

The two-wheeled mobile inverted pendulum 

prototype is shown in Fig. 1. It is composed of a cart 

carrying a DC motor coupled to a planetary gearbox 

for each wheel, the microcontroller used to 

implement the controller, the incremental encoder 

and tilt sensor to measure the states, as well as a 

vertical pendulum carrying a weight. 

 

 
Fig. 1 Two-wheeled mobile inverted pendulum 

 

2 System Modelling 
In this paper, it is assumed that the wheels 

always stay in contact with the ground and that there 

will be no slip at the wheel’s contact patches. 

The motor dynamics have been considered 

[5]. Fig. 2 shows the conversion of the electrical 

energy from the DC power supply into the 

mechanical energy supplied to the load. 



Nguyen Thanh Phuong, Ho Dac Loc, Tran Quang Thuan / International Journal of Engineering 

Research and Applications (IJERA) ISSN: 2248-9622   www.ijera.com 

Vol. 3, Issue 3, May-Jun 2013, pp.1276-1282 

1277 | P a g e  

 
Fig. 2 The diagram of DC motor 

 

The motor model is given as follows [6], 

m m e
m

K K K
T V

R R
                                       (1) 

Parameters are given in Appendix A. 

Straight Motion Modeling 

In straight motion modeling of mobile inverted 

pendulum, the left and right wheels are driven under 

identical velocity, i.e., rRl xxx   . 

The modeling can be linearized by 

assuming  , where   represents a small angle 

from the vertical direction, 
2

1 0
d

cos ,sin ,
dt


  

 
   

 
                         (2) 

The dynamics equation in the straight motion is 

as follows [6], 

x Ax bu                                                        (3) 
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where 22 23 42 43 2 4a ,a ,a ,a ,b ,b  and d are defined as a 

function of the system’s parameters, which are given 

in Appendix B. 

Tracking error is defined as 

1

2

3

4

r d

r d

d

d

e x x ,

e x x ,

e ,

e

 

 

 

 

 

 

                                                    (4) 

where dx is desired value, d is desired inverted 

pendulum angle. 

 

 
Fig. 3 Free body of motion modeling 

 

From Eq. (4), the followings are obtained. 

1

2 1

2

3

4 3

4

r d

r d d

r d

d

d d

d

x x e

x x e x e

x x e

e
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                                       (5) 

From Eq. (5), the following can be obtained 

2 1

4 3

e e

e e




                                                              (6) 

Substituting Eq. (5) into Eq. (3), the following can be 

obtained. 

1 1
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                            (7) 

Rearranging Eq. (7), the following can be obtained 

1 1
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3 3

4 4

d d

d d

d d

d d

x xe e
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A bu A

e e

e e
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                 (8) 

where  

rx  
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From Eq. (8), the following error dynamic equation 

of mobile inverted pendulum is obtained: 

e Ae bu d                                                  (9) 

where 

1
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3
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e

e b d
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e
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. 

Rearranging Eq. (9), the following can be obtained 

  1e Ae b u d Ae bu                              (10) 

where 1u u d  . 

Proof of Eq. (10) 

bd d                                                            (11) 

Because b is not square matrix, the following is 

obtained by pseudo inverse of b  

 
1

T Td b b b d


       for 0bbT                  (12) 

where   2 2 2
2 4 2 4

4

0

0 0
0

T b
b b b b b b

b

 
 
   
 
 
 

. 

If 2 0b  and  4 0 0b b  , Eq. (10) is given as 

 

e Ae                                                             (13) 

If 
2 2
2 4 0b b  , 

  
1

2 2 4 4

2 2
2 4

T T b d b d
d b b b d

b b

 
 


                    (14) 

In this paper, 
2 2
2 4 0b b  , dx and d are consider as 

constant, so  

2 23 4 43

2 2 4 4
d

b a b a
d

b b b b





  
                                     (15) 

where d is constant, so d is also constant. 

 

 

3  Controller Design 

The control law u  is defined as 

1 2au u d u u                                           (16) 

where static controller au  contributes the design of 

sliding surface, and dynamic controller 2u  directly 

makes sliding surface attractive to the system state. 

