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Abstract           

In this study, A finite element model 

based on the third order theory is presented for 

the active vibration control of composite beams 

with distributed piezoelectric sensors and 

actuators. For calculating the total charge on 

the sensor, the direct piezoelectric equation is 

used and the actuators provide a damping effect 

on the composite beam by coupling a negative 

velocity feedback control algorithm in a closed 

control loop. A modal superposition technique 

and a Newmark-β method are used in the 

numerical analysis to compute the dynamic 

response of composite beams. Algorithm for 

calculating the various values of variables is 

carried out using Matlab tool 
 

Keywords- Active vibration control, cantilever 

composite beam, Newmark-β method 

 

1. Introduction 
Engineering structures work frequently 

under dynamic excitations. The type of excitation 
may vary but the results of these excitations are 

shown generally in the form of the vibrations. 

Vibrations can be attributed as an unwanted for 

many engineering structures due to precision 

losses, noise, waste of energy, etc. and should be 

kept under control for lightweight structures. 

Attempts at solving these problems have recently 

stimulated extensive research into smart structures 

and systems. A smart structure can be defined as a 

structure with bonded or embedded sensors and 

actuators with an associated control system, which 

enables the structure to respond simultaneously to 
external stimuli exerted on it and then suppress 

undesired effects. Smart structures have found 

application in monitoring and controlling the 

deformation of the structures in a variety of 

engineering systems. Advances in smart materials 

technology have produced much smaller actuators 

and sensors high integrity in structures and an 

increase in the application of smart materials for 

passive and active structural damping. Several 

investigators have developed analytical and 

numerical, linear and non-linear models for the 
response of integrated piezoelectric structures. 

These models provide platform for exploring active 

vibration control in smart structures. The 

experimental work of Bailey and Hubbard, 1985 

[1] is usually cited as the first application of 

piezoelectric materials as actuators. They 
successfully used piezoelectric sensors and 

actuators in the vibration control of isotropic 

cantilever beams. P. R. Heyliger and J. N. Reddy, 

1988 [2] had presented higher order beam theory 

for static and dynamic behaviour of rectangular 

beams using finite element equations. Ha, Keilers 

and Chang, 1992 [3] developed a modal based on 

the classical laminated plate theory for the dynamic 

and static response of laminated composites with 

distributed piezoelectric. H.S. Tzou and C. I. 

Tseng, 1990 [4] had presented finite element 
formulation of distributed vibration control and 

identification of coupled piezoelectric systems. 

Chandrashekhara and Varadarajan, 1997 [5] gave a 

finite element model based on higher order shear 

deformation theory for laminated composite beams 

with integrated piezoelectric actuators. Woo-seok 

Hwang, Woonbong Hwang and Hyun Chul Park, 

1994 [6] had derived vibration control of laminated 

composite plate with piezoelectric sensor/actuator 

using active and passive control methods. X. Q. 

Peng, K. Y. Lam and G. R. Liu,1998 [7] gave finite 

element model based on third order theory for the 
active position and vibration control of composite 

beams with distributed piezoelectric sensors and 

actuartors. Bohua Sun and Da Huang, 2001 [8] had 

derived analytical solution for active vibration 

control and suppression of smart laminated 

composite beam with piezoelectric damping layer. 

V. Balamuragan and S. Narayanan, 2002 [9] 

proposed finite element formulation and active 

vibration control on beams using smart constrained 

layer damping treatment (SCLD). S. Narayanan 

and V. Balamuragan, 2003 [10] gave finite element 
modal of piezolaminated smart structures for active 

vibration control with distributed sensors and 

actuators. 

 

2. Mathematical modelling of beam 
2.1 Piezoelectric equations 

Assuming that a beam consists of a 

number of layers (including piezoelectric layers) 

and each layer possesses a plane of material 
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symmetrically parallel to the x-y plane and a linear 

piezoelectric coupling between the elastic field and 

the electric field the constitutive equations for the 

layer can be written as, [12] 
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The thermal effects are not considered in the 

analysis. 

The piezoelectric constant matrix  e can be 

expressed in terms of piezoelectric strain constant 

matrix  d as 

         e d Q                                  (3) 

Where, 
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2.2 Displacement field of third order theory 

The displacement field based on the third order 

beam theory of Reddy [2] given by 
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Where, 
2

4

3h
  and h is the total thickness of the 

beam. 

