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ABSTRACT 
Association rule mining is important data 

mining task for which many algorithms have been 

proposed. All these algorithms generally work in 

two phases, finding frequent itemsets and gener-

ating association rules from them. First phase is 

most time consuming in most of the algorithms 

because algorithm has to scan the database many 

times. Use of different data structures overcomes 

this drawback. In this paper we will survey the 

algorithms which make use of different data 

structures to improve association rule mining. 
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I. INTRODUCTION 
Association rule mining [1], one of the most 

important and well researched techniques of data 

mining. It aims to extract interesting correlations, 

frequent patterns, associations or casual structures 

among sets of items in the transaction databases or 

other data repositories. Association rules are widely 
used in various areas such as telecommunication 

networks, market and risk management, inventory 

control etc. Various association mining techniques 

and algorithms will be briefly introduced later. 

Association rule mining is to find out asso-

ciation rules that satisfy the predefined minimum 

support and confidence from a given database. The 

problem is usually decomposed into two sub prob-

lems. One is to find those itemsets whose occurrences 

exceed a predefined threshold in the database; those 

itemsets are called frequent or large itemsets. The 
second problem is to generate association rules from 

those large itemsets with the constraints of minimal 

confidence. Suppose one of the large itemsets is Lk, 

Lk =  {I1 , I2 , … , Ik}, association rules with this item-

sets are generated in the following way: the first rule 

is {I1 , I2 , … , Ik−1} = {Ik}, by checking the confidence 

this rule can be determined as interesting or not. Then 

other rule are generated by deleting the last items in 

the antecedent and inserting it to the consequent, 

further the confidences of the new rules are checked 

to determine the interestingness of them. Those 
processes iterated until the antecedent becomes 

empty. Since the second sub-problem is quite straight 

forward, most of the researches focus on the first 

sub-problem. 

 

 

The first sub-problem can be further divided into two 

sub-problems: candidate large item sets generation 

process and frequent itemsets generation process. We 

call those item sets whose support exceed the support 

threshold as large or frequent itemsets, those itemsets 

that are expected or have the hope to be large or 
frequent are called candidate itemsets. 

In many cases, the algorithm needs to scan data base 

for number of times to generate frequent itemsets 

which causes inefficiency of algorithm. Several 

strategies have been proposed to reduce time com-

plexity of algorithm. One of these strategies is to use 

different data structures based algorithms for finding 

frequent item sets such as tree, graph and matrix. 

 

II. USE OF DIFFERENT DATA STRUCTURES IN 

ASSOCIATION RULE MINING 
2.1. Graph 

2.1.1. Primitive Association Pattern Genera-

tion(PAPG) 

In this algorithm the first step is to construct 

association graph. This is two-step process number-

ing and graph construction. In the numbering phase, 

the algorithm PAPG [2] arbitrarily assigns each item 
a unique integer number. In the large itemset genera-

tion phase, PAPG scans the database and builds a Bit 

Vector (BV) for each item. The length of each bit 

vector is the number of transactions in the database. If 

an item appears in the ith transaction, the ith bit of the 

bit vector associated with this item is set to 1. Oth-

erwise, the ith bit of the bit vector is set to 0. The bit 

vector associated with item i is denoted as BVi. The 

number of 1s in BVi is equal to the support for the 

item i. For association graph construction PAPG uses 

Association Graph Construction (AGC) algorithm. 

