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ABSTRACT 
This paper proposes a novel scheme of 

scalable coding for encrypted gray images. 

Although there have been a lot of works on 

scalable coding of unencrypted images/videos the 

scalable coding of encrypted data has not been 

reported. In the encryption phase of the 

proposed scheme, the pixel values are completely 

concealed so that an attacker cannot obtain any 

statistical information of an original image. 

Then, the encrypted data are decomposed into 

several parts, and each part is compressed as a 

bit stream. At the receiver side with the 

cryptographic key, the principal content with 

higher resolution can be reconstructed when 
more bit streams are received. 
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I. INTRODUCTION 
In recent years, encrypted signal processing 

has attracted considerable research interests. The 

discrete Fourier transform and adaptive filtering can 

be implemented in the encrypted domain based on 

the holomorphic properties of a cryptosystem, and a 

composite signal representation method can be used 

to reduce the size of encrypted data and computation 

complexity. In joint encryption and data hiding, a 

part of significant data of a plain signal is encrypted 

for content protection, and the remaining data are 

used to carry buyer–seller protocols, the fingerprint 

data are embedded into an encrypted version of 
digital multimedia to ensure that the seller cannot 

know the buyer’s watermarked version while the 

buyer cannot obtain the original product. A number 

of works on compressing encrypted images have 

been also presented. When a sender encrypts an 

original image for privacy protection, a channel 

provider without the knowledge of a cryptographic 

key and original content may tend to reduce the data 

amount due to the limited channel resource 

 

A. IMAGE ENCRYPTION 

The original image is in an uncompressed 
format and that the pixel values are within [0, 255], 

and denote the numbers of rows and columns as N1 

and N2 and the pixel number as (N=N1 X N2).  

 

 

Therefore, the bit amount of the original image is 

8N. The content owner generates a pseudorandom 

bit sequence with a length of 8N. Here, we assume 

the content owner and the decoder has the same 
pseudorandom number generator (PRNG) and a 

shared secret key used as the seed of the PRNG. 

Then, the content owner divides the pseudorandom 

bit sequence into N pieces, each of which containing 

8 bits, and converts each piece as an integer number 

within [0, 255]. An encrypted image is produced by 

a one-by-one addition modulo 256 as follows: 
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Where  jip ,  represents the gray values of pixels 

at positions  ji, ,  jie ,  represents the 

pseudorandom numbers within [0, 255] generated 

by the PRNG, and 
   jig ,0

 represents the 

encrypted pixel values. Clearly, the encrypted pixel 

values 
   jig ,0

 are pseudorandom numbers since 

 jie , values are pseudorandom numbers. It is well 

known that there is no probability polynomial time 

(PPT) algorithm to distinguish a pseudorandom 

number sequence and a random number sequence 

until now. Therefore, any PPT adversary cannot 

distinguish an encrypted pixel sequence and a 

random number sequence. That is to say, the image 

encryption algorithm that we have proposed is 

semantically secure against any PPT adversary. 

 

 

B. ENCRYPTED IMAGE ENCODING 

Although an encoder does not know the 

secret key and the original content, he can still 

compress the encrypted data as a set of bitstreams. 

The detailed encoding procedure is as follows. First, 

the encoder decomposes the encrypted image into a 

series of subimages and data sets with a multiple-

resolution construction. The subimage at the 

 th1t   level 
 1tG 

 is generated by 

downsampling the subimage at the tht  level as 

follows: 
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Where 
)0(G just the encrypted image and T is is the 

number of decomposition levels. In addition, the 

encrypted pixels that belongs to 
)1t(G 
 but do not 

belong to form data set 
 1tQ 

  as follows:  

      
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That means each
)t(G   is decomposed into 

)1t(G 

and 
)1t(Q 
, and the data amount of  

)1t(Q 
 is three 

times of that of  
)1t(G 
. After the multiple-level 

decomposition, the encrypted image is reorganized 

as 
    )t(1TT)T( Qand,Q,Q,G 

 

For the subimage
 TG , the encoder quantizes each 

value using a step Δ as follows: 
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Where the operator    takes an integer toward 

minus infinity and 

M/256
 

Here, M is an integer shared by the encoder and the 
decoder, and its value will be discussed later. 