The displacement functions are approximated over 

each finite element by [7] 
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Where, i are the linear Lagrangian interpolation 

polynomials and the i are the cubic Hermit 

interpolation polynomials. 1 and 3 represent 

nodal values of 0w , whereas 2 and 4 represent 

nodal values of 0w
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Using finite element equations (5) and (6) can be 

expressed as 
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The strain-displacement relations are given by 
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Where,  N and  B  are as follows 
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2.3 Dynamic Equations 

The dynamic equations of a piezoelectric structure 

can be derived by Hamilton’s principle [7]. 

 
2

1

0

t

t

T U W dt            (15) 



Pratik K. Gandhi, J. R. Mevada / International Journal of Engineering Research and 

Applications (IJERA) ISSN: 2248-9622   www.ijera.com 

Vol. 3, Issue 3, May-Jun 2013, pp.940-945 

942 | P a g e  

Where T is the kinetic energy, U is the strain 

energy, and W is the work done by the applied 

forces. 

In this, the kinetic energy at elemental level is 
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Where, eV  is the volume of the beam element. 

The strain energy at elemental level is 
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And work done by the external forces is 

 

           
1e

T T Te

b s c
V S

W u f dV u f dS u f   
  (18) 
 

Where,  bf is the body force, 1S is the surface 

area of the beam element,  sf is the surface force 

and  cf is the concentrated load. 

 

2.4 Equation of motion 
To develop the equation of motion of the system, 

consider the dynamic behavior of the system. 

These equations also provide coupling between 

electrical and mechanical terms. The equation of 

motion in the matrix form can be written as, [7] 

 

     
e e ee e e e

uvM u K u F K V            


                               
(19) 

 

Where, 

   
e

Te

V

M N N dV                 (20) 

    
e

Te

V

K B Q B dV                 (21)

     
e

T Te

uv v

V

K B e B dV                 (22) 

             
1e

T T Te

b s c

V S

F N f dV N f dS N f   

    

(23) 

 

In order to include the damping effects, Rayleigh 

damping is assumed. So equation (19) modified as, 
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Where, 
eC   is the damping matrix, which is 

e e eC a M b K                      (25) 

 

Where, a andb are the constants can be 

determined from experiments [11]. 

Assembling all elemental equations gives global 

dynamic equation is as follows: 
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Where,  F is the external mechanical force 

vector and  VF is the electrical force vector. 

    v uvF K V         (27)  

 

2.5 Sensor equations 

Since no external electrical field is applied to the 

sensor layer and a charge is collected only in the 

thickness direction, only the electric displacement 

is of interest and can be written as [7] 
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Assuming that the sensor patch covers several 

elements, the total charge developed on the sensor 

surface is 
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Where,  1B is the first row of B . 

 

The distributed sensor generates a voltage when the 

structure is oscillating; and this signal is fed back 

into distributed actuator using a control algorithm, 

as shown in fig. 1. The actuating voltage under a 

constant gain control algorithm can be expressed 

as, 

 

e
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Fig.1 Block diagram of feedback control system 

 
The system actuating voltages can be written as 
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     vV G K u           (31) 

Where,  G is the control gain matrix and

i cG G G . 

In the feedback control, the electrical force vector 

 vF can be regarded as a feedback force. 

Substituting equation (31) into equation (27) gives, 
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Thus, the system equation of motion equation (26) 
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As shown in equation (34), the voltage 

control algorithm equation (30) has a damping 

effect on the vibration suppression of a distributed 

system. 

For obtaining a dynamic response under a given 

external loading condition, a modal analysis is 

used, and the nodal displacement  u is 

represented by [11] 

    u x            (35) 

Where  x are referred to as the generalized 

displacements.  is the modal matrix and has the 

orthogonal properties as: 
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Where, 
2   is a diagonal matrix that stores the 

squares of the natural frequencies i . 

Substituting equation (35) into (34) and then 

multiplying equation (34) gives 
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Substituting equation (36) into (37) gives 
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The initial condition on  x is 
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3. Material properties of cantilever 

composite beam 
A cantilever composite beam with both 

upper and lower surfaces symmetrically bonded by 

piezoelectric ceramics, shown in fig. 2 

 

 
Fig. 2 A cantilever composite beam 

 
The beam is made of T300/976 

graphite/epoxy composites and the piezoceramic is 

PZT G1195N. The adhesive layers are neglected. 

