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ABSTRACT:-  
Finite impulse response (FIR) filters are 

highly desirable in digital filter design because of their 

inherent stability and linear phase. However, when 

narrow transition band characteristics are required, 

they typically have a much higher filter order than 

their infinite impulse response counterparts with 

equivalent magnitude spectrums.  
     Widowing methods and the frequency response 

sampling method were presented with examples, but 

they were improved upon with the IFIR design 

technique. 

     The results shown that the computational cost of a 

Interpolated FIR (IFIR) is less with comparing the 

computational cost of a signal stage FIR filter and 

Multistage FIR filter which can be used both at the 

receiver and the transmitter. 

     

 Keywords: Bandwidth (BW), Inter Symbol 

Interference (ISI), Interpolated filtering (IFIR), Finite 

impulse response filter (FIR) 

 

I. INTRODUCTION 

Finite Impulse Response (FIR) filters are 

often used in phase-sensitive applications because 

they can always be designed to have linear phase. 
They are also inherently stable because all of the 

poles lie at the origin. 

FIR filters have the major drawback of 

having a much higher filter order than their IIR 

counterparts with equivalent magnitude spectrums 

[6]. 

In order to reduce the extra computational 

complexity that accompanies high filter orders, 

implementations such as the Interpolated Finite 

Impulse Response (IFIR) method were created. The 

IFIR technique has been shown to significantly 
reduce the computational complexity of practical 

FIR filters. 

The processes of sampling rate reduction 

(often called decimation) and sampling rate increase 

(or interpolation). 

Sampling rate increase and sampling rate 

reduction are basically interpolation processes and 

can be efficiently implemented using finite impulse 

response (FIR) digital filters. 

The processes of sampling rate reduction 

(often called decimation) and sampling rate increase 

(often called interpolation) [3]. 

 

Sampling rate increase and sampling rate reduction 
are basically interpolation processes and can be 

efficiently implemented using finite impulse 

response (FIR) digital filters.  

The IFIR approach results in a Two-stage 

decimator/interpolator. For the multistage approach, 

the number of stages can be either automatically 

optimized or manually controlled. But 

multirate/multistage design introduces the most 

delay as compare with IFIR Design. 

 

II. FILTER ORDER ESTIMATION 
Kaiser J. (1976) developed formula to 

determine the filter order. But they do not always 

provide the correct filter order. The smallest integer 

value that lies above the estimation should be 

checked for accuracy after the implementation. The 

parameters given include normalized pass band edge 

angular frequency  𝜔𝑝 and normalized stop band 

edge angular frequency 𝜔𝑠 , peak passband ripple 𝜹𝑝  

and peak stop band ripple 𝛿𝑠 [4]. 

 

𝑵 ≅
−𝟐𝟎 𝒍𝒐𝒈   𝜹𝒑 𝜹𝒔 −𝟏𝟑

𝟏𝟒. 𝟔  
𝝎𝒔 − 𝝎𝒑

𝟐𝝅
 

                                      𝟏  

Where N is filter order. 

 
III. PROBLEM FORMATION 

This filter can be designed using the 
window method.  Hamming window or a Dolph-

Chebyshev window can be used to design the 

specified filter shown (MATLAB, 2007) in Fig.1. 

 

 
 

Fig. 1. Filter response using different windows 

The Hamming window is defined as follows: 
 

          𝑊  𝑛 =  0.54 − 0.46 𝑐𝑜𝑠
2𝜋𝑛

𝑀 − 1
0

 , 0 ≤ 𝑛 ≤ 𝑀 − 1   (2)   
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To see what effects these windows have on the 

magnitude response of a filter, Kaiser Window 

design are determine a suitable filter order shown 

(MATLAB, 2007) in fig. 2. 

           

 
 

Fig. 2. Kaiser Design 

 

    The Kaiser Window design is not an optimal 

design. Because Filter order of Kaiser Window 

design is (68) as compare with Park McClellan 

Algorithm design result in the filter with the 

smallest possible order is (53). 

     So it can be concluded that McClellan based 
Equiripple design is optimal in terms of Filter Order 

(53). 

    We can still use equiripple designs to decrease 

filter order (20) but we loose control over the 

transition width which will increase shown 

(MATLAB, 2007)   in Fig. 3.  

 

   

 
 

Fig. 3. Design with loose control over transition width 

 

     Another option when the number of coefficients 

is set is to maintain the transition width at the 

expense of control over the pass band ripple/stop 

band attenuation shown (MATLAB, 2007) in Fig. 4. 

        

 
  

Fig. 4. Loosing control over stop band 

     Stop-band Attenuation Control is possible to 
increase the attenuation in the stop-band while 

keeping the same filter order and transition width by 

shown in Fig. 5.  
 

 
 

Fig. 5. Stop band attenuation control using weights 

 
     Another possibility is to specify the exact stop 

band attenuation desired and Loose control over the 

pass-band ripple shown (MATLAB, 2007) in Fig. 6.  
 

