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ABSTRACT 
 In this paper radix-2 algorithms for 

computation of type-II discrete cosine transform 

(DCT) and discrete sine transform (DST) of 

length N = 𝟐𝒏 (𝒏 ≥ 𝟐) are presented. The 

DCT/DST can be computed from two DCT/DST 

sequences, each of length N/2. The odd-indexed 

output components of DCT/DST can be realized 

using simple recursive relations. The proposed 

algorithms require a reduced number of 

arithmetic operations compared with some 

existing methods. 
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I.INTRODUCTION 
 Discrete transforms play a significant role 

in digital signal processing. Discrete cosine 

transform     (DCT) and discrete sine transform 

(DST) are used as key functions in many signal and 

image processing applications. There are four types 

of DCT and DST. Of these, the DCT-II, DST-II, 
DCT-IV, and DST-IV have gained popularity.  

      The original definition of the DCT introduced 

by Ahmed et al. in 1974 [1] was one-dimensional 

(1-D) and suitable for 1-D digital signal processing. 

The DCT has found wide applications in speech 

and image processing as well as telecommunication 

signal processing for the purpose of data 

compression, feature extraction, image 

reconstruction, and filtering. Thus, many 

algorithms and VLSI architectures for the fast 

computation of DCT have been proposed [2]-[7]. 
Among those algorithms [6] and [7] are believed to 

be most efficient two-dimensional DCT algorithms 

in the sense of minimizing any measure of 

computational complexity. 

 

 

The DST was first introduced to the signal 

processing by Jain [8], and several versions of this 

original DST were later developed by Kekre et al. 

[9], Jain [10] and Wang et al. [11].   Ever since the 

introduction of the first version of the DST, the 

different DST’s have found wide applications in 

several areas in Digital signal processing (DSP), 
such as image processing[8,12,13], adaptive digital 

filtering[14] and interpolation[15]. The 

performance of DST can be compared to that of the 

DCT and it may therefore be considered as a viable 

alternative to the DCT.  For images with high 

correlation, the DCT yields better results; however, 

for images with a low correlation of coefficients, 

the DST yields lower bit rates [16]. Yip and Rao 

[17] have proven that for large sequence length (N 

≥ 32) and low correlation coefficient (< 0.6), the 
DST performs even better than the DCT. 

       In this paper radix-2 algorithms for 

computation of type-II discrete cosine transform 
(DCT) and discrete sine transform (DST) of length 

N = 2𝑛  ( 𝑛  ≥ 2) are presented. The DCT/DST can 

be computed from two DCT/DST sequences, each 

of length N/2. The odd-indexed output components 

of DCT/DST are realized using recursive relations. 

       The rest of the paper is organized as follows. 

The proposed radix-2 algorithm for DCT-II is 

presented in Section-II. The computation 

complexity for DCT is given in Section-III. The 

proposed radix-2 algorithm for type-II DST is 

presented in Section-IV. The computation 
complexity for DST is given in Section-V. The 

comparison of the proposed algorithms with related 

works is given in Section-VI. Conclusion is given 

in Section-VII.   

 

II.PROPOSED RADIX-2 ALGORITHM 

FOR DCT-II 
 

 

The type-II DCT of input sequence  ( ) : 0,1,2,...., 1y i i N  is defined as 
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                               where,
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                                                                       The X 

values represent the transformed data. Without loss of generality, the scale factors may be ignored in the rest of 

the paper. 

In order to derive the radix-2 algorithm for DCT, the computation of output sequence is decomposed into even-

indexed and odd-indexed output sequences. 

Let N ≥ 4 be a power of 2. Using (1), the even-indexed output data (2 )X m  can be computed as given below. 

                                    
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                                    for  0,1,2,...., 1
2

N
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Eq.(2) can be expressed as 

 

                                  (2 ) ( ) ( )X m P m Q m                                                                                          (3) 
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Eq. (4) and (5) represent DCTs of size N /2 .From (1), the odd-indexed output data sequence   X(2m +1) can be 

realized as follows 
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Eq.(6) can also be written as  
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Adding (6) and (7), we get 
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                                                 = 2 ( )T m                                                                                                     (8)  

where,    

  

                                   
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The following recursive relation for computation of odd-indexed output components can be obtained from (8). 

 

                                                           (2 1) 2 ( ) (2 1)X m T m X m                                             (10)   

                                                            for   1, 2,...., 1
2

N
m    

From (10), we get the following recursive relations. 

                                                            (3) 2 (1) (1)X T X   

                                                            (5) 2 (2) (3)X T X                                                              (11)  

                                                            (7) 2 (3) (5)X T X  ,etc. 

The even-indexed DCT output data (2 ) : 0,1,2,...,( / 2) 1X m m N    can be computed from (3) using 

(4) and (5). After finding X(1) from (6) for m = 0, the other odd-indexed DCT output data 

 (2 1) : 1,2,.....,( / 2) 1X m m N    can be recursively computed using the recursive relations (11) 

along with (9) for  ( ) : 1,2,....,( / 2) 1T m m N  .  Fig. 1 shows the flow graph for realization of the even-

indexed DCT output components X(2m) given by (2) and 2T(m) from (9). 
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Fig. 1. Flow graph of the proposed algorithm for DCT. 

