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Abstract 
In the impact parameter formalism, variational 

approach based on the fractional form of 

Schwinger's variational principle is applied to 

evaluate the total direct excitation cross sections to 

n=2, n=3 and 2p+3 of the helium like ion Kr
34 +

 by 

impact of various atoms Zp charges including 

those of rare gases (C, Si, Ar, Cu, Zr) at an energy 

equal to 33.9 MeV.u
-1

. Our theoretical predictions 

of the saturation for total excitation cross sections, 

obtained by this new variational approach are 

compared with the experimental results of Chabot 

et al. 
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Introduction 

The excitation process at intermediate 

speeds has been extensively examined in recent 

years. Specifically, it was reported that the excitation 

cross sections of helium like ion by impact of neutral 

atoms, tend to saturate when the atomic nucleus 

number increases. This phenomenon was predicted 

theoretically in the Schwinger’s variational principle 

formalism [1] [2]. We present here the development 

of this new approach based on the Schwinger 
variational principle. 

The scattering amplitude variational, 

established in the impact parameter formalism, is 

used to study the electronic excitation of highly 

charged ions by impact of ions at intermediate speeds 

[3]. 

We applied this method to determine, In 

addition, the excitation total cross sections of the 

helium like ion Kr34+ (1s2) colliding with neutral 

atoms of various charges ranging from 1 to 56 

including those of rare gases (C, Si, Ar, Cu, Zr) at 

intermediate speeds (35a.u) This corresponds at 
33.9Mev.u-1 energy. We subsequently compared the 

various theoretical predictions obtained by this new 

 

 

 

 

variational approach with the experimental results of 
Chabot et al [4]. 

In recent decades, variational methods can 

be a tool for investigating that takes relays 

perturbative treatment in the study of atomic 

collisions. These variational methods can be grouped 

into two categories: those based on the Schrödinger 

equation {method Hulthén Khon-[5-7], variational 

method called matrix-R (R-matrix) [8-10].} and those 

based on the Lippmann-Schwinger equations 

{variational method, Schwinger in person that 

presented in his lectures at Harvard University and 
was published in 1947 [11].}. 

The greatest importance in the collision 

problem is the determination of the wave function 

which represents the wave scattering because it 

contains all information on system state. To resolve 

this problem, some approximations have been widely 

used in recent decades: The Born approximation [12], 

the method of VPS (Vaishtein, Presnyakov and 

Sobelman) [13], the eikonal approximation « Impact 

Parameter Method » and the Glauber approximation 

[14] [15]. 

Several approaches have been formulated to 
give adequate models for studying the collisions 

processes: model of Cheshire and Sullivan 

established in 1967 [16], the potential model of 

second order proposed by Coleman in 1972 and 

Brensden [17], the pseudo-states model used for the 

first time by Reading and his collaborators in 1976 

[18], then taken by Fitchard and his collaborators in 

1977[19]. 

Owing to the insufficiency of these methods 

and difficulties of implementation methods based on 

the perturbation theory, we are interested in this new 
approach excluding a perturbative treatment [20], and 

based on a variational theory. This approach is called 

the Schwinger variational principle. 

 

Theoretical treatment: 

We are interested in an approach called 

Schwinger variational principle based on the 

Lippmann-Schwinger equations:
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                          c cG V                            (1a)
  

                         c cG V      
  

                  (1b) 

where: 
 , 

 , Eigen-states of total Hamiltonian 

of the system H respectively satisfying to the input 

and output  waves conditions knowing that the 

Hamiltonian system is decomposed as follows:      

                             c cH H V 
                               

(2) 

where: H is the Hamiltonian of no-interacting 

particles and cV interaction potential between particles 

in this way and 
cG

the Green operator defined by 

[21]: 

                    
 

1

0

limc cG E H i









  
  

                 (3) 

In order to obtain a stationary form of the transition 

amplitude Tβα relative to small variations arbitrary 

around their exact values: 

                        cT V   
                              

(4a)
 

