
Krunal Kapadiya / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.551-556

551 | P a g e

Verification of USB 3.0 Device IP using Universal Verification

Methodology

Krunal Kapadiya
 (Department of Electronics & Communication Engineering, Gujarat Technological University, Ahmedabad –

382424, India,)

ABSTRACT
 Verification of integrated USB 2.0 – USB

3.0 Device IP by developing device reference

module connected to XDC side and ready to use

USB 3.0 Host Verification IP connected to

physical layer. Device reference module has been

supporting AHB-XDC in addition to Generic-

XDC path.

Keywords – AHB (Advanced High-Performance

Bus), AXI (Advanced Extensible Interface), IP

(Intellectual Property), SV (System-Verilog), USB

(Universal Serial Bus), UVM (Universal
Verification Methodology), XDC (Extensible

Device Controller).

I. INTRODUCTION
 Universal Serial Bus (USB) is an industry

standard developed in the mid-1990s that defines the

cables, connectors and communications protocols

used in a bus for connection, communication and

power supply between computers and electronic
devices. USB 3.0 utilized a dual-bus architecture

that provides backward compatibility with USB 2.0.

It provides for simultaneous operation of superspeed

and non-superspeed (USB 2.0 speeds) information

exchanges.

Verification of integrated USB 2.0 - USB 3.0 Device

IP by developing device reference module

supporting Generic-XDC and AHB-XDC paths

connect to XDC side of USB 3.0 Device IP and

ready to use USB 3.0 Host Verification IP at

physical layer of USB 3.0 Device IP. Verification
architecture includes uvm_test, uvm_env,

uvm_agent, uvm_driver, uvm_scoreboard, etc.

components of universal verification methodology

with SystemVerilog.

II. OVERVIEW OF USB
 The design architecture of USB

is asymmetrical in its topology, consisting of a host,

a multitude of downstream USB ports, and
multiple peripheral devices connected in a tiered-star

topology. Additional USB hubs may be included in

the tiers, allowing branching into a tree structure

with up to five tier levels. A USB host may

implement multiple host controllers and each host

controller may provide one or more USB ports. If

hub device present, up to 127 devices may be

connected to a single host controller [1]. USB

devices are linked in series through hubs. One hub is

known as the root hub which is built into the host

controller.

A physical USB device may consist of several

logical sub-devices that are referred to as device

functions. A single device may provide several
functions, for example, a webcam (video device

function) with a built-in microphone (audio device

function). This kind of device is called composite

device. An alternative for this is compound device in

which each logical device is assigned a distinctive

address by the host and all logical devices are

connected to a built-in hub to which the physical

USB wire is connected.

USB device communication is based

on pipes (logical channels). A pipe is a connection

from the host controller to a logical entity, found on
a device, and named an endpoint. Because pipes

correspond 1-to-1 to endpoints, the terms are

sometimes used interchangeably. A USB device can

have up to 32 endpoints, though USB devices

seldom have this many endpoints. An endpoint is

built into the USB device by the manufacturer and

therefore exists permanently, while a pipe may be

opened and closed.

There are two types of pipes: stream and message

pipes. A message pipe is bi-directional and is used

for control transfers. Message pipes are typically

used for short, simple commands to the device, and a
status response, used, for example, by the bus

control pipe number 0. A stream pipe is a uni-

directional pipe connected to a uni-directional

endpoint that transfers data using

an isochronous, interrupt, or bulk transfer:

 Isochronous transfers: at some guaranteed data

rate (often, but not necessarily, as fast as

possible) but with possible data loss (e.g., real-

time audio or video).

 Interrupt transfers: devices that need
guaranteed quick responses (bounded latency)

(e.g., pointing devices and keyboards).

 Bulk transfers: large sporadic transfers using

all remaining available bandwidth, but with no

guarantees on bandwidth or latency (e.g., file

transfers).

An endpoint of a pipe is addressable with tuple

(device_address, endpoint_number) as specified in a

Krunal Kapadiya / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.551-556

552 | P a g e

TOKEN packet that the host sends when it wants to

start a data transfer session. If the direction of the

data transfer is from the host to the endpoint, an

OUT packet (a specialization of a TOKEN packet)

having the desired device address and endpoint

number is sent by the host. If the direction of the

data transfer is from the device to the host, the host
sends an IN packet instead. If the destination

endpoint is a uni-directional endpoint whose

manufacturer's designated direction does not match

the TOKEN packet (e.g., the manufacturer's

designated direction is IN while the TOKEN packet

is an OUT packet), the TOKEN packet will be

ignored. Otherwise, it will be accepted and the data

transaction can start. A bi-directional endpoint, on

the other hand, accepts both IN and OUT packets.