 
 

Fig. 6 Loose control over pass band Ripple 

 

      So we conclude that selection of parameter is 

import for communication filter design optimal 

equiripple linear phase method is best for FIR filter 
design.  

 

IV. SOLUTION OF PROBLEM 

   
A. Equiripple FIR Filter 

When an equiripple filter is desired, a 

computer-aided iterative approach is usually 
employed to reach the specifications within a certain 

error (). The resultant FIR filters of different 
algorithmic approaches are called equiripple 

because their minimized weighted error function 

(ω) exhibits an equiripple behavior. The most 
common approach is to use the Parks-McClellan 

algorithm. 

 

B. Equiripple IFIR Filter 

In it’s simplest form, the IFIR design can 

be thought of as a cascade of two filters. This is 

depicted in Fig. 7 and expressed in equation 3. 

 

 
 

Fig. 7 IFIR filters structure.          
 

 𝐻 𝑧 = 𝐹 𝑧𝐿  𝐺 𝑧                                                  (3) 
 

F (z) is called the shaping filter because it 

determines the shape of the resulting filter. F (z) L is 
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an upsampled version of this shaping filter. I (z) is 

known as the imaging filter or interpolator because 

it reconstructs the sparse impulse response given by 

F (z) L and suppresses the undesired pass band 

images that result from the up sampling. This 

technique greatly reduces the number of multipliers 

needed to meet given specifications. Where  

 𝜔𝑝 = Pass band edge angular frequency 

 𝜔𝑠   = Normalized stop band edge angular 

frequency  
 𝜹𝑝   =Peak pass band ripple 

 𝛿𝑠 =.Peak stop band ripple 

When the IFIR design is used, first an up sampling 
factor, L, must be found. From [1], the largest value 

of L is given by 
 

𝐿𝑚𝑎𝑥 =  
𝜋

𝜔𝑠

                                                                  (4) 

Improvement of IFIR Filter design equation given as 

 

𝑳𝒎𝒂𝒙 =  
𝟐𝝅

 𝝎𝒑 +  𝝎𝒔 +  𝟐𝝅( 𝝎𝒔 −  𝝎𝒑

                (𝟓) 

 

C.  Spectrum Estimation 

Spectrum estimation is useful in a variety 

of disciplines i. e communication Engineering, it is 

helpful in detecting the signal component (carrier) 

which has the noise component in it. In Radar and 

Sonar, it is useful in detecting the Target. 

The estimate for Power Density Spectrum is called 

the Periodogram. 
The Periodogram for a sequence [x1, ...  , , xN] is 

given by the following formula: 

𝑆 (𝑒𝑗𝑤  ) =
1

2𝜋𝑁
  𝑥𝑛  𝑒−𝑗𝑤𝑛  

𝑁

𝑛=1

 

2

                        (6) 

Where ω is in units of radians/sample.If  we define 

the frequency variable in Hz, the periodogram is 

defined as: 

𝑆 𝑓 =
1

𝐹𝑠𝑁
  𝑥𝑛  𝑒−𝑗  2𝜋𝑓

𝐹𝑠
  

𝑁

𝑛=1

 

2

                          (7)    

Where Fs  is the sampling frequency. The 

periodogram is an estimate of the PSD of the signal 

defined by the sequence [x1, ... , xN]. 
     If you weight your signal sequence by a window 

[w1, ... , wN], then the weighted or modified 

periodogram is defined as 

𝑆 𝑓   =
1

2𝜋𝑁

  𝑥𝑛𝜔𝑛  𝑒−𝑗 2𝜋𝑛  𝑁
𝑛=1  

2

1
𝑁

  𝑁
𝑛=1  𝜔𝑛  

2
   (8)  

Cancelling the common factors and denoting the 

squared 𝑙2 norm of the window sequence by   𝜔 2 
the modified periodogram can be simplified as: 

 

𝑆  𝑒𝑗𝑤   =
1

2𝜋
  
  𝑥𝑛  𝑒−𝑗𝑤𝑛  𝑁

𝑛=1  
2

 𝜔 2
                       (9) 

 

V. RESULTS AND DISCUSSION 
THE DISADVANTAGE OF FINITE IMPULSE RESPONSE 

(FIR) FILTERS IS THAT THE FILTER ORDER TENDS TO 

GROW INVERSELY PROPORTIONAL TO THE 

TRANSITION BANDWIDTH OF THE FILTER.  

In thesis paper, FIR filter Fp = 0.01, Fs = 0.105, p 

= 0.001, s = 0.001 and with up sampling factor is 3 
performance shown in Fig. 7. 

 

 
 

Fig. 7. Equiripple FIR Design 

 

The IFIR design algorithm achieves an 

efficient design for the above specifications in the 

sense that it reduces the total number of multipliers 

required. To do this, the design problem is broken 

into two stages, a filter which is upsampled to 
achieve the stringent specifications without using 

many multipliers. The IFIR Filter design is shown in 

Fig. 8. 