Clearly 

1M)j,i(b0 
 

Then, the data of b (i,j) are converted into a 

bitstream, which is denoted as BG. The bit amount 

of BG is 

.Mlog.
4

N
N 2TBG 

 

For each data set  T,2,1tQ )t(  the encoder 

permutes and divides encrypted pixels in it into K
(t)

 

groups, each of which containing L(t)   pixels 

 t)t()t( 4/N3LxK  . In this way, the L (t) pixels 

in the same group scatter in the entire image. The 

permutation way is shared by the encoder and the 

decoder, and the values of L (t) will be discussed 
later. Denote the encrypted pixels of the Kth group 

as         tKk1Lq,,2q,1q )t()t(

k

)t(

k

)t(

k  ,  

and perform the Hadamard transform in each group 

as follows: 
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Where H is a L(t) x L(t) Hadamard matrix made up of  

+1 or -1. That implies the matrix H meets 

H’*H = H*H’ = L
(t)

 * I 

Where H(t ) is a transpose of H,I is an L (t) x L (t)    

identity matrix, and L 
(t)

  must be a multiple of 4. 

For each coefficient  lC )t(
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Where 

 )t()t( L/MroundM 
 

and round (.) finds the nearest integer. The 

remainder of )l(C )t(

k modulo 256 is quantized as 

integer )l(C )t(

k , L (t), and the quantization steps are 

approximately proportional to square roots of L (t). 

Then, )l(C )t(

k  at different levels are converted into 

bitstreams, which are denoted as BS (t). Since 

1M)l(C0 )t()t(

k 
 

and the number of   )l(C )t(

k at the th level is 3N/4t 

the bit amount of BS(t)  is 

T,,2,1t,
4

MlogN3
N

t

)t(

2)t( 
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

 

The encoder transmits the bitstreams with 

an order of  .BS,,BS,BS,BG )1()1T()T( 
. If 

the channel bandwidth is limited, the latter 

bitstreams may be abandoned. A higher resolution 

image can be reconstructed when more bitstreams 

are obtained at the receiver side. Here, the total 

compression ratio CR , which is a ratio between the 

amount of the encoded data and the encrypted image 

data, is 
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In the figure below, fig (a) is the original image, fig 

(b) is encrypted image of size 512x512.after 

encryption I compressed the imge .i.e fig (c) is 

256x256 size image. Fig (d) is 128x128, fig (e) is 

64x64 size image. 

 

 

 



Akash Raj / International Journal of Engineering Research and Applications (IJERA) ISSN: 

2248-9622 www.ijera.comVol. 3, Issue 2, March -April 2013, pp.444-450 

446 | P a g e  

 

 

 

 

 

 
 

 
 

 

Fig (a)                                       fig (b)                                         fig (c)                             fig (d)                   fig (e) 

Fig (1) Encrypted and Compressed Images 

 

 

C. IMAGE RECONSTRUCTION 
With the bitstreams and the secret key, a 

receiver can reconstruct the principal content of the 
original image, and the resolution of the 

reconstructed image is dependent on the number of 

received bitstreams. While BG provides the rough 

information of the original content, 𝐵𝑆(𝑡) can be 
used to reconstruct the detailed content with an 

iteratively updating procedure. The image 

reconstruction procedure is as follows. 

When having the bitstream BG, the decoder may 

obtain the values of 𝑏(𝑖, 𝑗) and decrypts them as a 

subimage, i.e., 

 

𝑝 𝑇  𝑖, 𝑗 =  𝑚𝑜𝑑 𝑏 𝑖, 𝑗 . ∆ − 𝑒 2𝑇  . 𝑖. 2𝑇  . 𝑗 . 256 

+  
∆

2
  , 

1 ≤ 𝑖 ≤
𝑁1

2𝑇
  ,    1 ≤ 𝑗 ≤

𝑁2

2𝑇
 

 

Where 𝑒 2𝑇  . 𝑖. 2𝑇  . 𝑗  are derived from the secret 

key.If the bitstreams𝐵𝑆(𝑡)  (𝜏 ≤ 𝑡 ≤ 𝑇)   are also 

received, an image with a size of 𝑁1/2(𝜏−1) ×
𝑁2/2(𝜏−1) will be reconstructed. First, upsample the 

subimage 𝑝 𝑇  𝑖, 𝑗  by factor 2(𝑇−𝜏+1)  to yield an 

𝑁1/2(𝜏−1) × 𝑁2/2(𝜏−1)  image as follows: 
 

𝑟 2 𝑇−𝜏+1  . 𝑖 . 2 𝑇−𝜏+1  . 𝑗 = 𝑝 𝑇  𝑖, 𝑗  ,  

1 ≤ 𝑖 ≤
𝑁1

2𝑇
  ,    1 ≤ 𝑗 ≤

𝑁2

2𝑇
 

 

and estimate the values of other pixels according to 

the pixel values  using a bilinear interpolation 

method. 