 

III.COMPUTATION COMPLEXITY FOR DCT 
The computation of X(0) requires (N - 1) additions only. But other even-indexed DCT output components 

 (2 ) : 1,2,....,( / 2) 1X m m N   from (2) require (N-1) additions and N/2 multiplications. For 

computation of  X (2m – 1) from (7), we need (N - 1) additions and N/2 multiplications. The computation of 

2T(m) from (9) needs an additional (N-1)  additions and N multiplications. Therefore, the recursive relations 

(11) require (2N - 1) additions and 3N/2 multiplications for computation of odd-indexed DCT output 

components (2 1) : 0,1,2,.....,( / 2) 1X m m N   . 

 

IV. PROPOSED RADIX-2 ALGORITHM FOR TYPE-II DST 
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Let ( ),1 ,x j j N  be the input data array. The type-II DST is defined as 
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The Y values represent the transformed data. The scale factors in (12) are ignored in the rest of the paper. Let N 

≥ 4 be a power of 2. The output sequence is now divided into even-indexed and odd-indexed output sequences. 

 

Using (12), the even-indexed output sequence Y(2n) can be realized as given below 
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Eq.(13) can be written as 
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Eq.(15) and (16) are DSTs of length N/2.  

 

 

The odd-indexed output sequence (2 1)Y n  can be computed from (12) as given below. 
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Adding (17) and (18), we obtain 
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From (19), we get the following recurrence relation for realization of odd-indexed output sequence. 
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From (21), we obtain the following recursive relations. 

                                                          (3) 2 (1) (1)Y R Y   

                                                          (5) 2 (2) (3)Y R Y                                                              (22) 

                                                          (7) 2 (3) (5),Y R Y etc  . 

The even-indexed DST output components  (2 ) : 1,2,....., / 2Y n n N can be realized from (14) using (15) 

and (16). After finding Y(1) from (17) for n = 0, other odd-indexed output components 

  (2 1) : 1,2,..., / 2 1Y n n N   can be recursively computed using the recursive relations (22) along 

with (20) for   ( ) : 1,2,...,( / 2) 1R n n N  .Fig.2 shows the flow graph for realization of even-indexed 

DST components Y(2n) from (13) and 2R(n) from (20). 
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Fig. 2. Flow graph of the proposed algorithm for DST. 

 

V. COMPUTATION COMPLEXITY FOR DST. 
The computation of even-indexed DST output components Y(2n) from (13) require (N-1) additions and N/2 

multiplications. For computation of Y(2n-1) from (18), we require (N-1) additions and N/2 multiplications. The 
computation of R(n) from (20) needs an additional (N-1) additions and N multiplications. Therefore, the 
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recursive relations (22) require (2N-1) additions and 3N/2 multiplications for computation of odd-indexed DST 

output components Y(2n+1). 

 

VI. COMPARISON WITH RELATED WORKS. 
The computation complexities of the proposed radix-2 algorithms for DCT and DST are same. In Tables I and 
II, the number of multipliers and the number of adders in the proposed algorithms for DCT/DST are compared 

with the corresponding parameters in other methods. Table III gives the comparison of the computation 

complexities of the proposed algorithms for DCT/DST with other algorithms found in the related research 

works.  

TABLE I  

COMPARISON OF THE NUMBER OF MULTIPLIERS REQUIRED BY DIFFERENT ALGORITHMS OF DCT/DST 

 

N [18] [22] [5,24,25] [26] [19] [30] [27] Proposed 

(even output) 

Proposed 

(odd output) 

4 6 5 4 11 2 5 4 2 6 

8 16 13 12 19 8 13 8 4 12 

16 44 33 32 36 30 29 16 8 24 

32 116 81 80 68 54 61 32 16 48 

64 292 193 192 132 130 125 64 32 96 

 

TABLE II  

COMPARISON OF THE NUMBER OF ADDERS REQUIRED BY DIFFERENT ALGORITHMS OF DCT/DST 

 

N [22] [5,24,25] [18] [19] [26] [30] [27] Proposed 

(even output) 

Proposed  

(odd output) 

4 9 9 8 4 11 14 7 3 7 

8 35 29 26 22 26 26 15 7 15 

16 95 81 74 62 58 50 31 15 31 

32 251 209 194 166 122 98 63 31 63 

64 615 513 482 422 250 194 127 63 127 

 

TABLE III 
COMPUTATION COMPLEXITIES 

 

 of multiplications of additions 

Proposed algorithm(even output) N / 2 N-1 

Proposed algorithm(odd output)   3N /2 2N -1 

[5,20,21,25]  (1/2) N log2N (3/2) N log2N - N + 1 

[4,28,29] N log2N /2 + 1 3 N log2 N / 2 -N +1 

[23] (1/2) N log2N + (1/4) N-1 (3/2) N log2N + (1/2) N-2 

[26] 2(N+3)(N-1) / N 2(2N-1)(N-1) / N 

[27] (N+1)(N-1) / N (2N+1)(N-1) / N 

[30]  2N-3 3N+2 

 

VII. CONCLUSION 
 Radix-2 algorithms for computing type-II 

DCT and DST of length N = 2𝑛 (𝑛 ≥ 2)are 

presented in this paper. Using these algorithms, the 

DCT/DST can be computed from two DCT/DST 

sequences, each of length N/2. The number of 
multiplications and additions in these algorithms 

are less in comparison with some existing 

algorithms. Therefore, saving in time can be 

achieved by the proposed algorithms in their 

realization. In the proposed methods, the odd-

indexed output components of DCT/DST are 

realized using simple recursive relations. The 

recursive algorithms are suitable for parallel VLSI 

implementation. 
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