The static system is nominal system as follows: 

ae Ae bu                                                    (17) 

The static controller is given by Ackermann’s 

formula as follows: 
T

au k e                                                        (18) 

 
1

2 30 0 0 1T T Tk h P( A),h , , , b,Ab,A b,A b


     , 

1 2 3 4P( ) ( )( )( )( )              

where 1 2 3 4, , ,     are the desired eigenvalues and 

P( )  is characteristic polynomial of Eq. (17). 

Substituting Eq. (18) into Eq. (17), the equation of 

closed loop system is obtained as 

 Te A bk e                                                (19) 

The sliding surface is chosen as 
T T T

1S C e,C h P ( A )                                   (20) 

where 1 1 2 3P( ) ( )( )( )          , 

2 3
1 2 3p p p      . 

Proof of Eq. (20) 

The left eigenvector 
TC of 

TA bk  associated with 

4  satisfies 

4
T T TC ( A bk ) C                                        (21) 

Rearranging Eq. (21) can be obtained as 

4
T T TC ( A I ) C bk                                     (22) 

1 2 3
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

 

Substituting Eqs. (18), (20) and (23) into Eq. (22) 

yields 

4 1 4
T T Tk C ( A I ) h P( A )( A I )    

T Tk h P( A )                                                      

Substituting Eqs. (16) and (18) into Eq. (10), the 

dynamic controller as perturbed system is obtained 

as follows: 

2
Te ( A bk )e bu                                        (24) 

A new variable z  is defined as 
1 0

T

e I

z e Te

S C

   
   
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                       (25) 

where  1
1 2 3

T
e e ,e ,e  is the first three error 

variables of e  and 
TS C e  becomes the last state 

variable of z . 
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The new coordinate system can be obtained as 
1

2 2
Tz T( A bk )T z Tbu Az Bu             (26) 

The transformed system is 
1 1 1

1 1 2e A e a S b u                                        (27) 

4 2S S u                                                     (28) 

where  1
1 2 3

T
b b ,b ,b , 

1
1 11

40 1

T
A a b

A T( A bk )T ,B Tb



  
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. 

A  is shown in details in Appendix C 

Proof of (28) 

Differentiating Eq. (20) and substituting Eqs. (10), 

(21) and (23), the following can be reduced into 

  2
T T TS C e C A bk e bu    

 
 

  2
T T TC A bk e C bu    

4 2 4 2
TC e u S u                                     (29) 

The dynamic controller is chosen as 

2u M( e,t )sign( S )                                     (30) 

where 4
TM( e,t ) C e . 

 

Proof of (30) 

According to reachability condition 
0

0
S
lim S S


  , 

the followings must be satisfied, 

i) S 0  and S 0                                                                        

4 2 0TS C e u                                                                            

2 4
Tu C e                                                                                     

4
TM( e,t )sign( S ) C e                                                          

4
TM( e,t ) C e                                                                           

ii) S 0  and S 0                                                                   

4 2 0TS C e u                                                                      

2 4
Tu C e                                                                              

4
TM( e,t )sign( S ) C e                                                        

4
TM( e,t ) C e                                            

From Eqs. (16) and (18), the control law is given 

as 

2
Tu k e u d                                              (31) 

 

4  Hardware Design 
The control system is specially designed for 

two-wheeled mobile inverted pendulum. The control 

system is based on the integration of three 

PIC16F877s: two for servo controllers and one for 

main controller. The main controller which is 

functionalized as master links to the two servo 

controllers, as slave, via I2C communication. The 

total configuration of the control system is shown in 

Fig. 4. 

 
Fig. 4 The configuration of control system 

 

5 Simulation and Experimental Results 
The parameters for two-wheeled mobile inverted 

pendulum used for simulation are given in Table 1. 

 

Table 1 System numerical values 

Parameters Values Units 

r  0.05 m  

pM
 

1.13 Kg
 

pI
 

0.004 2Kg m
 

eK
 

0.007 /Vs rad  

mK
 

0.006 /Nm A  

R  3   

wM
 

0.03 Kg
 

wI
 

0.001 2Kg m
 

L  0.07 m  
g  9.8 2m / s  
 

Substituting system’s parameters into Eqs. (24), the 

state space equation can be rewritten as follows: 

0 1 0 0

0 4228 0 8809 2 1459 0 8822

0 0 0 1

4 3309 9 1060 34 5772 9 1191

. . . .
e e

. . . .
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 

  

2

0

0 1989

0

2 0565

.
u

.