 
 

Fig. 8. Equiripple and IFIR Design with up sampling factor 3 

 

We can see, that we can control the up 

sampling factor. if we wanted to up sample by 8 

rather than 3 then performance of all design  shown 
in Fig. 9.  
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Fig. 9. IFIR Filter with up sampling factor 8 

 

It is possible to design the two filters used 

in IFIR conjunctly. By doing so, we can save a 
significant number of multipliers at the expense of a 

longer design time (due to the nature of the 

algorithm, the design may also not converge 

altogether in some cases) automatically determine 

the best factor shown in Fig.10. 

For this design, the best up sampling factor found 

was 5. The number of non-zero multipliers is now 

only 27. 

 

 
 

Fig .10. IFIR Automatically determine the best sampling factor 5 

 
     By using multirate/multistage techniques which 

combine decimation and interpolation we can also 

obtain efficient designs with a low number of MPIS. 

For decimators, the number of multiplications 

required per input sample (on average) is given by 

the number of multipliers divided by the decimation 
factor. 

     But Notice that the stop band attenuation for the 

multistage design is about double that of the other 

designs and Also notice the pass band gain for this 

design is no longer 0 dB. This is due to the use of 

interpolators as part of the design. Each interpolator 

has a nominal gain equal to its interpolation factor. 

The total interpolation factor for the 3 interpolators 

is 6, which is the gain (in linear units) of the overall 

filter shown in Fig. 11. 

  

 
 

Fig. 11.Mulitstage Design 

 

As comparisons all Filters we can compute 

the group delay for each design. Notice that the 

multirate/multistage design introduces the most 

delay. The IFIR design introduces more delay than 

the single-stage equiripple design, but less so than 
the multirate/multistage design. 

 

 
 

Fig. 11.Group Delay 

 

Then we filtering a Signal the IFIR and 

multistage/multirate design perform comparably to 

the single-stage equiripple design while requiring 

much less computation shown in Fig. 12. 
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Fig.12. Power Density Spectrum 

 

.  Signal stage FIR filters Length or number of 

multiplier is 70 and density factor 16 with stop band 
attenuation 60 db shown as Table 1 

 
TABLE: 1 

SIGNAL STAGE FIR DESIGN 

  
 
      If we compare Table 1 no of multipliers (70) 

with Table 2 no of multipliers is only (35) with up 

sampling factor is 3. So IFIR design is good as 

compare with FIR Design. 
 

TABLE: 2 

IFIR design upsampling factor 3 

 

     If we increase up samlping factor (8) as shown in 

Table 3 then no of multipliers is (56) too large as 

compare with Table 2. 
 

TABLE: 3  

IFIR design upsamlping factor 8 

 

 
 

If we select up sampling factor automatic it is (5) 

and no of multipliers is only (27) is less if compare 

other design.  
So Table 4 Optimal Design is good with 

interpolation factor is 5 as compare to other Design.  

 
TABLE: 4 

 IFIR design upsamlping factor automatic is 5 

 

 

 
     Multistage FIR filter no of multipliers is (64), So 

The Table 5 design is not suitable Design. 

 
TABLE 5 

 Multistage design 

 

 
 



Sandeep Kaur, Mandeep Singh Saini, Palvee / International Journal of Engineering Research 

and Applications (IJERA) ISSN: 2248-9622   www.ijera.com 

Vol. 3, Issue 2, March -April 2013, pp.866-871 

871 | P a g e  

TABLE: 6 

IMPLEMENTATION COST COMPARISION 

 
Implementation   cost   comparison 

Techni

que 

Numb

er of 

multi

pliers 

MUL 

Numb

er of 

Adder

s 

ADD 

Number 

of states 

STATE 

Multiplica

tion  per 

input 

sample 

MULT/ 

SAMPLE 

Additions 

per Input 

Sample 

ADD/ 

SAMPLER 

Single 

stage 
FIR  

70 69 69 70 69 

IFIR 

Filter 

L=3 

35 33 77 35 33 

IFIR 

Filter 

L=8 

34 32 80 34 32 

IFIR 

Filter 

L=5 

27 25 77 27 25 

Multi 

stage 

FIR 

64 55 42 15.25 12.625 

 

VI. CONCLUSIONS 
This paper has investigated many different 

design techniques for linear-phase finite impulse 

response FIR filters. FIR filters have much greater 

computational complexity and large cost than 
Interpolated (IFIR) filter.  

In this paper, we have Investigated 

Widowing methods and the frequency response 

sampling method was presented with examples, but 

they were improved with the IFIR design technique. 

We has also compare Multirate FIR Filter with IFIR 

Filter but result shows IFIR filter cost is less as 

compare to other design.  
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