                        cT V   
                              

(4b)
 

                 c c c cT V V G V  
     

                       
(4c) 

Since the scattering states 

 and 

 cannot be 

exactly known, we will take as test states the 

approached vectors 



  and 




  such as:

    

                 

  

  b

a  

  




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

     


  

        (5)

 that we develop in a finite dimensional vector 

subspace (N), whether:
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         (6) 

By expressing the fractional transition amplitude 

based on these test vectors, we thus obtain the 

approached transition amplitude  T   :  

               

  1

1 1

N N

c c
ij

i j

T V i D j V  

 

                 (7) 

where  1

ij
D

is the inverse of the matrix

ji c c c cD j V V G V i  . 

As the principal contribution to the transition 

considered occurs at small angles (<10
-3

radian for the 

collision H
+  

H), considering that the projectile 

describes a rectilinear trajectory and therefore treat 

this problem in the eikonal approximation [14] [15]. 

We consider a collision between a projectile of mass 

Mp, of charge Zp and a target of mass MT, of charge 

ZT. the inter-nuclear separation is given by: 

            

 

 

 

v.

.v 0

aR Z

Z bt

c





  







  

 

 

            (8) 

where 


 is the impact parameter, v


relative velocity 

of projectile, R


 defines inter-nuclear distance.  
t: is the time taken arbitrarily equal to zero when 

R 
 

, Z


 is the projection of R


 on the path of the 

projectile. 

The Schrödinger’s time-dependent equation 

   i t H t
t


  




 
[22],     is written in another 

 

form said eikonal scattering equation deduced by 

differentiation with respect to Z rather than t and 

using expression (8b) vZ t
 

. We will then have:  

                    

 

 v 0T ci H V Z
Z

 
     

 
                    (9) 

The resolution of this last equation implicates us to 

solve the following Schrödinger’s eikonal equation of 

the target: 

                     

 v 0Ti H k Z
Z

 
   

 
                       (10) 

The long range projectile-target coulomb interaction 

between the projectile and the target   int 1P TV Z Z R   

must be added to the Hamiltonian  HT  equation (10), 

to obtain the eikonale Eigen-states of the target, 

multiplied by a phase factor nominated «of 

Coulomb»:     1 v ln v vP Ti Z Z R Z 

 

with R Z    .  

Therefore the transition amplitude is also multiplied 

by a phase factor which depends on impact parameter




 that goes be overlooked in the calculation of the 

cross section and reintroduced thereafter in the 

calculation of the differential cross section. 

The scattering states  Z
 and  Z

 , solutions of 

the Schrödinger equation in the formalism of the 

impact parameter, are then determined within the 

eikonal approximation by the Lippmann-Schwinger 

equations [23]:

             ' ' ' '
TZ Z dZ G Z Z V Z Z 



  



    
                

(11a)

      
         ' ' ' '

TZ Z dZ G Z Z V Z Z 



  



                  (11b)

 Adopting the notation (| |) indicating the integration 

over the electronic coordinates as well as over Z the 

expression of the transition amplitude for the impact 

parameter 


 may be written for α ≠ β, as: 

      

 
   

 v
T

V Vi
a

V VG V

 



 

 


 

  

 
 

  


                    (12) 

In a manner similar to quantum treatment, 

the expression (12) for the transition amplitude  a 


 

is one hand stationary relative to small variations of 

the scattering states 

  and 

  round their exact 

values and leads in other hand, to the following 

approximate form: 

        

       1

1 1v

N N

ij
i j

i
a V i D j V   

 

 
  
 




              (13) 

The eikonal quantum transition amplitude can be 

expressed as: 
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 

 

 
1

2
. vv d

p TZ Z
i

iT i e a 
    



 
   

              (14) 

In this last expression the potential inter-aggregate 

contribution

 1
2

v

p TZ Z
i





depending on the impact 

parameter, has finally been reintroduced in the total 

excitation cross section:
        

         
 

2

0
2   d a     



 


                      

(15)  

