
Swapnil Powar, Dr. B. B. Meshram / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.907-911

907 | P a g e

Survey on Android Security Framework

1
Swapnil Powar

2
Dr. B. B. Meshram

1Computer Technology Department, VJTI, Mumbai
2Computer Technology Department, VJTI, Mumbai

Abstract: Smartphone with open source

operating systems are getting popular now days.

Increased exposure of open source Smartphone is

increasing the security risk also. Android is one of

the most popular open source operating system

for mobile platforms. Android provide a basic set

of permissions to protect phone resources. But

still the security area is underdeveloped. This

survey is about the current work done on the

Android operating system. Some of the

techniques, which can introduce a positive edge to

the security area, are analyzed in the present

survey paper. These techniques are basically to

provide a better security and to make the

Android security mechanism more flexible. As the

current security mechanism is too rigid. User does

not have any control over the usage of an

application. User has only two choices, a) allow all

permissions and application will install, b) deny

all permissions and installation will fail.
Keyword: Android Architecture, APEX, Poly

Android Installer

I. Introduction

Android is a Google operating system for

mobile platforms with the basic functionality of

system utilities, middleware in form of Virtual

Machine (VM) and some core application like

browser, dialer, calculator and some others as well.
The large number of applications is available for

user. But the user need trust full applications, which

do not harm their privacy and security issues, so it is

mandatory for every application to ask for

permissions from the user during the time of

installation. User has only two choices, either to

grant all the required permissions and the application

will be installed. And once the permissions are

granted, Android does not provide any facility to

revoke those permissions, unless the user uninstalls

the application.
 Consider a weather application that reads

user’s location from his phone and provide weather

updates on the base of time and location. If the user

grants the permission to the application so, the

application will get install. The drawback is that, the

application can collect the user location anytime,

even user do not wish so. And if the user does not

grant permission to the application during

installation, so the application will not be install.

II. Background
Android is a Google operating system launched

for mobile platforms. The current architecture of

Android is explained below:

A. Android Architecture and Android

Application Structure

Android architecture contains four layers.

Application layer on top and the rest of three layers
are application framework, Android runtime and

Linux kernel respectively. Linux kernel is an

abstraction of the hardware and software. Android

runtime’s is a core component of Dalvik virtual

machine. Each Android process runs in a separate

instance of Dalvik virtual machine. Every application

is assign with a unique Linux user ID call as UID.

This functionality allows Dalvik to run multiple

applications in a separate process. Those applications

who run in a single process, must share a single UID.

Otherwise every application will have a separate ID.

B. Android’s Components

Android composed of basic four

components. ICC is used for communication

between components.

Activity: Activity provides GUI for interaction of

user with the application. Depends upon design, an

application may consists of one or more activities

Service: Service is a background process that fetches

data from the network.

Broadcast Receiver: Broadcast receiver receive
broadcast announcements and response to them

according to the situation.

Content Provider: Content provider is a SQLite

database, which supports the sharing and accessing

of data among applications.

Swapnil Powar, Dr. B. B. Meshram / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.907-911

908 | P a g e

Figure 1: Typical ICC between Activities, Services,

Content Providers and Broadcast Receivers

C. Android inter-components communication

In Android inter-components interaction

take place using through ICC mechanism based upon

intents. Intents are message passing mechanism that

also contains nature of the action to be performed.
Intents can be sent to a specific component or can be

broadcast to the Android framework. <Intent-Filters>

specify those intents which can be resolved.

D. Protection Levels

Android has four permission levels, on the basis

of which an application can be installed.

Normal: Normal permissions are granted by system

without asking any permission from user.

Dangerous: Dangerous permissions ask for the

approval from the user at the time of installation.
User has two choices, either grant all permission or

deny all. Denying of permissions will stop

installation.

Signature: System grants these permissions if the

requesting and granting application share the same

certificate.

Signature System: Same as Signature but use for

system applications only.

Android permission lacks the modification of

permissions. Android policy is very strict. It walks

on all or nothing policy. User should allow all
permission to allow any installation. Android do not

provide any runtime investigation for the behavior of

application.

