
Adhav Ravi, Bainwad A. M./ International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.497-503

497 | P a g e

SURVEY OF DIFFERENT DATA STRUCTURE BASED ASSOCIATION

RULE MINING ALGORITHMS

Adhav Ravi
1
, Bainwad A. M.

2

1M. Tech. Student, Dept. of CSE, SGGS IE&T, Nanded, India.
2Assistant Professor, Dept. of CSE, SGGS IE&T, Nanded, India.

ABSTRACT
Association rule mining is important data

mining task for which many algorithms have been

proposed. All these algorithms generally work in

two phases, finding frequent itemsets and gener-

ating association rules from them. First phase is

most time consuming in most of the algorithms

because algorithm has to scan the database many

times. Use of different data structures overcomes

this drawback. In this paper we will survey the

algorithms which make use of different data

structures to improve association rule mining.

KEYWORDS: Association rule mining, Data
structures, Graph, Matrix, Tree.

I. INTRODUCTION
Association rule mining [1], one of the most

important and well researched techniques of data

mining. It aims to extract interesting correlations,

frequent patterns, associations or casual structures

among sets of items in the transaction databases or

other data repositories. Association rules are widely
used in various areas such as telecommunication

networks, market and risk management, inventory

control etc. Various association mining techniques

and algorithms will be briefly introduced later.

Association rule mining is to find out asso-

ciation rules that satisfy the predefined minimum

support and confidence from a given database. The

problem is usually decomposed into two sub prob-

lems. One is to find those itemsets whose occurrences

exceed a predefined threshold in the database; those

itemsets are called frequent or large itemsets. The
second problem is to generate association rules from

those large itemsets with the constraints of minimal

confidence. Suppose one of the large itemsets is Lk,

Lk = {I1 , I2 , … , Ik}, association rules with this item-

sets are generated in the following way: the first rule

is {I1 , I2 , … , Ik−1} = {Ik}, by checking the confidence

this rule can be determined as interesting or not. Then

other rule are generated by deleting the last items in

the antecedent and inserting it to the consequent,

further the confidences of the new rules are checked

to determine the interestingness of them. Those
processes iterated until the antecedent becomes

empty. Since the second sub-problem is quite straight

forward, most of the researches focus on the first

sub-problem.

The first sub-problem can be further divided into two

sub-problems: candidate large item sets generation

process and frequent itemsets generation process. We

call those item sets whose support exceed the support

threshold as large or frequent itemsets, those itemsets

that are expected or have the hope to be large or
frequent are called candidate itemsets.

In many cases, the algorithm needs to scan data base

for number of times to generate frequent itemsets

which causes inefficiency of algorithm. Several

strategies have been proposed to reduce time com-

plexity of algorithm. One of these strategies is to use

different data structures based algorithms for finding

frequent item sets such as tree, graph and matrix.

II. USE OF DIFFERENT DATA STRUCTURES IN

ASSOCIATION RULE MINING
2.1. Graph

2.1.1. Primitive Association Pattern Genera-

tion(PAPG)

In this algorithm the first step is to construct

association graph. This is two-step process number-

ing and graph construction. In the numbering phase,

the algorithm PAPG [2] arbitrarily assigns each item
a unique integer number. In the large itemset genera-

tion phase, PAPG scans the database and builds a Bit

Vector (BV) for each item. The length of each bit

vector is the number of transactions in the database. If

an item appears in the ith transaction, the ith bit of the

bit vector associated with this item is set to 1. Oth-

erwise, the ith bit of the bit vector is set to 0. The bit

vector associated with item i is denoted as BVi. The

number of 1s in BVi is equal to the support for the

item i. For association graph construction PAPG uses

Association Graph Construction (AGC) algorithm.

The AGC algorithm is described as follows: For

every two large items i and j(i < 𝑗), if the number of

1s in BViΛBVj achieves the user-specified minimum

support, a directed edge from item i to item j is cre-

ated. Also, itemset (i, j) is a large 2-itemset.
Second step is to generate Primitive Asso-

ciation Pattern. The large 2-itemsets are generated

after the association graph construction phase. In the

association pattern generation phase, the algorithm

Large itemset Generation by Direct Extension

(LGDE) is proposed to generate large k–itemsets (k >

2), which is described as follows: For each large

k-itemset(k ≥ 2), the last item of the k-itemset is

used to extend the large itemset into k+1-itemsets.

