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ABSTRACT 
This paper presents implementation and 

comparison of two multiplication methods which 

are currently being used. The multiplication is 

carried out between single precision floating 

point numbers. There is significant reduction in 

number of intermediate computation using 

Radix-4 Booth multiplication algorithm. 

Comparison of both the methods is done on basis 

of number of registers and LUTs used for 

designing. The proposed design is implemented 

using VHDL on Xilinx ISE. 
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I. INTRODUCTION 
Real numbers are represented by different 

ways on computers. But IEEE Floating-point 

representation is so far most used representation. 

Single precision floating point numbers are vastly 

used in computers, it is known as float in C, C++, 

C#, Java and single in MATLAB. Floating point 

representation has several advantages over fixed 

point representation. Fixed point representation 

places a radix point anywhere in the middle of 

digits, which has no fixed position, which makes it 

more complex while designing arithmetic 

operations, whereas floating point representation 

doesn‟t have this irregularity. Floating point 
numbers supports wide range of values. 

With recent advancements in graphic 

processors, robotic applications, audio signal 

processing and data processing multiplication is a 

very important component of computation. Robotic 

applications, where complex mathematical 

algorithms are required to be calculated such as 

inverse kinematics, interpolation, velocity 

computations, which are accomplished by repetitive 

use of multiplication and addition operations. The 

number of logic blocks required to design such 
system determines the cost of the system. 

This paper concentrates on two multiplication 

methods used for binary number: Shift and add 

method and Radix-4 booth multiplication method. 

These methods are implemented on single precision 

floating point numbers. Comparison of the two 

 

 

methods is done on the basis of logic elements used 

to design the algorithm using VHDL. 

 

II. SINGLE PRECISION FLOATING 

POINT 
The single precision floating point representation 

is defined by IEEE 754. Single precision floating 

point numbers are represented by 32 bits per 

number. 32 bits are divided into three bit fields: sign 

bit (1-bit), biased exponent (8-bits) and mantissa 

(23-bits).  

 

 
Fig. 1: Single precision representation 
 

„1‟ for sign bit signifies negative sign and 

„0‟ signifies positive number. 23 fraction bits and 

one additional bit, left of the radix point in 

normalized floating point number, add additional 

one bit precision to the number making the number 

of 24 bits precision. Range of the biased exponent is 

0 to 255 because of 8 bit width, but 0 and 255 are 

reserved for special cases so range used for 

normalized floating point numbers is 1 to 254. „127‟ 

is added to exponent of normalized floating point 

number for biased exponent field (B.E.) to 
accommodate negative values of the exponent. 

 

B.E. = Exponent+127                                            (1) 

 

So range of exponent of normalized 

floating point number will be -126 to 127, which 

will be represented as 1 to 254 in B.E. field. At last 

23 fraction bits, combination of these three fields 

will be used to represent the numbers in the range 

from ±1.17549…× 10-38 to ±3.40282…× 1038. The 

wide range of real numbers can be represented with 
single precision. 

 

The actual value of the double precision floating 

point number is the following: 

 

 1 +  bitk ×  2−k𝑛−1

𝑘=1
 × 2e                                (2) 

 

Where bitk is the normalized significand‟s k-th bit 

from the left and „e‟ is exponent.  
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Special cases: 

Zero is represented as B.E.=0 and F=0, +0 and -0 

both are possible as per sign bit. 

Infinity is represented as B.E.=255 and F=0, +∞ and 

-∞ both are possible as per sign bit. 

NaN(not a number) is represented as B.E.=255 and 
F≠0. 

 

III. SHIFT AND ADD MULTIPLICATION 
Shift-and-add multiplier is the basic binary 

multiplier and is used commonly in all applications. 

Shift-add-multiplication is the simplest way to 

perform multiplication. It is derived for binary n-bits 

x n-bits integer which can also be used for single 

precision floating point number with some minor 

changes. Number of intermediate additions 
operation for shift-and-add multiplication method is 

equal to number „1‟s in the multiplier number. 

Below are the steps for shift-and-add multiplication: 

 

Step 1: Divide the multiplicand and multiplier in 

three fields and extract each field; those are 

sign, biased exponent and fraction. 

Step 2: Sign of resultant multiplication will be 

XOR of the sign bits of the multiplier and 

the multiplicand. 

Step 3: Biased exponent of the resultant will be 
addition of the biased exponents of the 

multiplier and the multiplicand and 

subtracting the bias (i.e. 127 for single 

precision).  

Step 4: Starting from the LSB of the multiplier, 

add the multiplicand if there is „1‟ at the 

LSB of the multiplier, then shift multiplier 

1 place to the right. 

Step 5: Repeat step 4, until all the fraction bits 

from multiplier are considered shifting 

multiplicand to the right per every bit of 
multiplier, including the leading „1‟ of the 

normalized floating point number. 

Step 6: Normalize the final number if necessary, 

shifting it right and incrementing the biased 

exponent. 

Step 7: Round the fraction to the appropriate 

number of bits, and renormalize if rounding 

generates a carry. 

 

If there are special cases, which means either of the 

numbers is ±0, ±∞ or NaN, than above algorithm is 

not applied, and following operations are performed: 
 

Any_number × ±0     = ±0 

±∞                 × ±0     = ±0 

NaN              × ±0     = ±0 

Any_number × ±∞    = ±∞ 

Any_number × NaN = NaN 

 

There will be maximum of 24 addition operation per 

each multiplication. Most digital signal processing  

 

such as filtering, convolution, and various 

transforms uses multiplication. In addition robotic 

applications where mathematical equations are to be 

designed, multiplication is used more than once. So 

considering current scenario where multiplication is 

vastly used, logic elements required to design the 
multiplication should be as minimum as possible. So 

for the purpose of logic elements reduction, an 

algorithm where intermediate computations are less 

should be used. Such an algorithm is Radix-4 booth 

multiplication algorithm, which significantly 

reduces intermediate computations. 