E. Mobile Phone Threats

Proof of concept: Keeping the Bluetooth

device on without the knowledge of the user is an

example of this threat. It drained device batteries.

Destructive: Deletion of phone book entries without

the knowledge of user is an example of this threat.

Premeditated spyware: This category includes

location tracking and remote listening.

Direct payoff: Sending sms without the permission

of the user is a threat include in this category.

Information scavengers: Checking the address
book, passwords and cookies without the permission

of the user, lie down in this part.

Ad-ware: The malware advertisements on cell

phones are included in this category.

III. Extending Android Permission Model

and Enforcement with User defined

runtime constraints
This paper presents a policy enforcement

framework for Android that allows users to grant

permissions to applications on the basis of their

needs. And also to impose constrains on the usage of

resources.

A. Problem description

Every application requires some permission
which is mentioned in the AndroidMamifest.xml.

These permissions are used for performing sensitive

tasks like sms sending, using camera etc. At the time

on installation Android asks user to grant

permissions to the application to install. User does

not have any other choice rather than granting all

permissions to the application. Otherwise the

application will not get install. Once the permissions

are granted then user can not revoke those

permissions until user uninstall the specific

application.

Granting of permission to an application results in
providing unrestricted access to the resources.

Android existing framework does not provide a

security check on the usage of resources. For

example, if once sms permission is granted to an

application. So, that application can start sending

sms any time. There is no way to stop it, unless user

does not grant all permissions to it.

Four issues: (1) User must grant all permissions to

install any application; (2) No way for restricting the

granted permissions to an application; (3) As all

permissions are based on install time checks, access
to resources cannot be restricted based on dynamic

constraints and (4) The only way of revoking

permissions are to uninstall the application.

B. Android Permission Extension

Framework (APEX)

Different methods of ApplicationContext

class in Android are used to handle the installation of

application components. ApplicationContext acts as

an interface for intents handling..The

ApplicationContext implements the

IActivityManager interface. It uses the concept of
binders and parcels, the Inter Process

Swapnil Powar, Dr. B. B. Meshram / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.907-911

909 | P a g e

Communication for Android. Binder is the base class

for remotable objects, that implements the IBinder

interface and Parcel acts as generic buffer for inter-

process messages which are passed with the help of

IBinder.

The ApplicationContext creates a parcel with the

help of IActivityManager, and decide that calling
application has specific permissions. The

ActivityManagerService class receives this parcel

and extract the PID, UID and the permissions

associated with it. After that, send it to the

checkPermission method of ActivityManagerService

class. Then these arguments are passed to

checkComponentPermission, it perform some

checks. If the UID is root or system UID then it

grants all permissions. For the rest, it will call

PackageManagerService which extracts the package

name for the pass UID and validate the permissions.

If received permission does not match any of those
present in the GrantedPermission so, it throws a

security exception.

After checking the present security permissions,

control is given to AccessManager. For the purpose a

hook is placed in the CheckUidpermission of

PackageManagerService. As it is the only entry point

for permission checking. It throws the UID and the

requested permissions to the AccessManager.

AccessManager invokes PolicyResolver, it retrieves

attached to the related application and using the

PolicyEvaluatinonEngine, evaluate it. The policy
includes the condition on the basis of which

permissions will be denied or granted.

ExpressionParser retrieves the attribute of

application from attribute repository and performs

some sort of operations on these attributes.

C. Poly Android Installer

Writing policy is complex job for even

system administrators. Android targeted at the

consumer market and the end users as well. And

users cannot complex usage policies. To end this

problem the author created Poly. It is an advanced
Android application installer. It provides user to

specify constraints on the use of an application.

Allow: By default Android allows all permissions.

This makes the existing Android installer a subset of

Poly.

Deny: This approach opposed the current approach

of Android, which is all-or-nothing. As this approach

give facility to the user to deny any permission by

his owns choice.

D. Runtime Constraint Modifications
One of the limitations of Android security

mechanism is the lack of ability of revoking

permissions after an application get installs.