The AGC algorithm is described as follows: For 

every two large items i and j(i <  𝑗), if the number of 

1s in BViΛBVj  achieves the user-specified minimum 

support, a directed edge from item i to item j is cre-

ated. Also, itemset (i, j) is a large 2-itemset. 
Second step is to generate Primitive Asso-

ciation Pattern. The large 2-itemsets are generated 

after the association graph construction phase. In the 

association pattern generation phase, the algorithm 

Large itemset Generation by Direct Extension 

(LGDE) is proposed to generate large k–itemsets (k > 

2), which is described as follows: For each large 

k-itemset(k ≥  2), the last item of the k-itemset is 

used to extend the large itemset into k+1-itemsets. 
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Suppose  I1 , I2 ,… , Ik  is a large k-itemset. If there is 

no directed edge from item Ik to an item v, then the 

itemset need not be extended into 

k+1-itemset,because  I1 , I2 ,… , Ik , v must not be a 

large itemset. If there is a directed edge from item Ik 

to an item u, then the itemset  I1 , I2 , … , Ik  is ex-

tended intoK + 1 − itemset(I1 , I2 , … , Ik). The item-

set (I1 , I2 ,… , Ik , u) is a large k + 1 − itemset if the 

number of 1s in BV1ΛBV2Λ…ΛBVik ΛBVu  achieves 

the minimum support. If no large k+1-itemsets can be 

generated, the algorithm LGDE terminates. 

 

2.1.2. Generalized Association PatternGenera-

tion(GAPG) 

GAPG [2] is used to discover all generalized 
association patterns. To generate generalized asso-

ciation patterns, one can add all ancestors of each 

item in a transaction to the transaction and then apply 

the algorithm PAPG on the extended transactions. 

In the numbering phase, GAPG applies the number-

ing method POstorder Numbering (PON) methodto 

number items at the concept hierarchies. For each 

concept hierarchy, PON numbers each item accord-

ing to the following order: For each item at the con-

cept hierarchy, after all descendants of the item are 

numbered, PON numbers this item immediately, and 
all items are numbered increasingly. After all items at 

a concept hierarchy are numbered, PON numbers 

items at another concept hierarchy.  

In the large item generation phase, GAPG builds a bit 

vector for each database item, and finds all large 

items. Here, we assume that all database items are 

specific items.  

In the association graph construction phase, 

GAPG applies the algorithm Generalized Association 

Graph Construction (GAGC) to construct a general-

ized association graph to be traversed. The algorithm 
GAGC is described as follows: For every two large 

items i and j (i <  𝑗), if item j is not an ancestor of 

item i and the number of 1s in BViΛBVj  achieves the 

user-specified minimum support, a directed edge 

from item i to item j is created. Also, itemset (i, j) is a 
large 2-itemset. 

In the association pattern generation phase, 

GAPG applies the LGDE algorithm to generate all 

generalized association patterns by traversing the 

generalized association graph. 

 

2.1.3. Undirected Item Set Graph 

Undirected item set graph [3] is set of nodes 

V  V1 , V2 , … , Vn  in the database. Each node contains: 

the node name, the pointer to other nodes, and the 
number of nodes to which it points. The side set 

E < 𝐼, 𝑗 > of undirected item set graph has two at-

tributes: the side name and the number of side appear. 

< VI , Vj >  Express two frequent itemsets; <

V1 , V2 , … , Vn >  express n frequent itemset. 

In construction of Undirected Item Set Graph First 

step is to scan the database. It makes each item as a 

node and at the same time it makes the supporting 

trade list for each node. Supporting trade list is a 

binary groupT = {Tid , Itemset}. So the side between 

nodes can be accomplished by corresponding trade 

list operation. The algorithm does the intersection of 

two nodes with supporting trade list. When trade list 

is not empty, that means there is a side between two 

nodes. The appearance number of each side is the 
resultant number which algorithm finds by the side‟s 

intersection. 

Algorithm one: Construction of undirected item sets 

graph  

Input: Database D  

Output: Undirected item set graph 

Begin  

1. Add the items into the vertex set V;  

2. For i = 1 to n − 1 

2.1. Select Vi  fromV;   

2.2. For eachVj  (j ≠  i) 

If (Ii  ∩  Ij)  ≠  Ø then 

Add link between VI  and Vj  

End if.  
2.3. Next. 

3. Next  

End 

 

Algorithm two: To find frequent item set based on 

undirected item sets graph.  