Adhav Ravi, Bainwad A. M./ International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.497-503

498 | P a g e

Suppose I1 , I2 ,… , Ik is a large k-itemset. If there is

no directed edge from item Ik to an item v, then the

itemset need not be extended into

k+1-itemset,because I1 , I2 ,… , Ik , v must not be a

large itemset. If there is a directed edge from item Ik

to an item u, then the itemset I1 , I2 , … , Ik is ex-

tended intoK + 1 − itemset(I1 , I2 , … , Ik). The item-

set (I1 , I2 ,… , Ik , u) is a large k + 1 − itemset if the

number of 1s in BV1ΛBV2Λ…ΛBVik ΛBVu achieves

the minimum support. If no large k+1-itemsets can be

generated, the algorithm LGDE terminates.

2.1.2. Generalized Association PatternGenera-

tion(GAPG)

GAPG [2] is used to discover all generalized
association patterns. To generate generalized asso-

ciation patterns, one can add all ancestors of each

item in a transaction to the transaction and then apply

the algorithm PAPG on the extended transactions.

In the numbering phase, GAPG applies the number-

ing method POstorder Numbering (PON) methodto

number items at the concept hierarchies. For each

concept hierarchy, PON numbers each item accord-

ing to the following order: For each item at the con-

cept hierarchy, after all descendants of the item are

numbered, PON numbers this item immediately, and
all items are numbered increasingly. After all items at

a concept hierarchy are numbered, PON numbers

items at another concept hierarchy.

In the large item generation phase, GAPG builds a bit

vector for each database item, and finds all large

items. Here, we assume that all database items are

specific items.

In the association graph construction phase,

GAPG applies the algorithm Generalized Association

Graph Construction (GAGC) to construct a general-

ized association graph to be traversed. The algorithm
GAGC is described as follows: For every two large

items i and j (i < 𝑗), if item j is not an ancestor of

item i and the number of 1s in BViΛBVj achieves the

user-specified minimum support, a directed edge

from item i to item j is created. Also, itemset (i, j) is a
large 2-itemset.

In the association pattern generation phase,

GAPG applies the LGDE algorithm to generate all

generalized association patterns by traversing the

generalized association graph.

2.1.3. Undirected Item Set Graph

Undirected item set graph [3] is set of nodes

V V1 , V2 , … , Vn in the database. Each node contains:

the node name, the pointer to other nodes, and the
number of nodes to which it points. The side set

E < 𝐼, 𝑗 > of undirected item set graph has two at-

tributes: the side name and the number of side appear.

< VI , Vj > Express two frequent itemsets; <

V1 , V2 , … , Vn > express n frequent itemset.

In construction of Undirected Item Set Graph First

step is to scan the database. It makes each item as a

node and at the same time it makes the supporting

trade list for each node. Supporting trade list is a

binary groupT = {Tid , Itemset}. So the side between

nodes can be accomplished by corresponding trade

list operation. The algorithm does the intersection of

two nodes with supporting trade list. When trade list

is not empty, that means there is a side between two

nodes. The appearance number of each side is the
resultant number which algorithm finds by the side‟s

intersection.

Algorithm one: Construction of undirected item sets

graph

Input: Database D

Output: Undirected item set graph

Begin

1. Add the items into the vertex set V;

2. For i = 1 to n − 1

2.1. Select Vi fromV;

2.2. For eachVj (j ≠ i)

If (Ii ∩ Ij) ≠ Ø then

Add link between VI and Vj

End if.
2.3. Next.

3. Next

End

Algorithm two: To find frequent item set based on

undirected item sets graph.

Input: Undirected item set graph, minimum support

minsupp, minconf

Output: frequent item set L, Association rules

Begin

1. The node set V is empty or not. If it is empty
then stop;

2. Find count of each item (e.g.Vi) and check

count of each item is greater than or equal to

minimum support minsupp. If greater than

the items are stored in frequent-1 item set;

3. (frequent item set) = L;

4. Select any unvisited node (e.g.Vj) from ad-

jacent list ofVi ;

5. If count Vi , Vj ≥ minsupp then

5.1. L U Vj;

5.2. L. adjacentlist =
L. adjacentlist) ∩
(Vj . adjacent list);

5.3. Call DFS (Vj) Procedure;

6. End if;
7. Confidence of each item is compared with

minconf and strong association rules are

generated.