 In the evaluation of the approached variational 

transition amplitude   a 


, mainly two kinds
 

of 

matrix elements are calculated:  

• The  jVi  Matrix element (Born- I): 

                   

   v ,
i j

i z

iji V j dz e W z

 







 


             (16) 

where [24]: 

       
       ij i jW ρ ,z dx  x  V R,x  x  

    
        (17)  

•The  jVVGi T

  Matrix element (Born-II): 

            ,   ,
v

z

T i j
v

i j
i z i zi

i V G V j dz e W z dz e W z 

    

  




 

             
   

    (18)           

The contribution of the continuum states near the 

ionization threshold could be evaluated by an 

extension of analytical calculation of first term of this 

expression: 

     

v

ν,l k,l

T ij ij
0

l 0 ν l 1

i
i V G V j dk

  


  

  
     
   

  H H             (19)   

by substituting υ by ZT /ik. 

Now, the contribution of continuum states to 

the elements of Born-II  Ti VG V j

 can
 
be evaluated in 

an interval  00,k , thus, the sum along the domain of 

the continuum, where the analytic continuation is still 

valid, can be approximated by: 

               

 0

2
, , 0

20 2

k k l m

ij

T

kA
dk

Z
 H                      (20)                                   

In our study, the adapted model to examine 

the excitation process of the ion Kr34 + by 

impingement of neutral atoms is based on the 

fractional form of the Schwinger variational principle 

illustrated previously [25]. Moreover, the base on 

which the wave functions 


 
and 

  have been 

developed, is enlarged from 5 states (1s, ns, np0, np+1, 

np-1) denoted Schw 55 to 10 states (1s, 3s, 3p0, 3p+1, 

3p-1, 3d0, 3d+1, 3d-1, 3d+2, 3d2) denoted Schw 1010 

order to arrive at a better representation of the 

propagator TG
 that surely leads us to a more precise 

description and fairly complete of that process. All 

the results obtained (the total cross sections 

calculated from these approximations) were 

compared with experimental data Chabot et al [4]. 

To describe the excitation of helium-like 

Kr34 + we assume that the passive electron behaves 

like a screen with respect to each other, reducing load 

on of the kernel at ZT = 35
 

. Taking account of 

simplifications introduced by the scaling laws, all 

calculations concerning the total cross sections of 
excitation has been made for a collision proton- 

hydrogen atom but at a reduced velocity u=v/ZT and 

for a reduced impact parameter γ = ZT ρ . 

 

Convergence test and discussion: 
In our treatment, five theoretical approaches were 

compared: 

• The first Born approximation (Born-I). 

• The second Born approximation (Born-II). 

• Schwinger-Born-approximation (Schw-B). 

• Schwinger55 approximation (Schw55). 

• Schwinger1010 approximation (Schw1010). 
For the excitation to the level n=2 (Figure 3), 

the base series used will include five following states 

{1s, 2s, 2p0, 2p+1, 2p-1}. All intermediate states need 

to be included In order to adequately describe the 

excitation to the level n=3.This has been pushing us 

to expand the basis on which the propagator is 

developed in order to reach a better representation of 

the wave function thus, the base series { i } and        

{ j } is expanded from 5 to 10 states {1s, 3s, 3p0, 

3p+1, 3p-1, 3d0, 3d+1, 3d-1, 3d+2, 3d-2}. Concerning 

excitation to the states 2p+3, we have added the total 

excitation cross sections to the 2p state of the level 

n=2 to those of the level n=3. 

Our theoretical treatment has been success-
fully applied to the excitation of Kr34+(1s2) interacting 

with various atoms at the energy 33.9MeV.u-1.Since 

targets are neutral atoms; no capture process can 

intervene during the collision. The total experimental 

excitation cross sections to the final states 2s, n=2 

and 2p+3 [4] of 33.9MeV.u-1Kr34 + ions are shown 

only for C, Si, Ar, Cu and Zr atoms in Figs (1, 3, 8).  