 

Denote the interpolated pixel values of the Kth 

group at the tth level as 

 

 

 

 

 
 

 

𝑟𝑘
 𝑡  1 , 𝑟𝑘

 𝑡  2 …… . 𝑟𝑘
 𝑡  𝐿(𝑡)   1 ≤ 𝑘 ≤ 𝐾 𝑡  , 𝜏

≤ 𝑡 ≤ 𝑇  

and their corresponding original pixel values as 

𝑝𝑘
 𝑡  1 , 𝑝𝑘

 𝑡  2 …… . 𝑝𝑘
 𝑡  𝐿(𝑡) .  The errors of 

interpolated values are 
 

 

∆𝑝𝑘
 𝑡  𝑙 =  𝑝𝑘

 𝑡  𝑙 − 𝑟𝑘
 𝑡  𝑙  , 

      1 ≤
𝑙 ≤ 𝐿(𝑡) , 1 ≤ 𝑘 ≤ 𝐾(𝑡) , 𝜏 ≤ 𝑡 ≤ 𝑇 . 

Define the encrypted values of  𝑟𝑘
 𝑡  𝑙  as  

 

𝑟 𝑘
 𝑡  𝑙 =  𝑚𝑜𝑑 𝑟𝑘

 𝑡  𝑙 +  𝑒𝑘
 𝑡  𝑙  , 256 ,  

 1 ≤ 𝑙 ≤ 𝐿(𝑡) , 1 ≤ 𝑘 ≤ 𝐾(𝑡) , 𝜏 ≤ 𝑡 ≤ 𝑇 . 
 

Where  𝑒𝑘
 𝑡  𝑙  are pseudorandom numbers derived 

from the secret key and corresponding to 𝑟𝑘
 𝑡  𝑙 . 

Then  

 

∆𝑝𝑘
 𝑡  𝑙 ≡ 𝑞𝑘

 𝑡  𝑙 − 𝑟 𝑘
 𝑡  𝑙 𝑚𝑜𝑑 256.  

 

We also define 
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 ∆𝐶𝑘

 𝑡  1 

∆𝐶𝑘
 𝑡  2 
.
.
.

∆𝐶𝑘
 𝑡  𝐿(𝑡)  

 
 
 
 
 
 

  =   𝑯  .  

 
 
 
 
 
 
 ∆𝑝𝑘

 𝑡  1 

∆𝑝𝑘
 𝑡  2 

.

.

.

∆𝑝𝑘
 𝑡  𝐿(𝑡)  

 
 
 
 
 
 

 

 

Where H is a 𝐿(𝑡) × 𝐿(𝑡) Hadamard matrix made up 

of +1 or -1. Since only the addition and subtraction 
are involved in the Hadamard transform 

 

 
 
 
 
 
 
 ∆𝐶𝑘

 𝑡  1 

∆𝐶𝑘
 𝑡  2 
.
.
.

∆𝐶𝑘
 𝑡  𝐿(𝑡)  

 
 
 
 
 
 

≡ 𝑯  .  

 
 
 
 
 
 
 ∆𝑝𝑘

 𝑡  1 

∆𝑞𝑘
 𝑡  2 

.

.

.

∆𝑞𝑘
 𝑡  𝐿(𝑡)  

 
 
 
 
 
 

− 𝑯.  

 
 
 
 
 
 
 𝑟 𝑘

 𝑡  1 

𝑟 𝑘
 𝑡  2 

.

.

.

𝑟 𝑘
 𝑡  𝐿(𝑡)  

 
 
 
 
 
 

𝑚𝑜𝑑 256  

 

That means the transform of errors in the plain 

domain is equivalent to the transform of errors in the 

encrypted domain with the modular arithmetic. 

Denoting 

 

 
 
 
 
 
 
 𝐶 𝑘

 𝑡  1 

𝐶 𝑘
 𝑡  2 

.

.

.

𝐶 𝑘
 𝑡  𝐿(𝑡)  

 
 
 
 
 
 

= 𝑯.  