The material properties are given in table 1. The 

stacking sequence of composite beam is
0 045 / 45

s
   . The total thickness of the 

composite beam is 9.6 mm and each layer has the 

same thickness (2.4 mm). and the thickness of each 

piezo-layer is 0.2 mm. The lower piezoceramics 

serve as sensors and the upper ones as actuators. 

The relative sensors and actuators form 

sensor/actuator pairs through closed control loops. 
 

Table 1. Material properties of PZT and 

T300/976 graphite/epoxy composite 

 

Properties Symbol PZT T300/976 

Young moduli 

(GPa) 

E11 

E22=E33 

63.0 

63.0 

150.0 

9.0 

Poisson’s ratio 

 

v12=v13 

v23 

0.3 

0.3 

0.3 

0.3 

Shear moduli 

(GPa) 

G12=G13 

G23 

24.2 

24.2 

7.10 

2.50 

Density 

(Kg/mg3) 

Ρ 7600 1600 

Piezoelectric 

constants (m/V) 

d31=d32 254×10-12  

Electrical 

permittivity 

(F/m) 

ε11=ε22 

ε33 

15.3×10-9 

15.0×10-9 
 

 

4. Active vibration suppression 
Here size of the beam is considered as 600 

mm long, 40 mm width and 9.6 mm thick, also 

thickness of each piezo layer is 0.2 mm. 

 

In the analysis, the composite beam is 

divided into 30 elements. The piezoelectric 

composite beam given in figure 2 is considered to 
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simulate the active vibration suppression through a 

simple S/A active control algorithm (negative 

velocity feedback). The piezoceramics on the lower 

surface serve as sensors,and on the upper surface 

are actuators. In the analysis the beam is divided 

into 30 elements so each S/A pairs covers six 

elements. 
 

First, modal superposition technique is 

used to decrease the size of the problem. the 

different modes are used in the modal space 

analysis and transient response of the cantilever 

beam is computed by the Newmark direct 

integration method [11]. The parameters α and β 

are from Rayleigh method. 

 

Results obtain after these methods are as under 

 

 
      Fig. 3 The effect of negative velocity gain on 

the beam subjected to first mode vibration. (Gain=-

2 V/A) 

 

 
Fig. 4 The effect of negative velocity gain on the 

beam subjected to first mode vibration. (Gain=-5 

V/A) 

 

Figure 3 and 4 shows the vibration control 

performance for PZT fully covered beam with 

control gain -2 V/A and -5 V/A for first value of 

alpha and beta of Rayleigh damping. 

 

Fig. 5 The effect of negative velocity gain on the 

beam subjected to second mode vibration. (Gain=-1 

V/A) 

 
 

Fig. 6 The effect of negative velocity gain on the 

beam subjected to second mode vibration. (Gain=-5 

V/A) 

 

Figure 5 and 6 shows the vibration control 
performance for PZT fully covered beam with 

control gain -1 V/A and -5 V/A for the second 

value of alpha and beta of Rayleigh damping. 

 
Fig. 7 The effect of negative velocity gain on the 

beam subjected to third mode vibration. (Gain=-1 

V/A) 

 

 
Fig. 8 The effect of negative velocity gain on the 

beam subjected to third mode vibration. (Gain=-5 

V/A) 
 

Figure 7 and 8 shows the vibration control 

performance for PZT fully covered beam with 

control gain -1 V/A and -5 V/A for the second 

value of alpha and beta of Rayleigh damping. 

As shown in figures, the vibrations decay 

more quickly when higher control gains are 

applied. However, it must be noted that the gains 

should be limited for the sake of the breakdown 

voltage of the piezoelectrics. 
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5. Conclusion 
A finite element model and computer 

codes in Matlab, based on third order laminate 

theory, are developed for the cantilever composite 

beam with distributed piezoelectric ceramics. 
Equation of motion of composite beam is derived 

by using Hamilton’s principle. 

 The S/A pairs must be placed in high 

strain regions and away from the area of low strain 

regions for maximum effectiveness. 

 More S/A pairs can generally induce more 

efficiency on the active vibration suppression. So 

the number of S/A pairs has a great effect on the 

performance of smart structures. 

 As the feedback gain increases, the 

damping ratios are large and as the feedback gain 
decreases, the damping ratios are smaller. 

 Changes in stiffness and the location and 

the number of S/A pairs also affect the dynamic 

response of the composite structure. 

 

So, based on this work, active vibration control 

with finite element model is reliable and fail-safe. 
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