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Abstract 
 A new algorithm for the reduction of 

Large Scale Linear MIMO (Multi Input Multi 

Output) Interval systems is proposed in this 

paper. The proposed method combines the Least 

squares methods shifting about a point ‘a’ 

together with the Moment matching technique. 

The denominator of the reduced interval model is 

found by Least squares methods shifting about a 

point ‘a’ while the numerator of the reduced 

interval model is obtained by Moment matching 

Technique. The reduced order interval MIMO 

models retain the steady-state value and stability 

of the original interval MIMO system. The 

algorithm is illustrated by a numerical example. 
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1. Introduction 
Shoji et al [1] proposed a procedure of 

using least squares moment matching technique for 

the order reduction of fixed parameters systems. 

This method was refined by Lucas and Beat and was 

extended to include the use of Markov parameters 

[2]. If the system transfer function contains a pole of 

magnitude less than one, then numerical problems 

can arise owing to a rapid increase in the magnitude 

of successive time moments .This gives an ill 
conditioned set of 

linear equations to solve for the reduced 

denominator .To overcome this problem, it is 

sometimes possible to use a linear shift  s 

(s+a) such that the pole of smallest magnitude has 

the modulus of approximately one, this tends to 

reduce the sensitivity of the method. However, the 

focus of the work so far appears to concentrate 

mainly on the basic idea of extending this technique 

for order reduction of High Order Interval MIMO 

systems. 

 

2. The proposed Reduction Procedure: 
Let the transfer function of MIMO Interval system 

with „q‟ outputs and „u‟ inputs given as 

G s =
1

D(s)

 
 
 
 
 

x11 s  x12 s   … … x1u s 

x21 s   x22 s  … … x2u s 
. . . .     ….  ….  ….  …  … ..   

…  … . ….  ….  …  …  ….  … .
xq1 s   xq2 s  … … xqu  s  

 
 
 
 

 

 

 
 

Where the denominator D(s) is in the format of 

D(s)=  b0
− , b0

+ +  b1
− , b1

+ s + ⋯ +  bn
− , bn

+ sn  

The Transfer function of each output can be defined 

as 

G1(s) =
x11 s +x12 s +⋯+x1u  s 

D(s)
…    1st Output 

G2(s) =
x21 s +x22 s +⋯+x2u  s 

D(s)
…   2nd  Output         

….           ………………. …   …….  .. 
….           ……………….. ….. …. … 

Gq s =
xq 1 s +xq 2 s +⋯+xqu  s 

D s 
   …  q

th
 Output 

The sum of numerators of the entire „m‟ individual 
outputs are done by using the rules of Interval 

Arithmetic defined as follows  

i) Addition: [a,b]+[c,d]=[a+c , b+d] 

ii) Subtraction: [a,b]-[c,d]=[a-d , b-c] 

The general transfer function of each output is 

defined as 

Gq (s) =
 a0

− ,a0
+ + a1

− ,a1
+ s+⋯+ an−1

−  ,an−1
+  sn−1

 b0
− ,b0

+ + b1
− ,b1

+ s+⋯+ bn
− ,bn

+ sn   …(1) 

 Where [ai
-, ai

+] for i = 0 to n-1 and [bi
- , bi

+] for i = 0 
to n are the interval parameters. Now this nth order 

qth output Interval original system is transferred to 

four fixed nth order transfer functions using 

Kharitonov‟s theorem. Thus the four nth order system 

transfer functions are defined each as            

GP s =
AP 0 +AP 1 s+AP 2 s2+⋯+APn −1sn−1

BP 0+BP 1s+BP 2s2+⋯+Bpn sn        

                                                        …(2) 

Where p=1, 2, 3, 4 and n = order of the original 

system. Replace the Gp(s) by Gp(s+a) where the 

value of „a‟ obtained by the harmonic mean of the 

real parts of the roots of Gp(s) defined as: 

               

n
Pa

n

i i


 













1

11

             

                                                       . . . (3) 
Where Pi are the poles of Gp(s) 

Step1:  

Expand 𝐺p(s+a) about s=0, to obtain the time 

moments (𝐶𝑖) given by 







0

s)(
i

i

ip casG

                  …(4) 

Similarly, if Gp(s + a) is expanded about  

s= , then the Markov parameters jm  are obtained 

by: 
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 





1

s)s(
j

j

jp maG                        … (5)  

 

 Let the corresponding rth order reduced model is 

synthesized as  Rp(s + a) =
Np (s+a)

Dp (s+a)
 

Rp s + a =  
    dp 0+dp 1s+dp 2 s2+⋯+dpr −1sr−1

ep 0+ep 1 s+ep 2s2 +⋯+epr sr  ..(6)    

To Obtain Reduced Order models (Retaining 

only Time moments): 

  Step 2: Equating the equation (4) and (6) to retain 

the time moments of the original system which 

generates the following set of equations: 

 
 
 
 
 

 

cr              cr−1         ….  c1

cr+1                 cr        ….  c2

….           … ….        …    …
….                  …            … . .

     c2r−1           c2r−2    …      cr           
 
 
 
 

∗

 
 
 
 
 

ep0

ep1

.