8. End;

Procedure𝐷𝐹𝑆 (Vj):

Begin

1. If Vj . adjacentlist ≠ Φ then

1.1. Select any other node, suppose

Vkfrom Vj . adjacentlist;

1.2. Call isloop (L, Vk) Procedure;

Adhav Ravi, Bainwad A. M./ International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.497-503

499 | P a g e

1.3. If count (L, Vk) is greater than or

equal tominimum support then

combine L U (Vk).

Call DFS (Vk);
Output is frequent item set;

Delete Vk fromVj . adjacentlist;

Call DFS (Vj);

1.4. Else Return to its parent vertexVi ;

1.5. Call DFS (Vi);

2. End;

Procedure 𝑖𝑠𝑙𝑜𝑜𝑝 (L, Vk):

Begin

1. If Vk € L. adjacentlist then return Vk ;

2. Else delete Vk fromVj . adjacentlist;

3. CallDFS (Vj);

4. End;

5.

2.1.4. Direct Large Itemset Generation (DLG)

DLG [4] is a three-phase algorithm. The

large 1-itemset generation phase finds large items

and records related information. The graph construc-

tion phase constructs an association graph between
large items, and at the same time generates large

2-itemsets. The large item set generation phase gen-

erates large k-itemsets (k > 2) based on this asso-

ciation graph.

In large 1-itemset generation phase, the

DLG algorithm scans the database to count the sup-

port and builds a bit vector for each item. The length

of a bit vector is the number of transactions in the

database. The bit vector associated with item i is

denoted as BVi . The j th bit of BVi is set to 1 if item i

appears in the j th transaction. Otherwise, the j th bit

of BVi is set to 0. The number of 1‟s in BVi is equal to

the support count of the item.

In graph construction phase, the support

count for the itemset{I1 , I2 , … , Ik}is the number of 1‟s

inresult ofBVi1 Λ BVi2 Λ…Λ BVik , where the notation

“Λ” is a logical AND operation. Hence, the support

count of the itemset{I1 , I2 ,… , Ik} can be found di-
rectly by applying logical AND operations on the bit

vectors of the k-itemsets instead of scanning the

database. If the number of 1‟s inBVi Λ BVj(i < 𝑗) is

no less than the minimum support count, a directed

edge from item i to item j is constructed in the asso-

ciation graph. Also, { i , j } is a large 2-itemset.

In large itemset generation phase, for each

large k-itemset {I1 , I2 , … , Ik} inLk (k > 1) , the last

item ik is used to extend the itemset into (k +
1)-itemsets. If there is a directed edge from ik to

item j, the itemset {I1 , I2 , … , Ikj } is a candidate(k +

1)-itemset. If the number of 1‟s

in BVi1 Λ BVi2 Λ…Λ BVik Λ BVj is no less than the

minimum support count, {I1 , I2 , … , Ikj } is a large

(k + 1) -itemset in Lk+1 . If no large k -itemset is

generated in the kth iteration, the algorithm termi-
nates.

2.2. Matrix

2.2.1. An Algorithm Based on Boolean Matrix

(ABBM)

In general, the ABBM algorithm [5] consists of four

phases as follows:

1. Transforming the transaction database into

the Boolean matrix.
2. Generating the set of frequent 1-itemsets L1.

3. Pruning the Boolean matrix.

4. Generating the set of frequent k-itemsets

Lk(k > 1).

In the first step the mined transaction database is D,

with D having m transactions and n items. Let

T={T1,T2...Tm} be the set of transactions and

I={I1,I2, …,In}be the set of items. We set up a Boo-

lean matrix A m ∗ n, which has m rows and n col-

umns. Scanning the transaction database D, if item Ij

is intransaction Ti, where1 ≤ j ≤ n, 1 ≤ i ≤ m, the

element value of Aij is „1‟, otherwise the value of Aij

is „0‟.