 
 
 
 
 
 
 𝑟 𝑘

 𝑡  1 

𝑟 𝑘
 𝑡  2 

.

.

.

𝑟 𝑘
 𝑡  𝐿(𝑡)  

 
 
 
 
 
 

 

 

We have 

∆𝐶𝑘
 𝑡  𝑙 ≡ 𝐶𝑘

 𝑡  𝑙 − 𝐶 𝑘
 𝑡  𝑙 𝑚𝑜𝑑 256 

With the bitstreams 𝐵𝑆(𝑡)  (𝜏 ≤ 𝑡 ≤ 𝑇) , the values 

of  𝐶𝑘
 𝑡  𝑙  can be retrived, which provide the 

information of 𝐶𝑘
 𝑡  𝑙 . Therefore, the receiver may 

use an iterative procedure to progressively improve 

the quality of the reconstructed image by updating 

the pixel values according to 𝐶𝑘
 𝑡  𝑙 . The detailed 

procedure is as follows. 

1) For each group    

 𝑟𝑘
 𝑡  1 , 𝑟𝑘

 𝑡  2 … … . 𝑟𝑘
 𝑡  𝐿(𝑡)  , calculate  

𝑟 𝑘
 𝑡  𝑙  and   𝐶 𝑘

 𝑡  𝑙 . 

 

 

2) Calculate 

 

𝐷𝑘
 𝑡  𝑙  = 𝑚𝑜𝑑 𝑐𝑘

 𝑡  𝑙  . ∆(𝑡) + ∆(𝑡) 2  

− 𝐶 𝑘
 𝑡  𝑙  .256  

 

𝐷 𝑘
 𝑡  𝑙 =   

𝐷𝑘 𝑙 ,                       𝑖𝑓𝑑𝑘 𝑙 < 128

𝐷𝑘 𝑙 −  256 ,        𝑖𝑓𝑑𝑘 𝑙 ≥ 128
  

 

𝐷 𝑘
 𝑡  𝑙 are the differences between the values 

consistent with the corresponding  𝑐𝑘
 𝑡  𝑙  and  

𝐶 𝑘
 𝑡  𝑙 . Then, considering 𝐷 𝑘

 𝑡  𝑙  as an estimate of 

∆𝐶𝑘
 𝑡  𝑙 , modify the pixel values of each group as 

follows: 

 
 
 
 
 
 
 𝑟 𝑘

 𝑡  1 

𝑟 𝑘
 𝑡  2 

.

.

.

𝑟 𝑘
 𝑡  𝐿  

 
 
 
 
 
 

=

 
 
 
 
 
 
 𝑟𝑘

 𝑡  1 

𝑟𝑘
 𝑡  2 

.

.

.

𝑟𝑘
 𝑡  𝐿  

 
 
 
 
 
 

 +  
𝑯′

𝐿(𝑡)
.  

 
 
 
 
 
 
 𝐷 𝑘

 𝑡  1 

𝐷 𝑘
 𝑡  2 

.

.

.

𝐷 𝑘
 𝑡  𝐿(𝑡)  

 
 
 
 
 
 

 

 

And enforce the modified pixel values into [0,255] 

as follows: 

𝑟 𝑘
 𝑡  𝑙 =   

0,                                      𝑖𝑓𝑟 𝑘
 𝑡  1 < 0

𝑟 𝑘
 𝑡  1  ,             𝑖𝑓 0 ≤ 𝑟 𝑘

 𝑡  1 ≤ 255

255 ,                            𝑖𝑓𝑟 𝑘
 𝑡  1 > 255

  

 

3) Calculate the average energy of difference 

due to the modification as follows: 
 

𝐷 =  
    𝑟 𝑘

 𝑡  𝑙 − 𝑟𝑘
 𝑡  𝑙  

2
𝐿(𝑡)

𝑙=1
𝐾(𝑡)

𝑘=1
𝑇
𝑡=𝜏

 3𝑁 4𝑡 𝑇
𝑡=𝜏

 

 

If D is not less than a given threshold of 

0.10, for each pixel   𝑟 𝑘
 𝑡  𝑙 , after putting it back to 

the position in the image and regarding the average 

value of its four neighbor pixels as its new value   

𝑟𝑘
 𝑡  𝑙 , go to step 1. Otherwise, terminate the 

iteration, and output the image as a final 

reconstructed result. 