Input: Undirected item set graph, minimum support 

minsupp, minconf  

Output: frequent item set L, Association rules 

Begin  

1. The node set V is empty or not. If it is empty 
then stop; 

2. Find count of each item (e.g.Vi) and check 

count of each item is greater than or equal to 

minimum support minsupp. If greater than 

the items are stored in frequent-1 item set; 

3. (frequent item set)  =  L; 

4. Select any unvisited node (e.g.Vj) from ad-

jacent list ofVi ;  

5. If count   Vi , Vj ≥  minsupp then 

5.1.  L U Vj; 

5.2. L. adjacentlist =
L. adjacentlist) ∩
(Vj  . adjacent list); 

5.3. Call DFS (Vj) Procedure;  

6. End if;  
7. Confidence of each item is compared with 

minconf and strong association rules are 

generated. 

8. End;  

 

Procedure𝐷𝐹𝑆 (Vj):  

Begin  

1. If Vj . adjacentlist ≠  Φ then  

1.1. Select any other node, suppose 

Vkfrom        Vj . adjacentlist;  

1.2. Call isloop (L, Vk ) Procedure; 
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1.3. If count (L, Vk ) is greater than or 

equal tominimum support then 

combine L U (Vk ).  

Call DFS (Vk); 
Output is frequent item set; 

Delete Vk  fromVj . adjacentlist;  

Call DFS (Vj); 

1.4. Else Return to its parent vertexVi ; 

1.5. Call DFS (Vi);  

2. End;  

 

Procedure 𝑖𝑠𝑙𝑜𝑜𝑝 (L, Vk ):  

Begin  

1. If Vk  € L. adjacentlist then return Vk ;  

2. Else delete Vk  fromVj . adjacentlist;  

3. CallDFS (Vj);    

4. End; 

5.  

2.1.4. Direct Large Itemset Generation (DLG) 

DLG [4] is a three-phase algorithm. The 

large 1-itemset generation   phase finds large items 

and records related information. The graph construc-

tion phase constructs an association graph between 
large items, and at the same time generates large 

2-itemsets. The large item set generation phase gen-

erates large k-itemsets (k > 2) based on this asso-

ciation graph. 

In large 1-itemset generation phase, the 

DLG algorithm scans the database to count the sup-

port and builds a bit vector for each item. The length 

of a bit vector is the number of transactions in the 

database. The bit vector associated with item i is 

denoted as BVi .  The j th  bit of  BVi  is set to 1 if item i 

appears in the j th  transaction. Otherwise, the j th  bit 

of BVi  is set to 0. The number of 1‟s in BVi  is equal to 

the support count of the item. 

In graph construction phase, the support 

count for the itemset{I1 , I2 , … , Ik}is the number of 1‟s 

inresult ofBVi1 Λ BVi2  Λ…Λ BVik , where the notation 

“Λ” is a logical AND operation. Hence, the support 

count of the itemset{I1 , I2 ,… , Ik} can be found di-
rectly by applying logical AND operations on the bit 

vectors of the k-itemsets instead of scanning the 

database. If the number of 1‟s inBVi Λ BVj(i < 𝑗) is 

no less than the minimum support count, a directed 

edge from item i to item j is constructed in the asso-

ciation graph. Also, { i , j } is a large 2-itemset. 

In large itemset generation phase, for each 

large k-itemset {I1 , I2 , … , Ik}  inLk  (k > 1) , the last 

item ik  is used to extend the itemset into (k +
1)-itemsets. If there is a directed edge from ik  to 

item j, the itemset {I1 , I2 , … , Ikj } is a candidate(k +

1 )-itemset. If the number of 1‟s 

in BVi1 Λ BVi2 Λ…Λ BVik  Λ BVj  is no less than the 

minimum support count, {I1 , I2 , … , Ikj }  is a large 

(k + 1) -itemset in Lk+1 . If no large k -itemset is 

generated in the  kth  iteration, the algorithm termi-
nates. 

