
Annie Ratna Priya, M. Mythily, / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.608-610

608 | P a g e

 An Efficient Methodology for Improving Code Quality Using

Object oriented approach

Annie Ratna Priya, M. Mythily,
Department of Computer Science and Engineering,

Karunya University, Coimbatore, India

Abstract—

Most of the software development activities

require formal specification which can be used as a

functional support for finding and fixing the bugs in

deployed software. However such specifications are

hard to verify since it suffers from high false positive

rates. In order to solve this problem a suite of metrics

is incorporated along with the specification mining

system. The efficiency of the code measured using

these metrics. This paper focuses on giving an

overview of metrics that are already used in

specification mining techniques and thereby stating

the need for understanding the object oriented

approach and its functionality in molding formal

specifications which has been recently concentrated

during the maintenance of the system.

Index Terms—Metrics, Object, Specification,

Temporal property

I. Introduction
Developing software and maintenance plays

central role in the delivery and application of the

information technology field, and hence developers are

increasingly focusing on process improvement in the

software development area. Throughout the software

development process, from requirement elicitation to
system update the metrics are needed to measure the

activities of the software with different environment at

each time. Metrics will give a better understanding of the

whole life cycle process for people concerned with the

different tasks in it [1]. When the input is given to the

system, it will analyze the structural and logic

components so that it will be helpful for the metrics

computation. A relevant study is helpful to investigate

on the different types of metrics. Most of the metrics are

realized based on procedural and object oriented

software. The object-oriented (OO) approach to software

development promises better management of system
complexity and a likely improvement in project

outcomes such as quality and project cycle time.

Generally in object oriented software development

process, the system is viewed as collection of objects.

The entire working of the system is notified by the

relationship among these objects. Whenever, one object

depends on another object to do certain functionality,

there is a relationship between those two classes. In

order to achieve perfect uniqueness of object, objects

should rely on the interfaces and support offered by

another object without relying on any underlying

implementation factors. For example, in case of

abstraction, a correct level of abstraction helps build a

flexible and scalable application. It is not an easy job to

reach the correct level of abstraction and the correct

relationship between classes. The possible defects

concerning this should be detected as early as possible

such as in the design phase so that all the further
processes can be corrected without bugs.

In specification mining techniques, the formal

specifications have faced difficulty in both verification

and validation. Initially most of the automatic mining

techniques automatically trace specifications from the

program code.

 Figure 1. Specification Example

These techniques takes program as input and

produce candidate specification as output in the form of

finite state machine that will later describes the program

correctness. But most of the techniques are imprecise in

practice. Initially the decision on choosing the correct

behavior itself is inappropriate. A good code is actually a

code that works and is free of bugs, and is readable and

maintainable [3]. Organizations usually have coding

standards which all developers will follow, but every

programmer and software engineer has different ideas on
what suites best for the efficient functioning of the

system.

 The code can be formulated by imposing rules on

the working of the system. But it is needed to be kept in

mind that excessive use of rules can be a barrier for both

productivity and creativity. Specifications describe how

to manipulate important program resources [4]. They are

represented as a finite state machine that encodes valid

Sign_in()
new_entry()

Login()
1

2

3

Annie Ratna Priya, M. Mythily, / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.608-610

609 | P a g e

sequence of events. A program execution adheres to a

given specification if and only if it terminates with the

corresponding state machine in an accepting state where

the machine starts in its start state at program

initialization. Otherwise, the program violates the

specification and contains an error.

II. Mining characteristics
This section shows the underlying concepts of

mining techniques and their limitations which encourage

the researchers to step into incorporating code quality

metrics.

Specification mining techniques produces

specifications but still they have high false positive rates.
The Comparison between most of these approaches is

provided in the Table 1.

In WN miner [2] the specification mining was

motivated by the observations of run-time error handling

mistakes. In other approaches examining such mistakes,

the code frequently violates simple API specifications in

exceptional situations. Despite the proliferation of

specification-mining research, there is not much report

on issues pertaining to the quality of specification

miners. This technique is same as that of Engler et al. but

is based on assumptions about run time errors, chooses
candidate event pairs differently, presents significantly

fewer candidate specifications and ranks presented

candidates differently. In a normal

Table1. A Comparison study

execution, events „a’ and „b’ may be separated by other

events and difficult to discern as a pair. After an error

has occurred, however, the cleanup code is usually much

less cluttered and contains only operations required for

correctness. The candidate specifications are filtered

using varied criteria such as exceptional control flow,

one error, data path etc.
 This highlights the practical importance of the

algorithmic assumptions, in particular the use of

exceptional control flow. It can serve as a requirement

for acceptance. It can even assist inspections by helping

to target effort at parts of a program that may need

improvement. Though this miner select specifications

from software artifacts and finds per-program

specifications for error detection, it does not have

profound results in bug finding.

Strauss, ECC and WN technique were all good at

yielding specifications that found bugs. The WN
technique found all bugs reported by other techniques on

these benchmarks and did so with the fewest false

positives.

III. Application of object oriented metrics in

specification mining
Incorporating the code quality metrics as a

model into the existing specification miner is shown as a

flow chart diagram in Fig 2. While finding the

measurements the additional parameters are also

 extracted to get a thorough impact over the

quality of the code.