 

In the iterative procedure, while the 

decrypted pixels 𝑝 𝑇  𝑖, 𝑗  are used to give an initial 

estimation of other pixels, the values of 𝑐𝑘
 𝑡  𝑙  in 

bitstreams 𝐵𝑆(𝑡) provide more detailed information 
to produce the final reconstructed result with 

satisfactory quality. In step 2, by estimating ∆𝐶𝑘
 𝑡  𝑙  

according to   𝑐𝑘
 𝑡  𝑙 , the pixel values are modified 

to lower the reconstruction errors. If the image is 

uneven and 𝐿(𝑡)is big, the absolute value of actual 

∆𝐶𝑘
 𝑡  𝑙  may be more than 128 due to error 

accumulation in a group, so that  𝐷 𝑘
 𝑡  𝑙  maybe not 

close to   ∆𝐶𝑘
 𝑡  𝑙 . To avoid this case, we let 

𝐿(𝑡)decrease with a increasing t since the spatial 

correlation in a subimage with lower resolution is 

weaker. For instance,    𝐿(1) = 24, 𝐿(2) = 8, 

𝐿(3) = 4 for T=3. 
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Fig (a)                                       fig (b)                               fig (c)                        fig (d)                                   fig (e) 
 

Fig (2) decompressed and decoded images 

 

 

D. OVERALL DIAGRAM 

  

 

 

 

 

 

 

 

 

 

 
Fig (2) block diagram 

 

II. PROPOSED SYSTEM ALGORITHM 
A. SCALABLE CODING SCHEME 

In the proposed scheme, a series of 

pseudorandom numbers derived from a secret key 

are used to encrypt the original pixel values. After 

decomposing the encrypted data into a subimage 

and several data sets with a multiple-resolution 
construction, an encoder quantizes the subimage and 

the Hadamard coefficients of each data set to 

effectively reduce the data amount. Then, the 

quantized subimage and coefficients are regarded as 

a set of bit streams. When having the encoded bit 

streams and the secret key, a decoder can first obtain 

an approximate image by decrypting the quantized 

subimage and then reconstructing the detailed 

content using the quantized coefficients with the aid 

of spatial correlation in natural images. Because of 

the hierarchical coding mechanism, the principal 
original content with higher resolution can be 

reconstructed when more bit streams are received. 

 

III. FUTURE ENHANCEMENT 
In Oder to reduce the size of the 

compressed image we can use block Truncation 

Coding (BTC) for compression; Block Truncation 

Code (BTC) is digital technique in image processing 

using which images can be coded efficiently. BTC 
has played an important role  

in the sense that many coding techniques 

have been developed based on it. its main attraction 

being its simple underlying concepts and ease of 

implementation. 

 

IV. ADVANTAGES 
 The subimage is decrypted to produce an 

approximate image; the quantized data of 

Hadamard coefficients can provide more 

detailed information for image 

reconstruction. 

 Bitstreams are generated with a multiple-
resolution construction, the principal content 

with higher resolution can be obtained when 

more bitstreams are received. 

 

V. TABLES 
A. COMPRESSION RATIO 

 
B. COMPRESSION RATIO GRAPH 

Image 

Encryption 

Image 

Reconstruction 

Encrypted 

Image 

Encoding 

 

Take  

Input Image 
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C. PERFORMANCE COMPERISION OF 

SEVERAL COMPRESSION MERTHODS 

 
 

VI. CONCLUSION 
This paper has proposed a novel scheme of 

scalable coding for encrypted images. The original 

image is encrypted by a modulo-256 addition with 

pseudorandom numbers, and the encoded bitstreams 

are made up of a quantized encrypted subimage and 

the quantized remainders of Hadamard coefficients. 

At the receiver side, while the subimage is 

decrypted to produce an approximate image, the 

quantized data of Hadamard coefficients can 

provide more detailed information for image 

reconstruction. Since the bitstreams are generated 

with a multiple-resolution construction, the principal 

content with higher resolution can be obtained when 
more bitstreams are received.  

 

REFERENCES 
[1]Xinpeng Zhang, Member, IEEE, Guorui Feng, 

YanliRen, and ZhenxingQian.” Scalable Coding of 

Encrypted Images”. IEEE transactions on image 

processing, vol. 21, no. 6, June 2012 

 
[2]  Z. Erkin, A. Piva, S. Katzenbeisser, R. L. 

Lagendijk, J. Shokrollahi, G. Neven, and 

M. Barni, “Protection and retrieval of 

encrypted multimedia content: When 

cryptography meets signal processing,” 

EURASIP J. Inf. Security, vol. 2007, pp. 