 

IV. RADIX-4 BOOTH MULTIPLICATION 

One of the solutions of reducing number of 

logic elements used for designing is reduction of 
intermediate calculation stages. Unlike shift-and-add 

multiplication method, radix-4 booth multiplication 

algorithm considers three bits of the multiplier at a 

time, hence reducing number addition stages 

required. It is a technique that allows for faster and 

smaller multiplication circuit by recoding the 

multiplier and multiplicand, which is to be 

multiplied. Radix-4 booth multiplication reduces the 

number of addition stages by half. Unlike shift-and-

add multiplication, considering three bits of 

multiplier at a time and multiply multiplicand by 0, 
±1 or ±2, according to the three bits under 

consideration. Three bits of the multiplier are 

considered such that each block overlaps the 

previous by one bit. Grouping starts from least 

significant bit and two bits from right and a „0‟ is 

considered as the first group. For example, consider 

1011010001, than grouping is performed as shown 

below: 

 

     1   0   1   1   0   1   0   0   0   1   0 

 
As we can see a „0‟ is added after LSB for 

the grouping and every group overlap the previous 

one by one bit. According to the groups starting 

from LSB, recoding and then further procedure is 

followed. Below is the recoding table: 

 

TABLE 1: Radix-4 Booth Recoding [2] 

Group Partial Product 

000,111 0 

001,010 1*Multiplicand 

011 2*Multiplicand 

100 -2*Multiplicand 

101,110 -1*Multiplicand 

 

Here it should be noted that multiplying 

any number by two in binary is performed by 

shifting the number one bit to the right and negative 

numbers are represented by 2‟s complement. 

Example of radix-4 multiplication is shown below: 
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Multiplicand   0101000001 

Multiplier  × 0101101110 

Recoding           +1  +2  -1  +0  -2 

111111110101111110 

000000000000000000 

111110101111110000 
001010000010000000 

010100000100000000 

011100101011101110 

So now by using Radix-4 booth 

multiplication algorithm, steps for single precision 

floating point multiplication is shown below: 

 

Step 1: Divide the multiplicand and multiplier in 

three fields and extract each field; those are 

sign, biased exponent and fraction. 

Step 2: Sign of resultant multiplication will be 

XOR of the sign bits of the multiplier and 
the multiplicand. 

Step 3: Biased exponent of the resultant will be 

addition of the biased exponents of the 

multiplier and the multiplicand and 

subtracting the bias (i.e. 127 for single 

precision).  

Step 4: Starting from the LSB of the multiplier, 

make groups of three bits as discussed 

earlier. 

Step 5: Now according to the groups made by step 

4, recode the multiplicand for first group.  
Step 6: Then shift two bits to the left and recode 

the multiplicand for the second group and 

add it to the previous recoded number. 

Step 7: Repeat step 6 for all the groups. 

Step 8: Normalize the final number if necessary, 

shifting it right and incrementing the biased 

exponent. 

Step 9: Round the fraction to the appropriate 

number of bits, and renormalize if rounding 

generates a carry. 

 

If there are special cases, which means either of the 
numbers is ±0, ±∞ or NaN, than above algorithm is 

not applied, and following operations are performed: 

 

Any_number × ±0     = ±0 

±∞                 × ±0     = ±0 

NaN              × ±0     = ±0 

Any_number × ±∞    = ±∞ 

Any_number × NaN = NaN 

 

There will be maximum of 12 addition 

operations per each multiplication, which is half the 
number than shift-and-add operation. It will reduce 

the addition operations if there is a long sequence of 

„1‟s in the multiplier fraction field. Reduction in 

computation will result in reduction of number of 

logic elements required. It will also reduce the 

computation time, which is very important for real 

time applications. 

 

V. SIMULATION RESULTS & 

PERFORMANCE ANALYSIS 

 
Fig. 2: Simulation result of radix-4 booth single 

precision floating point multiplication 

 

Figure shows the simulation result of radix-
4 booth multiplication for single precision 

multiplication. The inputs x (multiplicand) and y 

(multiplier) are shown in hexadecimal and so is the 

output mult. Here first input x is real number 1.71 

and second input y is 17.32, which are represented 

as single precision floating point numbers in 

hexadecimal format. Output mult is 29.6172 in 

single precision floating point number hexadecimal 

format. Multiplication carried out by both the 

methods shift-and-add and radix-4 booth 

multiplication algorithm gives exact result but with 
vast difference in the number logic elements used 

while designing. Comparison of performance 

analysis for both the methods is shown below: 

 

TABLE 2: Performance Analysis 

 Shift-add Radix 4 

Slice Registers 69 29 

Slice LUTs 1898 1886 

Occupied slices 502 484 

 

VI. CONCLUSION 
By looking at the performance analysis, it can be 

concluded that radix-4 booth algorithm uses less 

hardware than shift-and-add algorithm. There is 
significant amount of reduction in logic elements 

used in the radix-4 booth algorithm. Speed of the 

radix-4 booth algorithm will be more than shift-and-

add algorithm because of the reduction in hardware. 
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