In the second step, the Boolean matrix Am*n

is scanned and support numbers of all items are

computed. The support number Ij.supth of item Ij is

the number of „1s‟ in the jth column of the Boolean

matrix Am*n. If Ij.supth is smaller than the minimum

support number minsupth, itemset {Ij} is not a fre-

quent 1-itemset and the jth column of the Boolean

matrix Am*n will be deleted from Am*n. Otherwise
itemset {Ij} is the frequent 1-itemset and is added to

the set of frequent 1-itemset L1.

Pruning the Boolean matrix means deleting

some rows and columns from it. First, the column of

the Boolean matrix is pruned according to Proposi-

tion 2. This is described in detail as: Let I‟is the set of

all items in the frequent set LK-1, where k>2. Compute

all |LK-1(j)| where I‟, and delete the column of corre-

spondence item j if |LK-1(j)| is smaller than k-1. Sec-

ond, recompute the sum of the element values in each

row in the Boolean matrix.

Frequent k-itemsets are discovered only by
“and” relational calculus, which is carried out for the

k-vectors combination. If the Boolean matrix Ap*q has

q columns where 2 < 𝑞 ≤ 𝑛 and h ≤ p ≤ m, Cq
k ,

combinations of k-vectors will be produced. The „and‟

relational calculus is for each combination of

k-vectors. If the sum of element values in the “and”

calculation result is not smaller than the minimum

support number minsupth, the k-itemsets corre-
sponding to this combination of k-vectors are the

frequent k-itemsets and are added to the set of fre-

quent k-itemsets Lk.

2.2.2. Transactional Co-Occurrence Matrix

(TCOM)

In order to employee the advantages of both

horizontal and vertical layouts,uses matrix structure

called TCOM [6]. The algorithms designed on the

base of TCOM are very efficient and fast after it is

constructed since full access of original database or

TCOM is no longer necessary.

Adhav Ravi, Bainwad A. M./ International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.497-503

500 | P a g e

A TCOM is an innovative variant of a co-occurrence

matrix [7]. A co-occurrence matrix is a square two

dimensional matrix, whose rows and columns are

items, or called attributes. If there are M items (at-

tributes) in the database, the size of the corresponding

co-occurrence matrix will be M ∗ M.

It is easy to notice that a co-occurrence ma-
trix is great to mine the simple rules but is impossible

to mine a high-degree rule since the transactional

information of 3 or more items are lost during the

construction of the matrix. But such rules are desired

for most of the time. Another drawback of the

co-occurrence is that the items are not sorted ac-

cording to their occurrence counts, which will sig-

nificantly slow down the item set searching during

the mining process.

To overcome the above short comings, al-

gorithm incorporates transactional information into a
sorted co-occurrence matrix and makes it suitable for

all association rule-mining tasks.

The transform from the original database into the

transactional co-occurrence matrix layout requires

two passes of the database. The first pass of the

original database is to count the occurrence of each

item and sort items into descending order according

to their occurrence counts. During the second pass of

the original database, each transaction is sorted and

then inserted into the transactional co-occurrence

matrix.

TCOM has great advantage by combining
the transactional oriented information with item ori-

ented information in to one single structure. During

the mining process, two pieces of information are

needed.

1. For a given transaction, we need to know what

items it contains.

2. For a given item set, we need to know the occur-

rence count of this item set.

If we only use the horizontal layout database to do the

mining problem, then a full access of the database is

needed every time when the occurrence count of an
item set is desired. On the other hand, if we only use

the vertical layout database then a full access of the

database is needed every time when the first kind of

information is desired.

Mining process

Unlike previous literature which has to find all

itemsets before finding the valid association rule, we

directly find the valid association rules and itemsets

simultaneously. We call our mining process as

TCOM_mining. It is an item oriented algorithm and

the simplified version is shown below:

TCOM_mining:

1. Let set I be the set of infrequent items,I =
 𝑖1 , 𝑖2 , … , 𝑖𝑛

2. Start with item in, for each item ir in the set I,

1 <= 𝑟 <= 𝑛
2.1. Let ISSET be the set of itemsets, initially

ISSETis an empty set

2.2. Find out all existing item set ISA = {is1;

is2,….,ir} where occur-

rence_count(is1) >= occur-

ence_count(is2) >= …. >= occur-

rence_count (ir)