.
epr−1 

 
 
 
 

 

=                                                               

 
 
 
 
 

−c0

−c1

.

.
−cr−1 

 
 
 
 

   …  7  

or ,H e = c, in matrix vector form where the 

coefficients of „epr‟ , the parameters of the reduced 

denominator obtained by least squares sense  using 

the generalized  inverse method 

e = (HT  H )-1 HT c                                  …(8) 

If the coefficients ei given by the equation (8) do not 
constitute a stable denominator, another row is to be 

added to the existing equation set so that the model 

assumes a matching of the next time moment of the 

original system and so until a stable denominator 

obtained. 

[ c2r  c2r-1 …. cr+1 ] and [- cr ]                …( 9 )          

Once the coefficients  ep0 , ep1 , ep2 , … . epr  of vector 

„e‟ obtained from equation (8) then Dp s + a  is 

obtained as      

                

DP(s + a) = ep0 + ep1s + ep2 s2 + ⋯ + epr sr  

                                                                                                                                                                                                                         

 

Step 3: Apply inverse shift of s(s-a) and finally 

the rth order reduced denominator obtained as: 

Dp s = Ep0 + Ep1s + Ep2s2 + ⋯ + Epr sr 

Thus the Reduced Model 

Rp s =
Np s 

Dp s 

=
Dp0 + Dp1s + Dp2s2 + ⋯ + Dpr−1sr−1

Ep0 + Ep1s + Ep2s2 + ⋯ + Epr sr
 

                                                                                  

…(10) 

Step4: Calculate the reduced numerator Np s  as 

before by matching proper number of time moments 

of GP s  to that of reduced model   Rp s . 

Step5: From all the reduced denominator 

polynomials of „q‟ outputs a common reduced 

interval denominator is obtained. While reduced 

interval numerator is obtained individually for each 

output. 

Step6: The Gain of the reduced interval model of 

each output is adjusted with its Original Interval 

system to match steady state by considering s=0 

To Obtain Biased Reduced order Models: 

The above step can also be generalized by including 
Markov parameters in the least square fitting 

process, as follows: 

 

 

dp0 = ep0 c0                            

dp1 = ep1c0+ep0c1                  

dp2 = ep2c0 + ep1c1+ep0c2    
.         .         .         .        .
.         .         .         .        .
.         .         .         .        .

dpr−1   = epr−1c0 + ⋯ + ep0 cr−1

0   = epr−1c1 + ⋯ + ep0cr

   0   = epr−1c2 + ⋯ + ep0cr+1

.            .         .         .        .

.            .         .         .        .
     0 = epr−1ct + ⋯ + ep0cr+t−1  

 
 
 
 
 
 

 
 
 
 
 
 

     ..(11) 

and 

 

dpr−1 = m1                                               

dpr −2 = m1epr−1 + m2                                     
.           .            .        .                              
.           .            .        .                              

dpt = m1ept +1 + m2ept +2 + ⋯ + mr−t 
 
 

 
 

..(12) 

Where the ci and mj are the time moments and 

Markov parameters of the system respectively. 

Elimination of dj(j= t, t+1, …,r-1) in equation (12) 

by substituting into (11) gives the reduced 

denominator coefficients as the solution of: 

 
 
 
 
 
 
 
 
 
 

cr+t−1      cr+t−2  …   …    …      …                  ct

cr+t−2     cr+t−3   …   …   …      ct               ct−1

.                 .      …   …     …         .                   .
cr−1        cr−2     …    …     …       c1                  c0

cr−2       cr−3       …    …      …       c0             − m1

cr−3       cr−4       …    …     c0     −m1          − m2

.            .                              .            .                    .   
.            .                               .            .                    .    
.            .             …    …       .           .                     .    
ct        ct−1         …   c0    −m1     …        −mr−t−1  

 
 
 
 
 
 
 
 
 

     

X  

 
 
 
 
 
 
 
 
 
 

ep0

ep1

.

.

.

.

.

.

.
epr−1 

 
 
 
 
 
 
 
 
 

  =   

 
 
 
 
 
 
 
 
 
 

0
0
.
.

𝑚1

𝑚2

𝑚3

.

.
𝑚𝑟−𝑡  

 
 
 
 
 
 
 
 
 

                               …..(13) 

 

or H e = m  in matrix vector form  and e can     be 

calculated   e = (HT  H )-1 HT m         …..(14) are the 
coefficients of the   reduced model denominator. If 

this estimate still does not yield a stable reduced 

denominator then H and m in (14) are extended by 

another row, which corresponds to using the next 
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Markov parameter from the full system in Least 

Squares match.   