 
 
 
 
 
 

                                           (32) 

where 1 2 3 41 2 3 4, , ,           . 

It is readily shown that the rank of the controllability 

matrices is full. 

Simulation has been done for the proposed controller 

to be used in the practical field. In addition, the 

controller was applied to the two-wheeled inverted 

pendulum for the experiment. It is shown that the 

proposed controller can be used in the practical field. 

In the case of straight motion modeling, the 

parameters of the sliding surface are 
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1 1   , 2 32 3,     ; the parameters of the 

control law is 0 40M  ; the initial values rx ,  are 

zero, and initial errors are 1 1 0e . m   and 

3 0 1e . rad  . 

Fig. 5 shows that the cart position error has the 

convergent time of 5 seconds. Fig. 6 shows that the 

inverted pendulum angle error is bounded around 

zero after 4 seconds. Fig. 7 shows the sliding surface 

to converge zero very fast in simulation.  
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Fig. 5 Cart position error 1 1 0e . m   
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Fig. 6 Inverted pendulum angle error 
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Fig.7 Sliding surface 

 

Fig. 8 shows controller 1u  versus time. Fig. 9 shows 

controller 2u  versus time. Fig. 10 presents control 

law u  of mobile inverted pendulum to track 

reference. 
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Fig. 8 Dynamic controller 1u  
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Fig. 9 Dynamic controller 2u  

The experimental results in stable condition are 

given after errors converge through Figs.(11) ~ (13). 

The encoder voltage is shown in Fig. 11. Fig. 12 

presents the output voltage of tilt sensor. Fig. 13 

presents motor PWM output under the proposed 

controller u in experiment. 
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Fig. 10 Controller input u 
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Fig. 11 Output voltage of motor encoder 

 

 
Fig. 12 Output voltage of tilt sensor 

 
Fig. 13 PWM output of DC motor under control 

law 

 

6 Conclusion 
This paper presents a sliding mode tracking 

controller for the mobile inverted pendulum. The 

controller is developed based upon a class of 

nonlinear systems whose nonlinear part of the 

modeling can be linearly parameterized. The tracking 

errors are defined, and then the sliding surface is 

chosen in an explicit form using Ackermann’s 

formula to guarantee that the tracking error converge 

to zero asymptotically.  

The simulation and experimental results show 

that the proposed controller is applicable and 

implemented in the practical field. 
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Appendix A 

 

Nomenclature 

Variable Description Units 

V  Motor voltage V 

i  Current armature A 
  Rotor angular velocity rad/s 

eV  Back electromotive force 

voltage 

V 

eK  Back electromotive 

voltage coefficient 

Vs/rad 

RI  Inertia moment of the 

rotor 

2Kg m

 

mT
 

Magnetic torque of the 

rotor 

Nm 

mK  Magnetic torque 

coefficient 

Nm/A 

T  Load torque of the motor Nm 

fK  Viscous frictional 

coefficient of rotor shaft 
Nms / rad

 

R  Nominal rotor resistance   

H  Nominal rotor inductance H  

cx  Cart position 

perpendicular to the 

wheel axis 

m  

  Inverted pendulum angle rad  

d  Desired inverted 

pendulum angle 
rad  

L  Distance between the 

wheel axis and the 

pendulum’s center 

m  

D  Lateral distance between 

two coaxial wheels 

m  
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L RT ,T  Torques acting on the left 

and the right wheel 

Nm 

L LH ,P  Reaction force between 

left wheel and the 

inverted pendulum 

N 

R RH ,P  Reaction force between 

right wheel and the 

inverted pendulum 

N 

Lw Rw,   Rotation angles of the left 

and right wheel 
rad  

L Rx ,x  left and right wheel 

position 

m  

fL fRH ,H  Friction forces between 

the left and right wheel 

and the ground 

N 

r  Wheel radius m  

pM  Pendulum mass Kg 

pI  Inertia moment of the 

inverted pendulum around 

the wheel axis 

2Kg m

 

wM  Wheel mass with DC 

motor 

Kg 

wI  Inertia moment of wheel 

with rotor around the 

wheel axis 

2Kg m

 

g  Gravitation acceleration 2m / s  

 

