
 S.Safiya, V.Supraja / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1263-1269

1263 | P a g e

Alternative Design Implementation and verification of Embedded

Systems

S.Safiya
1
, V.Supraja

2

1,2Assistant Professor, Department of Electronics and Communication Engineering,

Ravindra College of Engineering for Women, Kurnool, 518001,AP., India

ABSTRCT
An early assessment of alternative design

implementations of embedded systems is mainly

focused on multilevel testing approach. In this

approach, the addresses are mixed with

hardware and software implementations.

Contrary to conventional approaches, it provides

consistent generation of scenarios throughout all

levels of testing and verification of integrated

system, component testing, and performance

assessments of design specifications starting from

the system level.

1. INTRODUCTION
THE RECENT SURVEYS are, approximately

90% of all processors are part of embedded systems,

computing systems that continually and

autonomously control and react to the environment.

The market expansion arises from greater memory

densities as well as improvements in embeddable

processor cores, intellectual-property modules, and

sensing technologies. Designers can no longer

develop high-performance systems from scratch but

must use sophisticated system modeling tools.1, 2

A continuing increase in system
complexity, diminishing design cycles, tightly

integrated mixed hardware and software

components, and the growing use of reconfigurable

devices characterize the current generation of

embedded systems. Software tends to be

customized, and programmers code it using low-

level programming languages to achieve

predictable, high performance. The processing

environment reflects restricted budgets and physical

limitations, and uses only a minimal set of hardware

components.

Conventionally, hardware and software

development groups design and test these systems

separately, and then integrate them into a system

prototype. This late integration tends to require

many design iterations on the application prototype.

For applications with high performance

requirements and safety constraints, this high

number of late design iterations is a major concern.

Thus, for these applications, we advocate the use of

sound design methodologies and development

environments that emphasize early design
assessment.

We developed one such methodology, model-based

codesign, 2 which uses system modeling3 to

prototype systems under design. Our work focuses

on the development of design techniques in which

models can be synthesized and tested for several

objectives. Model-based co-design lets developers
create computer models of embedded systems

independently of their eventual hardware and

software implementation, enforcing a late

partitioning of the system design. Designers use

simulation to explore the feasibility of virtual

prototypes and then interactively map the

specifications onto mixed hardware-software

architecture. In several publications, we have

elaborated on the fundamental concepts supporting

model-based codesign.2,4

_ Functional and behavioral requirements

specification and modeling encompass the

solicitation and documentation of requirements and

the development of an executable model.

_ The behavioral simulation and model refinement

loop iteratively refines the design model until it is

functionally correct.

_ Structural requirements specification and

modeling relates physical design constraints to a

proposed processing architecture.

_ in the performance simulation and model

refinement loop, designers enhance the model with

performance measures for computation and

communication. They obtain performance measures

from a preliminary, reconfigurable system prototype

that implements the chosen architecture.

 S.Safiya, V.Supraja / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1263-1269

1264 | P a g e

_ Synthesis and implementation involves extracting

design specifications from the models to produce a

physical prototype.

_ Test module development and product testing

creates a set of test scenarios from the system

requirements specification, which designers use to
assess the design at all levels of the design process.

This approach has several benefits: It provides

_ early evaluations of alternative system

configurations,

_ a consistent set of test scenarios that follow the

iterative system refinement,

_ debugging as a part of each design level, and

_ Reliable model component reuse.

2. Implementations of Embedded systems
Embedded-systems verification

Verification methods and objectives differ

in the hardware and software domains. Embedded

software development uses specialized compilers

and development software that offer means for

debugging. Programmers develop application

software on more powerful computers and

eventually test the application in the target

processing environment. Future on-chip debugging

support promises to improve software performance,
and estimation and analysis.5

In contrast, hardware component testing

concerns itself mainly with functional verification

and self-tests after chip manufacturing. Hardware

developers use tools to simulate or formally prove

the correct behavior of circuit models. Vendors

design chips for self-test, 3 which mainly ensure

proper operation of circuit models after their

implementation. Test engineers—not the original

hardware developers— test the integrated system.