Endpoints are grouped into interfaces and each

interface is associated with a single device function.

An exception to this is endpoint zero, which is used
for device configuration and which is not associated

with any interface. A single device function

composed of independently controlled interfaces is

called a composite device. A composite device only

has a single device address because the host only

assigns a device address to a function.

When a USB device is first connected to a USB

host, the USB device enumeration process is started.

The enumeration starts by sending a reset signal to

the USB device. The data rate of the USB device is

determined during the reset signaling. After reset,
the USB device's information is read by the host and

the device is assigned a unique 7-bit address. If the

device is supported by the host, the device

drivers needed for communicating with the device

are loaded and the device is set to a configured state.

If the USB host is restarted, the enumeration process

is repeated for all connected devices.

The host controller directs traffic flow to devices, so

no USB device can transfer any data on the bus

without an explicit request from the host controller.

In USB 2.0, the host controller polls the bus for

traffic, usually in a round-robin fashion. The
throughput of each USB port is determined by the

slower speed of either the USB port or the USB

device connected to the port.

High-speed USB 2.0 hubs contain devices called

transaction translators that convert between high-

speed USB 2.0 buses and full and low speed buses

[2]. When a high-speed USB 2.0 hub is plugged into

a high-speed USB host or hub, it will operate in

high-speed mode. The USB hub will then either use

one transaction translator per hub to create a

full/low-speed bus that is routed to all full and low
speed devices on the hub, or will use one transaction

translator per port to create an isolated full/low-

speed bus per port on the hub.

Because there are two separate controllers in each

USB 3.0 host, USB 3.0 devices will transmit and

receive at USB 3.0 data rates regardless of USB 2.0

or earlier devices connected to that host. Operating

data rates for them will be set in the legacy manner.

III. RELATED WORK
 I proposed my solution on Universal Serial
Bus. Currently USB 3.0 Device IP is not capable for

certain functionality which needed at XDC side. i.e.

above protocol layer. There are different ways to

verify the USB 3.0 Device IP at XDC side.

The USB 3.0 Device IP connected to USB 3.0 Host

VIP through PIPE (USB 3.0) [3] / ULPI (USB 2.0)

[4] interface. The USB 3.0 Device IP core connected

to application through back-end interfaces. Back-end

interfaces are CFG, Master TX, Slave TX, Master

RX and Slave RX.

Data transfer between USB 3.0 device core and

application occurs through following paths:

 Generic-XDC

 AHB-XDC

 AXI-XDC

Fig. 1. USB 3.0 Device IP Verification

The verification environment should support any one

type of path (Generic-XDC/ AHB-XDC or AXI-

XDC) via define switch on XDC side and should

support USB 3.0 PIPE and USB 2.0 ULPI interface

on USB 3.0 physical layer. In current architecture,

Generic-XDC and AHB-XDC paths are supported.

Krunal Kapadiya / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.551-556

553 | P a g e

AXI-XDC path would be supported in future

version.

USB 3.0 Verification IP can be configured to work

as a Host model to verify Device DUT. And the

USB 3.0 Device core connected to application

through Generic-XDC/ AHB-XDC/ AXI-XDC path.

The USB 3.0 Host VIP generates the data/ transfer
traffic to USB 3.0 Device DUT. Scoreboard is a part

of usb3dev_env, ensures the data integrity between

the USB Host VIP environment and USB Control

environment through USB 3.0 Device DUT for both

transmit and receive paths.

USB 3.0 VIP configured as active host and passive

device and XDC environment instantiated in the

usb3dev_env, which instantiated in uvm_test. In top

module, USB 3.0 Device IP connected as DUT and

run_test() method would be called [3].