Appendix B 
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22 2

2 m e p p pK K ( M Lr I M L )
a

Rr 

 
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2 2

23

pM gL
a


 , 

42 2

2 m e pK K ( r M L )
a

Rr






 , 

43

pM gL
a




  , 

2

2

2 m p p pK ( I M L M Lr )
b

R r

 
 , 

4

2 m pK ( M L r )
b

Rr






  , 
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2
2 w
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I
( M M )

r
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2
2 w

p p w

I
I M L ( M )

r
 

 
   
 
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Appendix C 

11 12 13 14 1 1 1 2 1 3 1 4

21 22 23 24 2 1 2 2 2 3 2 4

31 32 33 34 3 1 3 2 3 3 3 4

41 42 43 44 4 1 4 2 4 3 4 4

T

a a a a b k b k b k b k

a a a a b k b k b k b k
A bk

a a a a b k b k b k b k

a a a a b k b k b k b k

   
   
     
   
   
   

 (C1) 

11 1 1 12 1 2 13 1 3 14 1 4 11 12 13 14

21 2 1 22 2 2 23 2 3 24 2 4 21 22 23 24

31 3 1 32 3 2 33 3 3 34 3 4 31 32 33 34

41 4 1 42 4 2 43 4 3 44 4 4 41 42 43 44

a b k a b k a b k a b k A A A A

a b k a b k a b k a b k A A A A

a b k a b k a b k a b k A A A A

a b k a b k a b k a b k A A A A

      
   

   
    
     
  

      




 (B1) 

 

11 12 13 14

21 22 23 241

31 32 33 34

31 2

1 2 3 4 41 42 43 44

4 4 4 4

1 0 0 0
1 0 0 0

0 1 0 0
0 1 0 0

0 0 1 0
0 0 1 0

1

T

A A A A

A A A A
A T A bk T

A A A A
cc c

c c c c A A A A
c c c c



 
     
     
       
     
             

 

31 2 14
11 14 12 14 13 14

4 4 4 4

31 2 24
21 24 22 24 23 24

4 4 4 4

3 341 2
31 34 32 34 33 34

4 4 4 4

31 2 4
1 4 2 4 3 4

4 4 4 4

cc c A
A A A A A A

c c c c

cc c A
A A A A A A

c c c c

c Ac c
A A A A A A

c c c c

cc c Q
Q Q Q Q Q Q

c c c c

 
   

 
 

   
 
 

   
 
 

   
  

 (C2) 

where 

1 1 11 2 21 3 31 4 41Q c A c A c A c A          (C3)  

2 1 12 2 22 3 32 4 42Q c A c A c A c A   

3 1 13 2 23 3 33 4 43Q c A c A c A c A     

4 1 14 2 24 3 34 4 44Q c A c A c A c A    . 

From (21), (C1) and (C3), the followings can be 

obtained 

   1 2 3 4

T TQ Q Q Q Q C A bk  

 4 1 4 2 4 3 4 4 4

TC c c c c       (C4) 

1 1
1 4 1 4 4 4

4 4

0
c c

Q Q c c
c c

      

2 2
2 4 2 4 4 4

4 4

0
c c

Q Q c c
c c

      

3 3
3 4 3 4 4 4

4 4

0
c c

Q Q c c
c c

      

4 4 4
4

4 4

Q c

c c


   (C5) 

Substituting (C5) into (C2) can be rewritten as 

follows: 

31 2 14
11 14 12 14 13 14

4 4 4 4

31 2 24
21 24 22 24 23 24 1 1

4 4 4 4

4
3 341 2

31 34 32 34 33 34

4 4 4 4

4

0

0 0 0

cc c A
A A A A A A

c c c c

cc c A
A A A A A A A a

c c c cA

c Ac c
A A A A A A

c c c c





 
   

 
 

     
    

  
   

 
 
 

 