This conventional, divided approach to

software and hardware development does not

address the embedded system as a whole during the

system design process. It instead focuses on these

two critical facets of testing separately. New

problems arise when developers integrate the

components from these different domains. In theory,

unsatisfactory performance of the system under test

should lead to a redesign. In practice, a redesign is

rarely feasible because of the cost and delay

involved in complete design iteration. A common
engineering practice is to compensate for problems

within the integrated system prototype by using

software patches. These changes can unintentionally

affect the behavior of other parts in the computing

system.5

Developers can then test system-level

prototypes with either formal verification techniques

6 or simulation. A current shortcoming of many

approaches is, however, that the transition from

testing at the system level to testing at the

implementation level is largely ad hoc. To date,

system testing at the implementation level has

received attention in the research community only as

coverification,7 which simulates both hardware and

software components conjointly. Co verification
runs simulations of specifications on powerful

computer systems. Commercially available co

verification tools link hardware simulators and

software debuggers in the implementation phase of

the design process.

While working on a design methodology

for tightly integrated embedded systems, we noted

that research in system-level design and test for such

systems has not identified a need for a gradual

transition of test specifications to the

implementation level. This gradual transition allows
a consistent assessment of application design

specifications with various levels of detail.

To provide this gradual transition, we

developed a multilevel testing approach for mixed-

system prototype implementations. Our approach

uses a software-based real-time testing environment

for system testing.

Alternative design and test approach

In the design of complex embedded
systems, we encounter multifaceted requirements.

The assessment and verification of these

requirements is complex and even impossible in

some cases because of the design’s abstract

specification at the model level. We advocate a

structured multilevel approach to testing, which

follows the system development through its various

stages. Figure 2b depicts our approach.

In this approach, we start by deriving a set

of test scenarios from a textual system requirements

specification.2,8 Gradual refinement adds more
detail to the models. We continue to improve our

system model until its behavior cannot be

distinguished from the desired behavior of the

specified system.

 S.Safiya, V.Supraja / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1263-1269

1265 | P a g e

At the system level, we use test modules to validate

the system model. To assess an application design,

we connect these modules to and simulate them in

conjunction with the system model. Test modules

are directly derived from one or more behavioral

and structural application requirements, and follow

the incremental refinement of the application design

model. The modular construction also enables us to

monitor specific model components during the
simulation and identify possible performance

bottlenecks early in the design process.

During the application design, we map the

system model onto a selected hardware architecture

and integrate it into a reconfigurable prototype. We

follow this transition by converting our testing

modules to a set of test processes for a real time

system-testing platform. At the integrated-system

level, we can reuse test scenarios from the set

developed during the modeling phase. The test

processes then create the corresponding scenarios in
real time on the mapped model of the embedded

computing system. During a test run, the system

testing environment (STE) records and analyzes the

design implementation’s performance.

Compared to the conventional approach,

multilevel design and test permits the specification

of test scenarios at a high level of abstraction—the

system level. It encourages a gradual refinement of

these abstract test scenarios from the system model

level to the integrated-implementation level. As the

abstraction level drops, the test scenarios’ abilities
increase to serve the different testing objectives of

system- and implementation-level testing. That is,

these scenarios become useful for functional versus

performance testing. Test scenarios remain

consistent throughout system development, and

changes can easily be propagated between lower and

higher abstraction levels. In addition, it clearly

distinguishes system testing from system modeling

early in the design process.

Model testing

Model-based embedded systems design has

recently gained a lot of attention in the embedded-

systems community.1,2,7 One of its advantages is
implementation-independent system design, which

fosters late integration of hardware and software

components. Another advantage is that developers

can easily analyze time critical applications by

varying model execution parameters for the

simulation platform. Simulation time imposes an

ordering on the occurrence of events instead of

acting as a hard processing constraint. Developers

can introduce delay estimates to identify possible

system bottlenecks.

Gradual development.
In the modeling phase, the abstract system

design gradually evolves into a virtual system

prototype that closely resembles the final

implementation. The model can then be converted

into detailed design descriptions that allow the

physical prototyping of a mixed hardware-software

system design. This late partitioning into a detailed,

implementation-level design specification lets

developers easily produce reconfigurable and

customized implementations.

Although several system modeling tools

exist, published research about corresponding

design methodologies does not directly address

testing at the system level. In our methodology, we

address system model testing with a concept called

experimental frames—coupled test modules that, in

their entirety, model the environment in which the

application is embedded.4

Our methodology specifies models using a

formal, discrete, event-based specification that

enforces a separate and modular specification of
design and test models. This formalism, called

DEVS (Discrete Event System Specification), also

facilitates a conjoint execution and evaluation of

these model components over a specified simulation

interval.9

Test modules.