The corresponding theoretical cross sections of the 

first Born approximation, the second Born 

approximation, Schwinger-Born-approximation, 

Schwinger 55 and Schwinger1010 are also shown in 

these figures.  
The present results thus show that the 

Schwinger variational principle predicts that the total 

excitation cross section is characterized by a low 

variation from Zp = 7 when Zp increases. This is 

called a saturation effect. On the other hand, the 

results of Schwinger-Born approximation (Schw-B) 

do not represent well the saturation, particularly for 

excitation to the 2p state; unlike to the 3p state where 

they tend to get saturate for large values of Zp. This 

inability to reproduce the phenomenon of saturation 

for excitation to the 2p state is due to a strong 
coupling with the 2s state. 

The good agreement between our results 

(Schw55, Schw1010) with experimental measure-

ments for large values of Zp (Zp =40)
 
result from the 

fact that for Zp >7 the total excitation cross sections 

are not very sensitive to variations of the target 

atomic number. 

• By observing the various results in Figures 1, 3 and 

8, the following comments also need to be made: 

For the Kr34+    C System, all calculations give similar 

values that remain in good agreement with the 
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experimental results. The high asymmetry of the 

Born approximation show us that the treatment is 

valid solely for relatively low speeds of collision of 

the system (ZT /Zp = 0.17).  

• By considering of systems with heavier targets, 

divergences more and more pronounced of the Born 

theory appear. By against, our predictions given by a 
new variational procedure remain in perfect 

agreement with experiment. 

The most remarkable result is the 

experimental proof of the saturation excitation cross 

sections obtained by the theoretical predictions of the 

variational method. It can be seen that even in these 

cases the experimental cross sections deviate and 

remain much below the first Born-approximation and 

same for the various theoretical predictions: 

Schwinger 55 (Schw55) and Schwinger1010 

(Schw1010). The values provided by Born-II are 

even further above Zp=7 where perturbation 
conditions are checked. 

   
 

Figure 1: Excitation total cross section to the 2s state 

of the ion Kr 34+ (1s2) at the energy 33.9 MeV.u-1 as 

function of the target atomic number. 

 
 

Figure 2: Excitation total cross section to the 2p state 

of the ion Kr 34+ (1s2) at the energy 33.9 MeV.u-1 as 

function of the target atomic number. 

    

 
 

Figure 3:  Excitation total cross section to the level 

n=2 of the ion Kr 34+ (1s2) at the energy 33.9 MeV.u-1 

as function of the target atomic number. 

 

 
Figure 4: Excitation total cross section to the 3s state 

of the ion Kr 34+ (1s2) at the energy 33.9 MeV.u-1 as 

function of the target atomic number. 

 
Figure 5: Excitation total cross section to the 3p state 

of the ion Kr 34+ (1s2) at the energy 33.9 MeV.u-1 as 

function of the target atomic number. 
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 Figure6: Excitation total cross section to the 3d state 
of the ion Kr 34+ (1s2) at the energy 33.9 MeV.u-1 as 

function of the target atomic number. 

 

 
Figure 7: Excitation total cross section to the level 

n=3 of the ion Kr 34+ (1s2) at the energy 33.9 MeV.u-1 

as function of the target atomic number. 

 

 
Figure 8: Excitation total cross section to the states 

2p+3 of the ion Kr34+ (1s2) at the energy                

33.9 MeV.u-1 as function of the target atomic number. 

Conclusion: 
In conclusion, our objective was to give a 

performance calculation tool to determine the total 

excitation cross sections in multi-charged ion-atom 

interactions at intermediate speeds and to see the 
discrete spectrum contribution well as that of 

continuum in the total excitation cross sections. 

The method based on the fractional form of 

Schwinger’s variational principle allows a systematic 

study of total excitation cross section as a function of 

the projectile atomic number Zp=7 well as the 

prediction with success of this phenomenon When the 

projectile atomic number increases. 

Finally, the variational methods based on 

Schwinger’s variational principle thus can be a 

powerful tool for investigating and takes the relays of 

perturbative treatments in the study of atomic 
collisions at intermediate speeds. 
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