2.3. Populate ISSET with itemsets found in

step 2.2
2.4. Find out occurrence count for each ISA

found in step2.2

3. For each item set ISA in the set ISSET

3.1. For each item set ISB in the set ISSET

where ISB != ISA

If ISB contains ISA

Let ISC be the difference of ISB

and ISA

If occurrence_count(ISB)<= oc-

currence_count(ISA)*σ

ISA → ISC is a valid rule

Endif
End if

End for

3.2. Find out all happened item set ISB

where ISB

containsISA, and there exist at least one

item j in ISBwith occurrence_count(j) <

 occurrence_count(ir)

3.3. Find out the occurrence count for each

ISB found in step 3.2

3.4. For each itemset ISB found in step 3.2

Let ISC be the difference of ISB and
ISA

If occurrence_count (ISB) ≥ oc-

currence_count (ISA)* σ

ISA →ISC is a valid rule

 End if

End for

End for

2.2.3. Algorithm BitMatrix

In Apriori and AprioriTid algorithms, it is

assumed that items in each transaction are kept sorted

in their lexicographic order [8]. However, this is not
needed in BitMatrix. By careful programming, we

can keep the items in the large itemsets and the large

itemsets of the same size are kept sorted in their

lexicographic order even if the items in the transac-

tions are not kept sorted. We call the number of items

in an item set its size, and call an item set of size k a

k-item set. The set of all large k-itemsets is defined as

Lk. Each k-item set c in Lk consists of items

c[1],c[2],...,c[k], where c[1] < c[2] <…< c[k]. As-

sociated with each item set are two fields: count field

to store the support for this itemset, and index field to
indicate the transactions that contain the itemset. The

BitMatrix algorithm is described as:

1. Initialize the bitmatrix;

2. L1 = {large 1-itemset};

3. for (k=2; Lk!=0; k++) do

4. Lk =GenLargeItemsets(Lk-1);

5. Answer= UkLk.

Adhav Ravi, Bainwad A. M./ International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.497-503

501 | P a g e

In Step (1) of this algorithm, we initialize the bitma-

trix as follows. First we build a matrix whose row

number and column number are the item number and

the transaction number, respectively. Note that the

matrix is a bit-matrix and every position of the matrix

only has one bit in the memory. Then we go through

the database. If there are items i1, i2,..., ik in the jth
transaction, bits ai1j, ai2j, ... , aikj and the other bits in

the jth column of the matrix are initialized as 1 and 0

respectively.

In Step (2), we simply count the number of 1 in each

row to get the support count of every item and the

large 1-itemsets are determined.

In Step (4), the previously generated large

(k-1)-itemsets are used to generate the large

k-itemsets. This step repeats until no new large

itemsets are generated. The GenLaxgeItemsets func-

tion is used here, which takes as argument Lk-1 and

returns Lk. The function works as follows:

1. for (∀p, q ∈ Lk−1) do

2. if p[1] = q[1]Λ, … , Λ(p[k − 2] = q[k −
2]Λ(p[k − 1] < 𝑞[𝑘 − 1]) 𝑡ℎ𝑒𝑛 {

3. c = p ∪ q;
4. for all (k - 1)-subsets s of c do

5. if (s ∉ Lk) then {delete c; c = 0; break;}

6. if(c ≠ 0) then {

7. c.index = p.index&q.index;
8. compute c.count from c.index;

9. if (c.count>minsup) then Lk = Lk U {c};

10. }//end if.

11. }//end if.

From Steps (1) to (5), the function simply helps

generate the Ck that is a set of candidate k-itemsets. In

Step (2), the condition p[k - 1] <q[k - 1] ensures that

no duplicates are generated. However, this algorithm

differs from Apriori in that it need not store all the

candidates in the memory. Once a candidate itemset

is generated, it will be determined in Steps (7) to (9)

whether it is a large one.
To decide whether a candidate item set is a large one,

we associate each large itemset with a support index,

which is a bit index and each bit of which indicates

whether the itemset is contained by a transaction in

the database. As to the 1-itemsets, their support index

is some row in the bitmatrix. Since c is the union of p

and q, we simply generate c's support index by bit

operator AND that is applied to each bit of p's and q's

in (7).