Test modules, which compose

experimental frames, mainly serve the function of a

test event generator, test monitor, or performance

analyzer. These model components are created
separately from the system model. Each component

represents a part of the environment and reflects

certain behavioral requirements of the system

design. Simulation of the test modules together with

the system model represents an experiment where

the application interacts with its environment. In

essence, we create a test bench at the model level,

 S.Safiya, V.Supraja / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1263-1269

1266 | P a g e

which we use to validate various aspects of either

the entire application or its components. Test

modules encode test scenarios, either fixed or

interactive, from specified design requirements.

Interactive modules allow an early integration of a

human system user into the application

development. The modularity of the test modules
enables reuse in different applications or in design

alternatives for the same application.

We base the development of test modules

on a stepwise refinement process. This process

requires the prior identification of behavioral

requirements in a textual requirement specification.

We then incrementally introduce requirements into

event-generating test module specifications and into

the actual design component specifications. Each

newly introduced requirement also requires a

refinement of conformance criteria in monitoring
test module specifications. Notice that a model-

based design approach even allows performance

assessments of abstract design models by using our

concept of computational complexity for model

component specifications.2

Product design and testing

At the implementation level, software

components should be fully debugged, and the

target architecture should have been tested for

integrity. In product testing, developers verify the
final application prototype by either using

specialized test equipment that emulates parts of the

target architecture or, more commonly, the real

environment. Here, in contrast to the modeling

phase, the execution time is fixed, and developers

can obtain true performance results. They can also

observe the structural properties introduced by the

system design, board design, hardware

configurations, software components, and their

interactions with one another.

Developers integrate embedded-systems
designs at the implementation level. Conventionally,

they develop application-specific software and

iterations on the board design separately, integrate

them, and for the first time, test the entire system for

compliance with the originally specified

requirements in this product testing phase. In our

model-based approach, assessment of the integrated

system prototype occurs much earlier in the design,

as it is directly derived from the design model

specification and assessed as a system

implementation. Developers can still perform
product testing for conformance purposes, as in the

conventional approach.

Real-Time STE

Our multilevel testing approach takes

advantage of the already accumulated repository of

test scenarios, which are in the form of test modules.

Our STE provides a smooth transition from

simulation to real time, and inserts another level of

testing between model and product testing. We

consider this STE as a step toward real-time

simulation—that is, real-time execution of

application models in their environment.

 The modeling level allows an early
assessment of design requirements using

performance estimates. This assessment might not

suffice to accurately verify applications with high-

performance constraints. To obtain true performance

measures, we apply test scenarios generated by the

test modules to a physical realization of the system

model implemented in a reconfigurable processing

architecture. This prototype consists of standard

processing elements, reconfigurable hardware

components, a flexible operating system to

coordinate the software components’

communication, and an efficient interface with the
testing environment.

The real-time STE provides the foundation

for our performance tests of application prototypes.

The environment is written in C and runs on a

standard PC. The program minimizes processing

overhead in the generation of external stimuli for

physical prototypes and allows an accurate

evaluation of the prototype’s response.

As Figure 3 shows, the STE software consists of

_ test processes;

_ a kernel based on minimal real-time operating

system C/OS;10

_ a process management layer, which handles

scheduling, interposes communication, test analysis,

real-time compliance of experiments, and so on;

_ an efficient communication channel to the system

prototype; and

_ a user interface for test data analysis.

 The STE supports test processes generated

from test modules with a real-time operating system

 S.Safiya, V.Supraja / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1263-1269

1267 | P a g e

platform. The direct mapping results in a consistent

set of test scenarios for performance evaluations of

the prototype under system testing conditions. In

addition, the execution environment remains

application independent.

Test processes fall into categories similar to those
for test modules: generator, monitor, or performance

processes.

Generator processes

During an experiment, these processes

reproduce test scenarios in real time from test scripts

that match a specified behavior of corresponding

test modules in previous simulation runs.