2.2. Matrix 

2.2.1. An Algorithm Based on Boolean Matrix 

(ABBM) 

In general, the ABBM algorithm [5] consists of four 

phases as follows:  

1. Transforming the transaction database into 

the Boolean matrix. 
2. Generating the set of frequent 1-itemsets L1. 

3. Pruning the Boolean matrix. 

4. Generating the set of frequent k-itemsets 

Lk(k > 1). 

In the first step the mined transaction database is D, 

with D having m transactions and n items. Let 

T={T1,T2...Tm} be the set of transactions and 

I={I1,I2, …,In}be the set of items. We set up a Boo-

lean matrix A m ∗ n, which has m rows and n col-

umns. Scanning the transaction database D, if item Ij 

is intransaction Ti, where1 ≤ j ≤  n, 1 ≤  i ≤  m, the 

element value of Aij is „1‟, otherwise the value of Aij 

is „0‟. 

In the second step, the Boolean matrix Am*n 

is scanned and support numbers of all items are 

computed. The support number Ij.supth of item Ij is 

the number of „1s‟ in the jth column of the Boolean 

matrix Am*n. If Ij.supth is smaller than the minimum 

support number minsupth, itemset {Ij} is not a fre-

quent 1-itemset and the jth column of the Boolean 

matrix Am*n will be deleted from Am*n. Otherwise 
itemset {Ij} is the frequent 1-itemset and is added to 

the set of frequent 1-itemset L1. 

Pruning the Boolean matrix means deleting 

some rows and columns from it. First, the column of 

the Boolean matrix is pruned according to Proposi-

tion 2. This is described in detail as: Let I‟is the set of 

all items in the frequent set LK-1, where k>2. Compute 

all |LK-1(j)| where I‟, and delete the column of corre-

spondence item j if |LK-1(j)| is smaller than k-1. Sec-

ond, recompute the sum of the element values in each 

row in the Boolean matrix.  

Frequent k-itemsets are discovered only by 
“and” relational calculus, which is carried out for the 

k-vectors combination. If the Boolean matrix Ap*q has 

q columns where 2 < 𝑞 ≤ 𝑛  and h ≤  p ≤ m, Cq
k  , 

combinations of k-vectors will be produced. The „and‟ 

relational calculus is for each combination of 

k-vectors. If the sum of element values in the “and” 

calculation result is not smaller than the minimum 

support number minsupth, the k-itemsets corre-
sponding to this combination of k-vectors are the 

frequent k-itemsets and are added to the set of fre-

quent k-itemsets Lk. 

 

2.2.2. Transactional Co-Occurrence Matrix 

(TCOM) 

In order to employee the advantages of both 

horizontal and vertical layouts,uses matrix structure 

called TCOM [6]. The algorithms designed on the 

base of TCOM are very efficient and fast after it is 

constructed since full access of original database or 

TCOM is no longer necessary. 
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A TCOM is an innovative variant of a co-occurrence 

matrix [7]. A co-occurrence matrix is a square two 

dimensional matrix, whose rows and columns are 

items, or called attributes. If there are M items (at-

tributes) in the database, the size of the corresponding 

co-occurrence matrix will be M ∗ M. 

It is easy to notice that a co-occurrence ma-
trix is great to mine the simple rules but is impossible 

to mine a high-degree rule since the transactional 

information of 3 or more items are lost during the 

construction of the matrix. But such rules are desired 

for most of the time. Another drawback of the 

co-occurrence is that the items are not sorted ac-

cording to their occurrence counts, which will sig-

nificantly slow down the item set searching during 

the mining process. 

To overcome the above short comings, al-

gorithm incorporates transactional information into a 
sorted co-occurrence matrix and makes it suitable for 

all association rule-mining tasks. 