Step7: Repeat step3, step4, step5 and step6 

respectively to obtain biased reduced order models. 

3. Illustrative Example 

G(s) =
1

D(s)
 

 x11 s        x12 s  

 x21 s        x22 (s)  
  

   D(s) = [13, 15] s2+ [44, 48]s+[30,31] 

     x11 s =  16,18 s +  14,15  
     x21 s =  7,8 s +  11,12  
     x22 s =  12,15 s + [14,15] 
     x12 s =  9,12 s + [20,21] 

     G1(s) =
x11 s + x12 (s)

D(s)
 

    G2(s) =
x21 s + x22 (s)

D(s)
 

The transfer function of the Original system (First 

Output) is 

G1(s) =
 25,30 s + [34,36]

 13,15 s2 +  44,48 s + [30,31]
 

The corresponding Kharitonov‟s transfer functions 

are  

C1 s =
25s + 34

15s2 + 44s + 30
; HM = 1.363608 

C2 s =
30s + 34

15s2 + 48s + 30
; HM = 1.250030 

C3 s =
25s + 36

13s2 + 44s + 31
; HM = 1.409088 

C4 s =
30s + 36

13s2 + 48s + 31
; HM = 1.291678 

Applying the proposed reduction method, the 

reduced First Order models retaining the 4 Time 
Moments of the original system are: 

R1(s) =
1.65585

s+1.461051
          I.S.E=0.000738    

 R2(s) =
1.942597

s+1.714056
          I.S.E=0.005894   

 R3(s) =
1.884469

s+1.622737
          I.S.E=0.004358   

 R4(s) =
2.194297

s+1.889534
          I.S.E=0.012399 

The transfer function of the Original system (Second 

Output) is 

G2(s) =
 19,23 s + [25,27]

 13,15 s2 +  44,48 s + [30,31]
 

The corresponding Kharitonov‟s transfer functions 
are  

C1 s =
19s + 25

15s2 + 44s + 30
; HM = 1.363608 

C2 s =
23s + 25

15s2 + 48s + 30
; HM = 1.250030 

C3 s =
19s + 27

15s2 + 44s + 31
; HM = 1.409088 

C4 s =
23s + 27

13s2 + 48s + 31
; HM = 1.291678 

Applying the proposed reduction method, the 

reduced First Order models retaining the 4 Time 

Moments of the original system are: 

R1(s) =
1.258960

s+1.510752
    I.S.E=0.000366 

R2(s) =
1.493948

s+1.792738
     I.S.E=0.002671 

R3(s) =
1.432597

s+1.644833
    I.S.E=0.002417 

R4(s) =
1.685639

s+1.935363
      I.S.E=0.006571 

From all the 8 reduced first order models, the lowest 

and highest values are picked to obtain a common 

denominator for both the outputs. Similarly, for the 

case of numerator the lowest and highest coefficients 

are picked separately for 1st output and 2nd output 
from the four reduced models each. Adjusting the 

gains of original and reduced models, substituting 

s=0, the reduced order models using the proposed 

method are obtained as 

R1(s) =
[1.65585 ,    2.194297]

 1 1 s + [1.461051,    1.935363]
 

R2 s =
[1.2717493908,     1.6856387]

 1 1 s + [1.461051 ,   1.935363]
 

Thus the overall Reduced Interval MIMO model 

obtained as 

R(s) =  
1

Dr (s)
 

 1.65585,        2.194297 
 1.2717493908,    1.6856387 

  

Where Dr (s) =  1 1 s + [1.461051,    1.935363] 
 

Comparison with Stable Pade Approximation for 

linear MIMO Structured Uncertain systems” of 

Ismail et.al [ 6]: 

 

The reduced Interval MIMO model obtained by 

O.Ismail [ 6 ]. 

Ro(s) =
1

 44 48 s + [30 31]
 
 34 36 
[25 27]

  

The step responses of the original system and that of 

reduced models obtained by the proposed Least 

squares method and that of Ismail et.al. are 

compared in Fig. 1-4 for Ist output and IInd output 
respectively. 

 
Fig.1 Lower Bound Response ( Ist Output) 
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Fig.2 Upper Bound Response ( Ist Output) 

 
Fig.3 Lower Bound Response ( IInd  Output) 

 
Fig.4 Upper Bound Response ( IInd  Output) 

 

Conclusion: An Algorithm for the reduction of 

high order interval MIMO systems is proposed using 

least square and general least square moment 

matching at a shifting point „a‟. This method leads to 

stable reduced models for linear continuous time 

interval MIMO systems. 
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