Contrary to the conventional approach of

manually specifying implementation-level test

scenarios, we automate this process by leveraging
our formal specification of test modules. Our

approach generates test scripts for each test module

by recording time-stamped events at the output and

input ports of each module during simulation. Such

an approach is feasible for high-performance test

scenarios that require an efficient tester

implementation. Implementing generator processes

as test script interpreters minimizes processing

overhead in the STE. Notice that we can also use the

same techniques to transform our test module

specifications into software implementations for the
STE as we use for design model components.2 here,

we transform each test module specification into a

process description that uses operating system

communication primitives and preserves the original

test module’s behavior. This approach would be of

interest for embedded systems that interact with

human users via many possible test scenarios.

Monitor and performance processes

The monitor process focuses on verifying

that the system prototype’s response aligns with

previous simulation results or other specified
constraints. The performance process tracks the

system prototype performance in the testing

environment. We can also remotely instantiate a

second performance process on the reconfigurable

system prototype to gather data about system

components at runtime. This additional process then

reports basic performance measures during the

system prototype’s idle time. All of these

performance processes can interrupt the experiment

in cases of significant deviation from specified

behavior or invalid system response.

During the experiment, the central process

manager coordinates the STE process

communication within the testing environment and

with the system prototype, recording incoming and

outgoing data. The monitor process tracks the

system response, and the performance process

collects runtime information about specified

components on the physical prototype.

3. System prototype testing results
We continue with the mapping of the test

modules into test processes. For most test modules,

the conversion is trivial. In the case of the vehicle

component, we realized the module in both

generator and monitor processes. We converted the

stimulus produced by this component into a test

script and encoded its recorded response into the

monitor process. Specified real-time constraints of

the AICC were included in the performance process.

We used the reconfigurable prototype to

test three different processing configurations for the

control unit: an all-software solution employing a
Motorola 68HC11 microcontroller; a mixed Altera

MAX9320 FPGA and 68HC11 solution; and an all-

software solution based on a Siemens C161O

microcontroller.

We used the proposed STE to record the

data for performance analysis of these AICC design

alternatives, obtaining results for two selected test

scenarios:

_ simple test scenario A with 11 input events, and
more computationally intense scenario B involving

108 test messages. We averaged the observed data

over consecutive test runs for each test scenario.

Software-only solutions

In these configurations, we based the

system prototype on two different microcontroller

architectures and implemented the system entirely in

software. Table 1 shows the performance of the two

processing environments for both test scenarios.

Average response time refers to the average time the
AICC control unit took to return throttle and break

positions. Initially we constrained this response time

to be less than 100 ms.

The results show that the Siemens

microcontroller dominates both performance tests in

all categories. Its computational advantage becomes

apparent when you compare average response times;

the C161O is 10 times faster than the 68HC11. This

is not surprising, because the C161O is a 16-bit

pipelined microcontroller running at twice the speed
of the 8-bit 68HC11. Our data suggests that the

 S.Safiya, V.Supraja / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1263-1269

1268 | P a g e

Siemens microcontroller is powerful enough to

handle additional computational tasks, a capability

that would help reduce the number of processors in

a device.

Mixed hardware-software solution.

In this test configuration, we implemented
one system prototype component on an Altera

MAX9320 FPGA to speed up the computation in

the 68HC11 implementation. This move required

converting a 25-line C function into a 19-cell FPGA

design. The function, converted into hardware,

handles driver control inputs. Table 2 (next page)

summarizes the 68HC11 test data for both test

scenarios. The categories in Table 2 are the same as

those in Table 1.

The data indicates a performance improvement over

the previous software-only solutions in terms of a

decrease in microcontroller utilization for the mixed

hardware-software configuration. Hardware
acceleration causes this decrease in utilization.

Although there is little difference in the average

response times for the control unit, test scenario A

shows a larger drop in utilization because it has a

higher percentage of control versus sensor data

messages in its message mix. The response time

decreased only a little because the implemented

hardware function does not directly affect the most

computationally intensive task, calculating throttle

and brake position values

Analysis of test results over time

We can also use the test data to show

performance differences over time, that is, how the

processor load varies over time for each alternative

design. Figure 5 plots microcontroller utilization

against the test time for test scenario B and covers

all configurations.

Test scenario B activates the AICC control

unit at 2.7 seconds of test time. The car reaches its

coasting speed 1.8 seconds later, resulting in a

decrease in computation. The control unit is

disabled at 6.1 seconds. When active, the control

unit frequently performs throttle and brake position

computations, leading to an increase in

microcontroller utilization. When disabled, it only

performs basic data management tasks.