Fig. 2. Verification Architecture using UVM

The USB 3.0 VIP connected to USB 3.0 Device

DUT through USB 3.0 PIPE/ USB 2.0 ULPI

interface and USB 3.0 Device DUT connected to

Generic-XDC environment or AHB-XDC

environment or AXI-XDC environment through

Generic-XDC or AHB-XDC interface or AXI-XDC

environment respectively. The memory manager
would be instantiated and used by USB Control

environment.

In top module, following interfaces are instantiated:

 USB SS interfaces: Active Host and Passive

Device

 Common interface

 Generic-XDC interfaces: XDC-CFG, XDC-

Master, XDC-Slave

 AHB-XDC interfaces: AHB-CFG, AHB-

Master-TX, AHB-Master-RX, AHB-Slave-TX
and AHB-Slave-RX

In top module, the AHB Add-ON and AXI Add-ON

module would connect XDC interface to AHB

interface and AXI interface respectively. The top

module is having the functionality to multiplex

between the Generic-XDC, AHB-XDC and AXI-

XDC paths. The XDC interface directly connected

from USB 3.0 Device DUT to XDC environment.

The AMBA-AHB interface connected from USB 3.0

Device DUT to AHB environment through AHB-

XDC Add-ON. The AMBA-AXI interface

connected from Device DUT to AXI environment
through AXI-XDC Add-ON.

XDC Environment works as follows:

 Interrupt request (IRQ) signal sent from USB

3.0 Device DUT.

 Device initialization configuration registers

would be written.

 Memory would be allocated by memory

manager through backdoor access in case of

bulk-IN transfer.

 Endpoint address mapping would be done

through memory manager.

 Host would send the burst length for bulk-OUT

transfer to device.

 Bulk-OUT from host would transfer to mapped

endpoint of the device.

After completing transfers, the transfers on

PIPE/ULPI or XDC interface would be sent to

scoreboard to compare with expected transfers.

After the allocation of memory as per endpoint's

address map, burst-length would be provided to

transfer the data. For big data, the transfer would be

done in segments for which memory pre-allocation
would be done. e.g. 4 GB data transfer could be

done in segments of 112KB data.

The XDC environment is the verification

component, which interfaces from an XDC of USB

3.0 Device IP to the application. The XDC

environment contains the functionality to read data

from and write data to registers located at Device

DUT through Generic-XDC path. When the USB

3.0 VIP connected as host, first of all it initiates the

default enumeration process. The process of

identifying and configuring a USB device is referred
to as USB device enumeration. At the end of

enumeration process, the device is ready to do any

transfer with the device as per the test-cases written

by user.

The usb3dev_env environment is having the instance

of XDC environment, USB Control environment and

USB Scoreboard.

Krunal Kapadiya / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.551-556

554 | P a g e

The CFG, Master-TX, Master-RX, Slave-TX, Slave-

RX and Common interfaces passed through

assign_vi() method of XDC environment and USB

Control environment in assign_vi() method of

usb3dev_env.

The mailboxes regarding request and response

packets of CFG, Slave-TX and Slave-RX inside
USB Control Xactor and CFG driver, Slave-TX

driver and Slave-RX driver connected in

usb3dev_env environment.

3.1. Generic-XDC Environment

The XDC environment contains the functionality to

read/write on XDC-CFG, XDC-Master and XDC-

Slave interfaces.

Fig. 3. Generic-XDC Environment

The XDC-agent and XDC-driver regarding XDC-

CFG, XDC-Master-TX, XDC-Master-RX, XDC-

Slave-TX and XDC-Slave-RX instantiated. The

Generic-XDC interfaces passed hierarchically
through assign_vi() method from uvm_test to

usb3dev_env to environment to respective agent to

respective driver.

The XDC-CFG driver gets the XDC-CFG packet

from request mailbox and drive accordingly on

XDC-CFG interface. In case of read, it also puts the

XDC-CFG packet on response mailbox after reading

data.

The XDC-Master-TX driver drives the signal on

XDC-Master-TX interface with data read from

memory in top module.

The XDC-Master-RX driver samples the signal on

XDC-Master-RX interface and writes the data to

memory in top module.

The XDC-Slave-TX driver gets the XDC-Slave-TX

packet from request mailbox and drive accordingly

on XDC-Slave-TX interface.

The XDC-Slave-RX driver gets the XDC-Slave-RX
packet from request mailbox and drive accordingly

on XDC-Slave-RX interface. It put the XDC-Slave-

RX packet on response mailbox after reading data.