The transform from the original database into the 

transactional co-occurrence matrix layout requires 

two passes of the database. The first pass of the 

original database is to count the occurrence of each 

item and sort items into descending order according 

to their occurrence counts. During the second pass of 

the original database, each transaction is sorted and 

then inserted into the transactional co-occurrence 

matrix. 

TCOM has great advantage by combining 
the transactional oriented information with item ori-

ented information in to one single structure. During 

the mining process, two pieces of information are 

needed. 

1. For a given transaction, we need to know what 

items it contains. 

2. For a given item set, we need to know the occur-

rence count of this item set. 

If we only use the horizontal layout database to do the 

mining problem, then a full access of the database is 

needed every time when the occurrence count of an 
item set is desired. On the other hand, if we only use 

the vertical layout database then a full access of the 

database is needed every time when the first kind of 

information is desired. 

Mining process 

Unlike previous literature which has to find all 

itemsets before finding the valid association rule, we 

directly find the valid association rules and itemsets 

simultaneously. We call our mining process as 

TCOM_mining. It is an item oriented algorithm and 

the simplified version is shown below: 

TCOM_mining: 

1. Let set I be the set of infrequent items,I =
  𝑖1 , 𝑖2 , … , 𝑖𝑛   

2. Start with item in, for each item ir in the set I, 

1 <= 𝑟 <= 𝑛 
2.1. Let ISSET be the set of itemsets, initially 

ISSETis an empty set 

2.2. Find out all existing item set ISA = {is1; 

is2,….,ir} where occur-

rence_count(is1) >= occur-

ence_count(is2) >= …. >= occur-

rence_count (ir) 

2.3. Populate ISSET with itemsets found in 

step 2.2 
2.4. Find out occurrence count for each ISA 

found  in step2.2 

3. For each item set ISA in the set ISSET 

3.1. For each item set ISB in the set ISSET 

where ISB != ISA 

If ISB contains ISA 

Let ISC be the difference of ISB 

and ISA 

If occurrence_count(ISB)<= oc-

currence_count(ISA)*σ 

ISA → ISC is a valid rule 

Endif 
End if 

End for  

3.2. Find out all happened item set ISB 

where ISB 

containsISA, and there exist at least one 

item j in ISBwith occurrence_count(j) <

 occurrence_count(ir) 

3.3. Find out the occurrence count for each 

ISB found in step 3.2 

3.4. For each itemset ISB found in step 3.2 

Let ISC be the difference of ISB and 
ISA 

If occurrence_count (ISB) ≥ oc-

currence_count (ISA)* σ  

ISA →ISC is a valid rule 

 End if  

End for 

End for 

 

2.2.3. Algorithm BitMatrix  

In Apriori and AprioriTid algorithms, it is 

assumed that items in each transaction are kept sorted 

in their lexicographic order [8]. However, this is not 
needed in BitMatrix. By careful programming, we 

can keep the items in the large itemsets and the large 

itemsets of the same size are kept sorted in their 

lexicographic order even if the items in the transac-

tions are not kept sorted. We call the number of items 

in an item set its size, and call an item set of size k a 

k-item set. The set of all large k-itemsets is defined as 

Lk. Each k-item set c in Lk consists of items 

c[1],c[2],...,c[k], where c[1] < c[2] <…< c[k].  As-

sociated with each item set are two fields: count field 

to store the support for this itemset, and index field to 
indicate the transactions that contain the itemset. The 

BitMatrix algorithm is described as:  

1. Initialize the bitmatrix;  

2. L1 = {large 1-itemset}; 

3. for (k=2;  Lk!=0; k++)  do  

4. Lk =GenLargeItemsets(Lk-1);  

5. Answer= UkLk.  
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In Step (1) of this algorithm, we initialize the bitma-

trix as follows. First we build a matrix whose row 

number and column number are the item number and 

the transaction number, respectively. Note that the 

matrix is a bit-matrix and every position of the matrix 

only has one bit in the memory. Then we go through 

the database. If there are items i1, i2,..., ik in the jth 
transaction, bits ai1j, ai2j, ...  , aikj and the other bits in 

the jth column of the matrix are initialized as 1 and 0 

respectively. 