Again, the C161O outperforms any
68HC11 configuration because its utilization stays

consistently below 4.2% during the entire test

scenario. The 68HC11 data series for the software

only implementation indicates a performance

increase after activation of the control unit, which

reaches a maximum of 56% processor utilization.

The hardware-software implementation improves

application performance during the AICC’s active

period, in which the maximum processor utilization

is only 45%. Though providing a noticeable increase

in performance, the mixed hardware-software
configuration cannot compete with the more

powerful C161O microcontroller, software-only

configuration.

IN OUR DESIGN AND VERIFICATION

APPROACH for embedded systems, testing

follows the gradual refinement of the system design

from the first abstract model down to the final

application implementation. This approach’s unique

feature is the ability to translate simulation-based

design experiments (test modules) into a set of real-

time test processes.

4. Conclusion
Future research will focus on the

integration of the STE in our model-based co design

environment at the University of Arizona and the

automatic generation of STE processes. In addition,

this environment is expected to evolve in further

performance analysis of other mixed hardware-

software implementations.

Acknowledgments

This work has been supported by the

research laboratories of Infineon

Technologies/Siemens, Munich. We thank Altera

Corp. for providing an Altera ISP demo board and

development software for the development of the

AICC system prototype. We also thank Steve J.

 S.Safiya, V.Supraja / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1263-1269

1269 | P a g e

Cunning and Sanjaya K. Wijeratne for their help

with the implementation of this project.

References

1. D. Gajski et al., Specification and Design
of Embedded Systems, Prentice Hall,

Englewood Cliffs, N.J., 1994.

2. S. Schulz, Model-Based Co designs for

Real-Time Embedded Systems, doctoral

dissertation, UMI No. 3002539, Dept. of

Electrical and Computer Eng., University

of Arizona, Spring 2001.

3. S.J. Cunning, S. Schulz, and J.W.

Rozenblit, “An Embedded System’s

Design Verification Using Object-Oriented

Simulation Techniques,” Simulation, vol.

72, no. 4, Apr. 1999, pp. 238-249.
4. G. Sheedy and G. Martin, “Siemens

OCDS: The Next Generation On-Chip

Debug Support,” Contact, vol. 1, no. 4,

Mar. 1999, pp. 53-57.

5. H.P.E. Vranken, M.F. Witteman, and R.C.

van Wuijtswinkel, “Design for Testability

in Hardware- Software Systems,” IEEE

Design & Test of Computers, vol. 13, no. 3,

Fall 1996, pp. 79-87.

6. S. Schneider, Concurrent and Real-Time

System: The CSP Approach, John Wiley &
Sons, Chichester, UK, 2000.

7. G.R. Hellestrand, “The Revolution in

Engineering a Chip,” IEEE Spectrum, vol.

36, no. 9, Sept. 1999, pp. 43-51.

8. S.J. Cunning and J.W. Rozenblit,

“Automatic Test Case Generation from

Requirements Specifications for Real-Time

Embedded Systems,” Proc. 1999 IEEE

Systems, Man, and Cybernetics Conf.,

IEEE Press, Piscataway, N.J., 1999, pp.

784-789.

9. B.P. Zeigler, H. Praehofer, and T.G. Kim,

Theory of Modeling and Simulation, 2nd

edition, Academic Press, Burlington,

Mass., 2000.

10. J.J. Labrosse, C/OS: The Real-Time

Kernel, R&D Books, Gilroy, Calif., 1992.

S.Safiya received B.Tech degree in Electronics and

Communication Engineering from B.V.C and

M.Tech degree in Embedded systems from Bharat

Institute of Technology in 2006 and 2011,
respectively. At present, she is working as Assistant

Professor, Department of Electronics and

Communication Engineering, Ravindra college of

engineering for women, Kurnool, Andhra Pradesh,

India

V.Supraja received B.Tech degree in Electronics

and Communication Engineering from Sreenidhi

Institute of Technology and M.Tech degree in

Electronic Instrumentation & Communication

systems from Sri Venkateswara University college

of Engineering, Tirupati in 2007 and 2010,

respectively. At present, she is working as Assistant

Professor, Department of Electronics and

Communication Engineering, Ravindra college of

engineering for women, Kurnool, Andhra Pradesh,
India.