2.2.4. Matrix Algorithm
Matrix algorithm[12] first generates matrix

and then association rules are generated by using

matrix. Procedure for matrix generation is as follows:

It sets the items in I as columns and the transactions

as rows of the matrix.

Let the set of items be I = {i1, i2,···,in}, and the set of

the transactions be D = {t1,t2,···,tm}. Then the gener-

ating matrixG = {gij}, (i =1, 2, ···,m; j = 1, 2, ···,n) is

an m ∗ n matrix, where gij= 0 or 1 is determined by

the following rule,

gij =
1 if ij ∈ ti ,

0 if ij ∉ ti .

After creation of matrix the candidate k−itemset is

generated using the following process:
1. C1 generation: At the beginning 1- itemset are

generated and the support of the set {ik} is calculated

by formula:

support({ik}) = < gj , Sk
1 >,

m

j=1

where<, > is the inner product of two row vectors and

gj, j=1,2 , ..., m are rows of the matrix G.

2. C2 generation: Candidate 2-itemsets C2 is the joint

set of L1with itself, thatis,C2 = L1 ⋈ L1.The support

of the set {ik, ij} is :

support ({ik , ij}) = int[
< gj , Si,k

1 >

2
]

m

s=1

3. Repeat the above process with successively in-

creasing number k until either Ck or Lk is empty. The

support can compute according to the following

formula:

support ({il1 , il2 , … . . ilk })

= int
< gj , Sl1,l2,….lk

1 >

k
 .

m

j=1

2.3. Tree

2.3.1. Tree Based Association Rule Min-

ing(TBAR)

TBAR [9] is anApriori based association

rule mining algorithm which uses tree data structure

to store relevant itemsets in database. Use of itemset

tree to store relevant itemsets saves space and time

required to process data. TBAR was mainly devel-

oped to work with relational databases. It makes each

item as pair column_name:value. It will use the fol-

lowing algorithm to find all the relevant itemsets:

1. set.Init (MinSupport);

2. itemsets =set.Relevants(1);

3. k = 2;
4. while (k <= columns && itemsets >= k)

{

itemsets = set.Candidates (k);

If (itemsets>0)

Itemsets = set.Relevants(k);

k++;

 }

In this algorithm the set is itemset tree. init method

will initialize the itemset tree. Method relevants(k)

will generate Lk and candidate(k) will generate Ck

from Lk-1.
The itemset tree will look like

Adhav Ravi, Bainwad A. M./ International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.497-503

502 | P a g e

Fig.1 TBAR data structure example.

After generation of itemset tree following algorithm

will traverse the tree to find frequent itemsets and will

generate association rules from those itemsets:

For each relevant k-itemset 𝑙𝑘 in the tree with

k >= 2
For each itemset 𝑙𝑖 ⊂ 𝑙𝑘

If support(𝑙𝑘) >= 𝑀𝑖𝑛𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ∗
 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑙𝑖)

Output rule 𝑙𝑖 => (𝑙𝑘 − 𝑙𝑖)

withconfidence = support (𝑙𝑘) / support(𝑙𝑖)

andsupport = support(𝑙𝑘)

 End If

 End For

End For

2.3.2. Super TBAR (STBAR)

STBAR [10] is extended version of TBAR.

STBAR employs the tree-based storage, which is

analogous to TBAR. Each node in the tree is not a

2-tuple <a, v>, but a 3-tuple<a, v, t>, in which „a‟ is

the attribute, „v‟ is the number of tuples which satisfy

the condition, „t‟ is a flag whose value is 1 or 0. This

flag will decide whether an item can concatenate the

items found in the paths from the root of the tree to

the current i tem or not.
1. Generate all the frequent 1-itemsets, and

store them in the 3-tuples.

2. According to the order In-1 … I1, generate

itemset L2,validate whether it can constitute

a frequent itemsets or not, and set the cor-

responding flag in the 3-tuple.

3. For each sub-itemset in L2, recursively

generate Ln according to Step 2.

4. Seek for the tree's depth.

5. Find out the longest concatenations in the

tree.