In Step (2), we simply count the number of 1 in each 

row to get the support count of every item and the 

large 1-itemsets are determined.  

In Step (4), the previously generated large 

(k-1)-itemsets are used to generate the large 

k-itemsets. This step repeats until no new large 

itemsets are generated. The GenLaxgeItemsets func-

tion is used here, which takes as argument Lk-1 and 

returns Lk. The function works as follows: 

1. for (∀p, q ∈ Lk−1)  do 

2. if  p[1] = q[1]Λ, … , Λ(p[k − 2] = q[k −
2]Λ(p[k − 1] <      𝑞[𝑘 − 1]) 𝑡ℎ𝑒𝑛 { 

3. c = p ∪ q; 
4. for all (k - 1)-subsets s of c do  

5. if (s ∉ Lk) then  {delete c; c = 0; break;}  

6. if(c ≠ 0) then  {  

7. c.index = p.index&q.index;  
8. compute c.count  from  c.index;   

9. if (c.count>minsup) then Lk = Lk U {c};  

10. }//end if. 

11. }//end if. 

From Steps (1) to (5), the function simply helps 

generate the Ck that is a set of candidate k-itemsets. In 

Step (2), the condition p[k - 1] <q[k - 1] ensures that 

no duplicates are generated. However, this algorithm 

differs from Apriori in that it need not store all the 

candidates in the memory. Once a candidate itemset 

is generated, it will be determined in Steps (7) to (9) 

whether it is a large one.  
To decide whether a candidate item set is a large one, 

we associate each large itemset with a support index, 

which is a bit index and each bit of which indicates 

whether the itemset is contained by a transaction in 

the database. As to the 1-itemsets, their support index 

is some row in the bitmatrix. Since c is the union of p 

and q, we simply generate c's support index by bit 

operator AND that is applied to each bit of p's and q's 

in (7).  

 

2.2.4. Matrix Algorithm 
Matrix algorithm[12] first generates matrix 

and then association rules are generated by using 

matrix. Procedure for matrix generation is as follows: 

It sets the items in I as columns and the transactions 

as rows of the matrix. 

Let the set of items be I = {i1, i2,···,in}, and the set of 

the transactions be D = {t1,t2,···,tm}. Then the gener-

ating matrixG = {gij}, (i =1, 2, ···,m; j = 1, 2, ···,n) is 

an m ∗  n matrix, where gij= 0 or 1 is determined by 

the following rule, 

gij =  
1 if ij ∈  ti ,

0 if ij ∉  ti .
  

After creation of matrix the candidate k−itemset is 

generated using the following process: 
1. C1 generation: At the beginning 1- itemset are 

generated and the support of the set {ik} is calculated 

by formula: 

support({ik}) =  < gj , Sk
1 >,

m

j=1

 

where<, > is the inner product of two row vectors and 

gj, j=1,2 , ..., m are rows of the matrix G. 

 

2. C2 generation: Candidate 2-itemsets C2 is the joint 

set of L1with itself, thatis,C2 = L1 ⋈ L1.The support 

of the set {ik, ij} is : 

support ({ik , ij}) =  int[
< gj , Si,k

1 >

2
]

m

s=1

 

3. Repeat the above process with successively in-

creasing number k until either Ck or Lk is empty. The 

support can compute according to the following 

formula: 

support ({il1 , il2 , … . . ilk })

=  int  
< gj , Sl1,l2,….lk

1 >

k
 .

m

j=1

 

 

2.3. Tree 

2.3.1. Tree Based Association Rule Min-

ing(TBAR) 