1–20, Jan. 2007. 

[3]  T. Bianchi, A. Piva, and M. Barni, “On the 

implementation of the discrete Fourier 

transform in the encrypted domain,” IEEE 

Trans. Inf. Forensics Security, vol. 4, no. 1, 
pp. 86–97, Mar. 2009. 

[4]  J. R. Troncoso-Pastoriza and F. Pérez-

González, “Secure adaptive filtering,” 

IEEE Trans. Inf. Forensics Security, vol. 6, 

no. 2, pp. 469–485, Jun. 2011. 

[5]  T. Bianchi, A. Piva, and M. Barni, 

“Composite signal representation for fast 

and storage-efficient processing of 

encrypted signals,” IEEE Trans. Inf. 

Forensics Security, vol. 5, no. 1, pp. 180–

187, Mar. 2010. 

[6]  S. Lian, Z. Liu, Z. Ren, and H. Wang, 
“Commutative encryption and 

watermarking in video compression,” IEEE 

Trans. Circuits Syst. Video Technol., vol. 

17, no. 6, pp. 774–778, Jun. 2007. 

[7]  M. Cancellaro, F. Battisti, M. Carli, G. 

Boato, F. G. B. Natale, and A. Neri, “A 

commutative digital image watermarking 

and encryption method in the tree 

structured Haar transform domain,” Signal 

Process.Image Commun., vol. 26, no. 1, 

pp. 1–12, Jan. 2011. 
[8]  N. Memon and P. W. Wong, “A buyer-

seller watermarking protocol,”IEEE Trans. 

Image Process., vol. 10, no. 4, pp. 643–

649, Apr. 2001. 

[9]  M. Kuribayashi and H. Tanaka, 

“Fingerprinting protocol for images based 

on additive homomorphic property,” IEEE 

Trans. Image Process., vol. 14, no. 12, pp. 

2129–2139, Dec. 2005. 

[10]  M. Johnson, P. Ishwar, V. M. Prabhakaran, 

D. Schonberg, and K. Ramchandran, “On 

compressing encrypted data,” IEEE Trans. 
Signal Process., vol. 52, no. 10, pp. 2992–

3006, Oct. 2004. 

[11]  D. Schonberg, S. C. Draper, and K. 

Ramchandran, “On blind compression of 

encrypted correlated data approaching the 

source entropy rate,” in Proc. 43rd Annu. 

Allerton Conf., Allerton, IL, 2005. 

[12]  R. Lazzeretti and M. Barni, “Lossless 

compression of encrypted greylevel and 



Akash Raj / International Journal of Engineering Research and Applications (IJERA) ISSN: 

2248-9622 www.ijera.comVol. 3, Issue 2, March -April 2013, pp.444-450 

450 | P a g e  

color images,” in Proc. 16th EUSIPCO, 

Lausanne, Switzerland, Aug. 2008 . 

[13]  W. Liu, W. Zeng, L. Dong, and Q. Yao, 

“Efficient compression of encrypted 

grayscale images,” IEEE Trans. Signal 

Process., vol. 19, no. 4,pp. 1097–1102, 
Apr. 2010. 

[14]  D. Schonberg, S. C. Draper, C. Yeo, and K. 

Ramchandran, “Toward compression of 

encrypted images and video sequences,” 

IEEE Trans. Inf. Forensics Security, vol. 3, 

no. 4, pp. 749–762, Dec. 2008.  

[15]  A. Kumar and A. Makur, “Lossy 

compression of encrypted image by 

compressing sensing technique,” in Proc. 

IEEE TENCON, 2009, pp. 1–6 

.[16]  X. Zhang, “Lossy compression and 

iterative reconstruction for encrypted 
image,” IEEE Trans. Inf. Forensics 

Security, vol. 6, no. 1, pp. 53–58, Mar. 

2011. 

[17]  A. Bilgin, P. J. Sementilli, F. Sheng, and 

M. W. Marcellin, “Scalable image coding 

using reversible integerwavelet 

transforms,” IEEE Trans.Image Process., 

vol. 9, no. 11, pp. 1972–1977, Nov. 2000. 

[18]  D. Taubman, “High performance scalable 

image compression with EBCOT,” IEEE 

Trans. Image Process., vol. 9, no. 7, pp. 
1158–1170, Jul. 2000. 