After evaluating the relative importance of the

quality metrics, the correlation between the metrics is

calculated. These metrics implicitly take advantage of

previous testing and validation work which should be
done manually.

Figure2. Flowchart diagram for metrics evaluation

 Object oriented metrics is based mainly on three

factors: inheritance, coupling and methods. This can be

calculated by calculating the weighted methods per class,

Including the necessary metrics

Identifying the additional
parameters for the above metrics

Evaluating the code by using the
metrics.

Miner

Used

Features Remarks

Engler et

al.

Use two state

temporal properties.

High false positive

rates

Whaley et

al.

Produces Single

multi state

specification.

Human intervention

Strauss Mainly focused on

machine learning to

learn a Single

specification from

traces

Use of single

specification is not

sufficient

JIST Refines Whaley et

al. technique to

mainly disregard

infeasible paths

Handles only simple

subset of Java

WN

miner

Selecting

specifications from
software artifacts

Does not have

profound results in
finding bugs

Claire

approach

Use measurements

of trustworthiness

of source code to

mine specifications

Does not give

adequate results

over precision.

SMArTC Provides mining
architecture to

improve

performance

Scalable metrics is
at least level

Annie Ratna Priya, M. Mythily, / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.608-610

610 | P a g e

number of modules, and response for a class and so on.

The quality metrics are the quantitative measures of the

degree to which software possesses a given attribute that

affects its quality.

Code metrics like LOC and Cyclomatic Complexity

examines the internal complexity of a procedure whereas

this structure metrics examines the relationship between
a section of code and the rest of the system. Process

oriented metrics are used through the different phases of

the software life cycle. Measurement on quality should

concentrate on the early phases in the life cycle to

improve the quality of software and decrease of

development and maintenance costs.

Defects must be tracked to the release origin

which is the portion of the code that contains the defects

and at what release the portion was added, changed, or

enhanced. When calculating the defect rate of the entire

product, all defects are used; when calculating the defect

rate for the new and changed code, only defects of the
release origin of the new and changed code are included.

On the one hand, the process quality metrics simply

means tracking defect arrival during formal machine

testing for some organizations. On the other hand, some

software organizations with well-established software

metrics programs cover various parameters in each phase

of the development cycle.

The specification language formulation is done

by deriving a set of rules which should be followed by

the program code which is meant to be the specifications

of the particular program behavior. These rules describe
conditions that a program must satisfy for it to be

considered a valid code. A rule may be thought of as a

condition that evaluates a portion of a program to a truth

value. These rules are certainly affected by changes to

their context elements. However, it is important to

understand that rules are also affected by many other

model elements not explicitly identified. Since these

rules are conditions on a program code, their truth values

change only if the application changes or if the condition

changes, but this is explored elsewhere.

IV. Trending Metrics
 The development of a large software system is a

time and resource consuming activity. Even with the

increasing automation of software development

activities, resources are still scarce. Therefore, it is

necessary to be able to provide accurate information and

guidelines to managers to help them make decisions,

plan and schedule activities, and allocate resources for

the different software activities that take place during

software development. Software metrics are thereby

necessary to identify where the resources are needed.
They are a crucial source of information mostly for

decision making.

In view of the above approaches a new mechanism

can be derived to generate specifications with object

oriented metrics since most of the languages generally

follow object oriented methodology. The specifications

that are generated can be used to check the proper

functioning of the system to refer to its flow of

execution.

V. Conclusion
 This paper clearly illustrates the overview of need for

accuracy in specification mining techniques, the possible

approaches of deriving specifications at different

domains which lists the effectiveness on this mapping to

new scope in specifications. The goal of this survey is to

support the study on the legacy of generating

specifications to the new automatic techniques. It helps

to get an insight into this dynamic field of study in

Specification Mining. Since the object orientation is

emerging in all kinds of applications, it is also welcome

in the specification mining process. It is mentioned to be
dynamic, as these approaches are under development and

it steps higher everyday to achieve efficiency in

capturing specifications.

REFERENCES

[1] Claire Le Goues and Westley Weimer,

“Measuring Code Quality to Improve

Specification Mining”, IEEE Transactions

on Software Engineering, Vol. 38, No 1

,Jan/Feb 2012.
[2] W. Weimer and G.C. Necula, “Mining

Temporal Specifications for Error

Detection,” Proc. Int‟l Conf. Tools and

Algorithms for the Construction and

Analysis of Systems, pp. 461-476, 2005.

[3] D. Engler, B. Chelf, A. Chou, and S. Hallem,

“Checking System Rules Using System-

Specific, Programmer-Written Compiler

Extensions,” Proc. Conf. Symp. Operating

System Design and Implementation, 2000.

[4] D.R. Engler, D.Y. Chen, and A. Chou, “Bugs
as Inconsistent Behavior: A General

Approach to Inferring Errors in Systems

Code,” Proc. Symp. Operating System

Principles, pp. 57-72, 2001.

[5] G. Ammons, R. Bodik, and J.R. Larus,

“Mining Specifications,” Proc. ACM

SIGPLAN-SIGACT Symp. Principles of

Programming Languages, pp. 4-16, 2002.