Fig. 4. Waveform of read/write on XDC-CFG

interface and command on XDC-Slave-TX

interface

3.2. AHB-XDC Environment

The AHB-XDC environment contains the

functionality to read/write on AHB-CFG, AHB-

Master-TX, AHB-Master-RX, AHB-Slave-TX and

AHB-Slave-RX interfaces.

The AHB-Agent and AHB-driver regarding AHB-
CFG, AHB-Master-TX, AHB-Master-RX, AHB-

Slave-TX and AHB-Slave-RX instantiated. The

respective AHB-XDC interfaces passed using

uvm_config_db #(virtual ahb_if)::set() method to

respective AHB-XDC driver.

The AHB-Master-BFM instantiated in driver

regarding AHB-CFG, AHB-Slave-TX and AHB-

Slave-RX. The AHB-Slave-BFM instantiated in

driver regarding AHB-Master-TX and AHB-Master-

Rx.

The AHB-CFG driver gets the XDC-CFG packet
from request mailbox from USB Control Xactor. It

calls AHB read/write method as per read/write

packet, which will convert XDC-CFG packet to

AHB-CFG packet. Those AHB read/write method

puts converted AHB-CFG packet to mailbox of

AHB-CFG BFM.

The AHB-Master-TX driver gets the address and

size of data from request mailbox in AHB-Master-

TX BFM. It reads the data from the memory as per

address and puts data on request mailbox in AHB-

Master-TX BFM, which drives the data on signals

on AHB-Master-TX interface.
The AHB-Master-RX driver gets the address, data

and size of data from request mailbox on AHB-

Master-RX BFM, which samples the data on signals

Krunal Kapadiya / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.551-556

555 | P a g e

on AHB-Master-RX interface. It writes the data to

the memory as per address.

Fig. 5. AHB-XDC Environment

The AHB-Slave-TX driver gets the XDC-Slave-TX

packet from request mailbox from USB Control

Xactor. It calls AHB write method, which convert

XDC-Slave-TX packet to AHB-Slave-TX packet.

That AHB write method puts converted AHB-Slave-

TX packet to mailbox of AHB-Slave-TX BFM.

The AHB-Slave-RX driver gets the XDC-Slave-RX

packet from request mailbox from USB Control

Xactor. It calls AHB read method, which convert

XDC-Slave-RX packet to AHB-Slave-RX packet.

That AHB read method puts converted AHB-Slave-

RX packet to mailbox of AHB-Slave-RX BFM.

Fig. 6. Waveform of read/write on AHB-CFG interface

and command on AHB-Slave-TX interface

3.3. USB Control Environment

The agent and driver regarding USB device control

instantiated. The mailboxes and packets regarding

XDC-CFG, XDC-Slave-TX and XDC-Slave-RX

also instantiated.

The common interface passed hierarchically through

assign_vi() method from uvm_test to usb3dev_env
to USB control environment to USB control agent to

USB control driver.

The device in/out analysis port regarding USB

scoreboard packet connected to analysis

implementation port of USB scoreboard. The

instantiated memory manager used to allocate

memory as per starting address and memory size.

The USB control Xactor read or initialize all

common registers. Then wait for IRQ signal to be

generated from DUT. If IRQ received, read registers

and check special type and store it on queue. Then

process further if no other task is pending.
The methods to send packet to read/write on XDC-

CFG, XDC-Slave-TX and XDC-Slave-RX interfaces

are putting or getting on respective mailboxes.

The interrupt handler takes care of IRQ handling and

DMA request to master and event request to slave.

3.4. USB Scoreboard

The USB scoreboard used to compare the transfers

made by USB control environment and USB Host

Verification environment.

As analysis implementation ports for Host/Device

In/Out instantiated, write() method for each analysis
implementation port gets implemented.

While bulk-out transfer, USB protocol-data packet

received from USB host verification environment

written into write() method implemented for host-

out, where extracted scoreboard packet packed to

host-out queue [5]. And scoreboard packet received

from USB control xactor written into device-in

queue of write() method implemented for device-in.

While bulk-in transfer, USB protocol-data packet

received at host verification environment written

into write() method implemented for host-in, where

extracted scoreboard packet packed to host-in
queue. And scoreboard packet received from USB

control xactor written into device-out queue of

write() method implemented for device-out.