6. Produce all the association rules. This step is
just as TBAR doing.

The STBAR datastructure will look like:

Fig.2 STBAR data structure example.

2.3.3. Trie Data Structure for Association Rule

Mining

The data structure trie was originally introduced to
store and efficiently retrieve words of a Dictionary. A

trie [11] that stores the words mile, milk, tea, tee,

teeny can be seen in Figure 3.

Fig.3 A trie containing five words.

Tries are suitable to store and retrieve not

only words but any finite ordered sets. In this setting,

a link is labelled by an element of the set, and the trie

contains a set if there exists a path where the links are

labelled by the elements of the set, in increasing

order.

In our data mining context, the alphabet is the (or-

dered) set of all items I. A candidate k-itemsetcan be
viewed as the word i1, i2….. ik composed of letters

from I. Fig. 4 shows the trie storing frequent itemsets.

Some of the itemsets are ACD, AEG, KMN, etc.

Fig.4 A trie containing five candidates.

Adhav Ravi, Bainwad A. M./ International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.497-503

503 | P a g e

III.CONCLUSIONS
Association rule mining is widely used in

market basket analysis, medical diagnosis, Website

navigation analysis, homeland security and so on.

During association rule mining most of the time is
spent for scanning database for finding frequent

itemsets. This time can be reduced by using different

data structures to store frequent itemsets. In this paper

we surveyed the mining algorithms which make use

of different data structures to reduce space and time

complexity of algorithms.

REFERENCES
[1] Agrawal R., Imielinski T. and Swami A. N.,

“Mining Association Rules Between Sets of

Items in Large Databases,” ACM SIGMOD

International Conference on Management of

Data, 1993, pp. 207-216.

[2] Show-Jane Yen and Arbee L.P. Chen, “A

Graph-Based Approach for Discovering

Various Types of Association Rules,” IEEE

transactions on knowledge and data engi-

neering, vol. 13, NO. 5, 2001, pp. 839-845.

[3] Ms.SanoberShaikh, Ms.MadhuriRao and

Dr. S. S. Mantha, “A New Association Rule

Mining Based on Frequent Itemset,” AIAA
2011,CS & IT 03, 2011, pp. 81–95 .

[4] K.L. Lee, Guanling Lee and Arbee L. P.

Chen, “Efficient Graph-Based Algorithms

for Discovering and Maintaining Associa-

tion Rules in Large Databases,” Knowledge

and Information Systems 3, 2001, pp.

338–355.

[5] Hanbing Liu and Baisheng Wang, “An As-

sociation Rule Mining Algorithm Based on

a Boolean Matrix,” Data Science Journal,

Volume 6, Supplement, 9 September 2007,
pp. 559-565.

[6] Junfeng Ding, Stephen S.T. Yau, “TCOM,

an Innovative Data Structure for Mining

Association Rules Among Infrequent

Items,” Computersand Mathematics with

Applications 57, 2009, pp. 290-301.

[7] R. Haralick, K. Shanmugam, I. Dinstein,

“Textural Features for Image Classifica-

tion,” IEEE Transactions on Systems, Man,

and Cybernetics (SMC-3),1973, pp.

610-621.
[8] G. Webb, “Efficient Search for Association

Rules,” International Conference on

Knowledge Discovery and Data Mining,

2000, pp. 99-107.

[9] Fernando Berzal, Juan-Carlos Cubero,

Nicolas Marin, “TBAR: An Efficient

Method for Association Rule Mining in

Relational Databases,” Data & Knowledge

Engineering 37, 2001, pp. 47-64.

[10] De-chang Pi, Xiao-Lin Qin, Wang-FengGu,

Ran Cheng, “STBAR: A More Efficient

Algorithm for Association Rule Mining,”

Fourth International Conference on Ma-

chine Learning and Cybernetics, Guang-

zhou, 18-21 August 2005.

[11] F. Bodon and L. Ronyai, “Trie: An Al-

ternative Data Structure for Data Mining

Algorithms,” Mathematical and Computer

Modelling 38, 2003,pp739-751.
[12] Yubo Yuan and Tingzhu Huang, “A Matrix

Algorithm for Mining Association Rules,”

Advances in Intelligent compting Volume

3644, 2005, pp 370-379.