TBAR [9] is anApriori based association 

rule mining algorithm which uses tree data structure 

to store relevant itemsets in database. Use of itemset 

tree to store relevant itemsets saves space and time 

required to process data. TBAR was mainly devel-

oped to work with relational databases. It makes each 

item as pair column_name:value. It will use the fol-

lowing algorithm to find all the relevant itemsets: 

1. set.Init (MinSupport); 

2. itemsets =set.Relevants(1); 

3. k = 2; 
4. while (k <= columns && itemsets >= k)  

{ 

itemsets = set.Candidates (k); 

If (itemsets>0) 

Itemsets = set.Relevants(k); 

k++; 

      } 

In this algorithm the set is itemset tree. init method 

will initialize the itemset tree. Method relevants(k) 

will generate Lk and candidate(k) will generate Ck 

from Lk-1.  
The itemset tree will look like 
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Fig.1 TBAR data structure example. 

After generation of itemset tree following algorithm 

will traverse the tree to find frequent itemsets and will 

generate association rules from those itemsets: 

 

For each relevant k-itemset 𝑙𝑘  in the tree with 

k >=  2 
For each itemset 𝑙𝑖  ⊂  𝑙𝑘  

If support(𝑙𝑘)  >=  𝑀𝑖𝑛𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ∗
 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑙𝑖) 

Output rule 𝑙𝑖  => (𝑙𝑘 − 𝑙𝑖) 

withconfidence =  support (𝑙𝑘) / support(𝑙𝑖) 

andsupport =  support(𝑙𝑘) 

     End If 

   End For 

End For 
 

2.3.2. Super TBAR (STBAR) 

STBAR [10] is extended version of TBAR. 

STBAR employs the tree-based storage, which is 

analogous to TBAR. Each node in the tree is not a 

2-tuple <a, v>, but a 3-tuple<a, v, t>, in which „a‟ is 

the attribute, „v‟ is the number of tuples which satisfy 

the condition, „t‟ is a flag whose value is 1 or 0. This 

flag will decide whether an item can concatenate the 

items found in the paths from the root of the tree to 

the current i tem or not. 
1. Generate all the frequent 1-itemsets, and 

store them in the    3-tuples. 

2. According to the order In-1 … I1, generate 

itemset L2,validate whether it can constitute 

a frequent itemsets or not, and set the cor-

responding flag in the 3-tuple.  

3. For each sub-itemset in L2, recursively 

generate Ln according to Step 2.  

4. Seek for the tree's depth.  

5. Find out the longest concatenations in the 

tree.    

6. Produce all the association rules. This step is 
just as TBAR doing. 

The STBAR datastructure will look like: 

 

 
Fig.2 STBAR data structure example. 

 

2.3.3. Trie Data Structure for Association Rule 

Mining 

The data structure trie was originally introduced to 
store and efficiently retrieve words of a Dictionary. A 

trie [11] that stores the words mile, milk, tea, tee, 

teeny can be seen in Figure 3. 

 
Fig.3 A trie containing five words. 

 

Tries are suitable to store and retrieve not 

only words but any finite ordered sets. In this setting, 

a link is labelled by an element of the set, and the trie 

contains a set if there exists a path where the links are 

labelled by the elements of the set, in increasing 

order.  

In our data mining context, the alphabet is the (or-

dered) set of all items I. A candidate k-itemsetcan be 
viewed as the word i1, i2….. ik composed of letters 

from I. Fig. 4 shows the trie storing frequent itemsets. 

Some of the itemsets are ACD, AEG, KMN, etc. 

 
Fig.4 A trie containing five candidates. 
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III.CONCLUSIONS 
Association rule mining is widely used in 

market basket analysis, medical diagnosis, Website 

navigation analysis, homeland security and so on. 

During association rule mining most of the time is 
spent for scanning database for finding frequent 

itemsets. This time can be reduced by using different 

data structures to store frequent itemsets. In this paper 

we surveyed the mining algorithms which make use 

of different data structures to reduce space and time 

complexity of algorithms. 
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