Uninstalling of an application is the only way to

revoke the permissions.

Figure 2: Android Permission Extension (Apex)

Framework

Apex allows the user to specify his fine grained

constraints at the time of installation through Poly.

Once a user come to know that the application is not

harmful, and he wants to assign more permissions to

it, so Poly will help him in that. For example if a user

install an application and grant it some permission

and deny the permission of GPS. After some time he

realize that this application not harmful and the user

wishes to facilitate him with GPS facility as well.
For modification the author created a shortcut to the

constraint specification activity of Poly in the

settings application of Android. This allows the user

to modify constraints he specified at the time of

installation. Even after, the application has been

installed. And the same rule follows for denying of

permissions after installation.

IV. Mitigating Android Software Misuse
In this paper we explained a framework;

know as Kirin to capture security policy that

transcends Android applications.

A. Contributions

The author reverse engineer Android’s

security model and present it formally. Author

Swapnil Powar, Dr. B. B. Meshram / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.907-911

910 | P a g e

provides a framework for specifying and enforcing

stakeholder security policy. Prolog is used for install

time installation. Prolog is a common language for

security policy evaluation. Author use the proposed

framework to identify insecure application policy

configurations within Android. Such applications can

affect voice, SMS and location services.

B. Kirin

In this paper a model is explained, which

states that before system install any downloaded

application package, it must first ensure the

applications satisfy all security requirements. If any

requirements fail to met, the installation will be

terminates. This model, of installation ensures the

cell phone will remain in its original secure state,

without based on user made security decisions.

The policy pre-processor extracts policy from the

target applications package, and converts it to Prolog
facts. After that it merges it with the existing policy

knowledge. The result of the merger represents the

security state of the system, if the installation were to

proceed. The policy engine after that uses the

temporary policy state to evaluate invariants. Policy

engine extract invariants from system policy, user

policy and applications policy. On the basis of these

invariants, policy engine take the decisions. It

automatically generates compliance proofs for the

target application. If all the invariants satisfied, so

installation will continue. If any of the invariant fails
to satisfy so the installation will abort.

C. System invariants

Invariant 1: “An application must have

explicit permission to make an outgoing voice

call.”Android uses CALL_PHONE and

CALL_PRIVILEGED permissions, to protect the

API from making outgoing calls. This invariant

makes it sure the no indirect access should be

allowed.

Figure 3: Enhanced Installation Logic. New

packages cannot be installed unless all policy in

variants passes

Invariant 2: “An application holding a dangerous

permission must have no unprotected components”

Android framework introduces “dangerous
permissions”. Which states that user should allow

permissions to applications at time of installation.

For example, sensitive tasks like making call and

sending SMS permissions are mark as dangerous. So

that, any application asks from user before using

these services.

Invariant 3: “Only system applications can

interface with hardware”. Android framework

introduces high level java APIs for interfacing with

hard ware. For the sack of flexibility, Android let any

application to interact with the APIs, but with proper

permissions. This invariant insures only system
applications have direct access to APIs.

D. User Privacy Invariants

Invariant 4: “Only system applications can

process outgoing calls.”Android framework let

applications to receive notifications of outgoing

calls, including the destination number. To keep the

issue of privacy in eye, user may wish that only

system applications should receive such

notifications.

Invariant 5: “Applications that can perform audio
record must not have network access or pass data to

an application that has network access”. It is quite

dangerous for security, if an application record voice

and send it on internet.

Invariant 6: “An application with access to Wifi or

Network state must also declare network access.”

E. Application invariants

Invariant 7: “An application can only receive SMS

notifications from trusted system components.” Any

application has the ability to broadcast intent.

Invariant 8: “An application can only receive

location updates from trusted system components.”
Some applications take decision on the base of

location so, only the system applications have the

right to send the location notification.

F. Limitations

Kirin is limited to obtain data from application

package metadata. Kirin does not provide any

dynamic security check. Kirin provides only install

time security.