After getting all scoreboard packets in the form

queue, run_phase() method [6] having scoreboard

IN/OUT methods. Scoreboard IN method compares

the data of scoreboard packet for each sequence

number from host-in queue and device-out queue.

Scoreboard OUT method compares the data of

scoreboard packet for each sequence number from

host-out queue and device-in queue.
In report_phase() method, errors will be fired and

test-case fails in case of mismatch of payload data

and/or payload size. Otherwise test-case passes in

case of correct match of payload data and payload

size.

Krunal Kapadiya / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.551-556

556 | P a g e

3.5. Test-case Simulation Flow

 During build_phase() method, setting number

of active/passive host/device, endpoints,

interfaces, configuration, etc. Setting SCSI

command as default_sequence of protocol

sequencer of host_agent. Updating EP IN/OUT

table.

 During connect_phase() method, passing the

interface declared in top to usb3dev_env using

assign_vi() method or uvm_config_db #()::set()

method.

 During end_of_elaboration_phase() method,

configuring interface and configuration

descriptor, setting BULK/INT/ISO IN/OUT

endpoint descriptors.

 During run_phase() method, requesting to 1)

set device address 2) get device descriptor 3)

get configuration descriptor 4) set

configuration no. 1. Executing BULK/INT/ISO
IN/OUT transfers.

 Set SCSI write command with packet size to

SCSI sequence.

 Allocates endpoint OUT memory with 32

bytes, in which it allocates the memory using

memory allocation method memory manager of

control Xactor, which returns the memory start

address and total memory size.

 Bulk-OUT transfer with 32 bytes, in which it

set transfer and executes bulk transfer from

host’s protocol BFM.

 Wait for transfer to complete from XDC, in

which it inserts delay till memory size reduces

to zero.

 Send scoreboard packet to scoreboard to

compare, in which it call method of control

Xactor, which forms the scoreboard packet and

write in TLM analysis port connected to

scoreboard.

 If command with proper packet size has been

transferred, allocates endpoint OUT memory

with packet size, in which it allocates the
memory using memory allocation method

memory manager of control Xactor, which

returns the memory start address and total

memory size.

 Bulk-OUT transfer with packet size, in which it

set transfer and executes bulk transfer from

host’s protocol BFM.

 Wait for transfer to complete from XDC, in

which it inserts delay till memory size reduces

to zero.

 Send scoreboard packet to scoreboard to
compare, in which it call method of control

Xactor, which forms the scoreboard packet and

write in TLM analysis port connected to

scoreboard.

IV. CONCLUSION
 By verifying the USB 3.0 Device IP, one

gets in-depth protocol knowledge of USB 3.0

specification. As DUT with integrated AHB-XDC

add-on, one also gets the in-depth protocol
knowledge of AMBA AHB specification.

Verification using randomization technique

supported by SystemVerilog and Universal

Verification Methodology helps the USB 3.0 Device

IP becomes more robust and stable as per USB 3.0

specification. By developing environment from

scratch to verify the USB 3.0 Device IP, one gets the

exposure to SystemVerilog and Universal

Verification Methodology, which is de-facto

standard of verification language and methodology

respectively.

As Generic-XDC provides byte-enable combinations

including single byte to eight bytes and AHB-XDC

provides byte-enable combinations including single

byte, half-word, word and double-word [7], AHB-

XDC simulation has overhead over Generic-XDC

simulations.

V. ACKNOWLEDGMENTS
 I am grateful to Mr. Umesh Patel (Director
– ASIC) and Mr. Manish Desai (Sr. Member

Technical Staff) of Sibridge Technologies,

Ahmedabad for providing guidelines and

encouragement. I feel motivated and encouraged

every time I attend their meeting.

REFERENCES
[1] Universal Serial Bus 3.0 Specification, June 2011.

[2] Universal Serial Bus Specification Revision 2.0,
April 2000.

[3] PHY Interface for the PCI Express and USB 3.0

Architectures (PIPE), April 2009.

[4] UTMI Low Pin Interface (ULPI), October 2009.

[5] IEEE 1800-2012 Standard for SystemVerilog –

LRM.

[6] Universal Verification Methodology (UVM) 1.1

User’s Guide, May 2011.

[7] AMBA Specification 2.0, May 1999.