V. On Lightweight Mobile Phone

Application Certification
The proposed Kirin security service for

Android, which provides a lightweight certification

of application at the time on installation. To certify

applications based on security configuration requires

to clearly specifying the unwanted properties. For the

Swapnil Powar, Dr. B. B. Meshram / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.907-911

911 | P a g e

identification of Kirin security rules, the author took

help of security requirements engineering. On other

hand a security language design has been defined, to

implement Kirin security service within the Android

framework.

 Methodology for adding new security

requirements and flaws in current Android are
defined.

 Practical method of performing lightweight

certification of applications at install time is

provided.

 Mitigation of malware rules is mentioned.

A. Kirin Security Rules

1) An application must not have the

SET_DEBUG_APP permission label.

2) An application must not have PHONE_STATE,

RECORD_AUDIO, and INTEREST

permission model.

3) An Application not has
PROCESS_OUTGOING_CALL,

RECORD_AUDIO and INTERNET permission

labels.

4) An application must not have

ACCESS_FINE_LOCATION, INTERNET and

 RECEIVE_BOOT_COMPLETE

permission labels.

5) An application must not have

ACCESS_COARSE_LOCATION, INTERNET

an RECEIVE_BOOT_COMPLETE permission

labels.
6) An application must not have RECEIVE_SMS

and WRITE_SMS permission labels.

7) An application must not have SEND_SMS and

WRITE_SMS permission labels.

8) An application must not have

INSTALL_SHORTOUT and

UNISTALL_SHORTOUT permission labels.

9) An application must not have the

SET_PREFERRED_APPLICATION

permission label and receive Intents for the

CALL action string.

B. Single Permission Security Rules

Dangerous permissions of Android may be

too dangerous in some production environment. The

SET_DEBUB_APP permission allows an application

to turn the debugging for another application. The

corresponding API is hidden in the most recent SDK.

Third party does not have access to hidden APIs but

it is not a substitute for security. Rule1 ensures third

party applications do not have the

SET_DEBUG_APP permission.

C. Multiple Permission Security Rules

Voice and location eavesdropping malware

need permissions to record audio and access location

information. But at same time legitimate applications

also use these permissions. So a rule is need as

multiple permissions. Rule 2 and 3 protect against

the voice eavesdropper. Rule 4 and 5 protect from

location tracker. Rule 6 protects from incoming
malware SMS. Rule 6 and 7 consider malware

interaction with messages. As SMS can be used as a

path for malware. And malware owner will not let

user Let know about SMS, therefore content provider

will be is modified just after receiving a SMS. Rule

7 does not stop SMS sending, but increase the

probability that user becomes aware of the activity.

Rule8 makes use of the duality of permission labels.

Rule 9 provides example of a rule considering both

permission and an action string. This stops a

malware from replacing the default voice call dialler

application without the awareness of the user.

VI. Conclusion
In this survey paper three approaches are

discussed for the security of Android. Kirin and

Lightweight approaches are basically installing time

approaches. If once an application grant some

permissions, so there is no security mechanism

through which Kirin or Lightweight keep check on

the behaviour of application during runtime. Kirin
cannot keep on check on dynamic broadcasts.

Comparatively to Kirin and Lightweight, Apex

approach seems to be more feasible. Which

continuously check the application behavior at

runtime, and on base of policy do not let an

application to do something for which permission is

not granted to it. For a larger user community, study

of user requirements is required. Secondly it can

create problems if user unknowingly grants such

permissions to an application which can produce

harmful results. This problem can be solved by the
conjunction of Kirin with Apex, by analyzing the

constraints and permissions to verify that security

rules are not being violated.

References:
[1] William Enck, Machigar Ongtang, and Patrick

McDaniel. On lightweight mobile phone

application certification USA, 2009. ACM.

[2] Google. Android Home Page, 2009. Available
at: http://www.android.com.

[3] Google. Android Reference: Intent, 2009.

http://developer.android.com/reference/android

/content/Intent.html.

[4] Apex: extending Android permission model

and enforcement with user-defined runtime

constraints

http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html

