
 Remadevi R / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.283-286

283 | P a g e

Design and Simulation of Floating Point Multiplier Based on

VHDL

Remadevi R
(M-Tech Student,Department of ECE, Mangalam College of Engineering ,MG University Kerala,India)

ABSTRACT
Multiplying floating point numbers is a

critical requirement for DSP applications

involving large dynamic range. This paper

focuses only on single precision normalized

binary interchange format targeted for Xilinx

Spartan-3 FPGA based on VHDL. The multiplier

was verified against Xilinx floating point

multiplier core. It handles the overflow and

underflow cases. Rounding is not implemented to

give more precision when using the multiplier in

a Multiply and Accumulate (MAC) unit.

.

Keywords – Floating point multiplication, VHDL

simulation

I. INTRODUCTION
Floating point numbers are one possible

way of representing real numbers in binary format,

the IEEE 754[1] standard presents two different

floating point formats, Binary interchange format

and Decimal interchange format. Multiplying

floating point numbers is a critical requirement for

DSP applications involving large dynamic range.
This paper focuses only on single precision

normalized binary interchange format. It consists of

a one bit sign (S), an eight bit exponent (E), and a

twenty three bit fraction (M or Mantissa). An extra

bit is added to the fraction to form what is called the

significand. If the exponent is greater than 0 and

smaller than 255, and there is 1 in the MSB of the

significand then the number is said to be a

normalized number. Multiplying two numbers in

floating point format is done by adding the exponent

of the two numbers then subtracting the bias from
their result,and multiplying the significand of the

two numbers, and calculating the sign by XORing

the sign of the two numbers.

The multiplier was verified against Xilinx

floating point multiplier core.In this paper

represention of floating point multiplier in such a

way that rounding support isn‟t implemented, thus

accommodating more precision if the multiplier is

connected directly to an adder in a MAC unit.

Exponents addition, Significand multiplication, and

Result‟s sign calculation are independent and are

done in parallel.Xilinx ISE Design Suite 13.3 tool
& VHDL programming is used. ISIM tool is used

for Simulation process .Xilinx core generator tool is

used to generate Xilinx floating point multiplier core

The whole multiplier (top unit) was simulated

against the Xilinx floating point multiplier core

generated by Xilinx core generator.

In [2], an IEEE 754 single precision

pipelined floating point multiplier was implemented

on multiple FPGAs (4 Actel A1280). In [3], a

custom 16/18 bit three stage pipelined floating point
multiplier that doesn‟t support rounding modes was

implemented. In [4], a single precision floating point

multiplier that doesn‟t support rounding modes was

implemented using a digit-serial multiplier: using

the Altera FLEX 8000 it achieved 2.3 MFlops. In

[5], a parameterizable floating point multiplier was

implemented using the software-like language

Handel-C, using the Xilinx XCV1000 FPGA,a five

stages pipelined multiplier achieved 28MFlops. In

[6], a latency optimized floating point unit using the

primitives of Xilinx Virtex II FPGA was
implemented with a latency of 4 clock cycles. In [7]

an efficient implementation of floating point

multiplier is targeted for Xilnx Virtex -5 FPGA.

II. FLOATING POINT MULTIPLICATION

ALGORITHM
The normalized floating point numbers are of the
form shown in Fig. (1)

Figure 1: IEEE single precision floating point

format

Floating point multiplication can be done

by multiplying the significand of two floating point

numbers and adding the exponents,then subtract the

 Remadevi R / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.283-286

284 | P a g e

Bias from added exponent result (E1 + E2 –

Bias).Sign is obtained by xor-ing the MSB of two

numbers,then normalize the result.Rounding of

result is done to fit in the available bits and if

desired finally check the underflow/overflow

occurrence.The bias constant used is (127 =

001111111).

Figure 2: Block diagram of floating point multiplier

III.DESIGN OF FLOATING POINT

MULTIPLIER
3.1 Sign Bit Calculation

Multiplying two number‟s result is a

negative sign if one of the multiplied numbers is of

a negative value. By the aid of a truth table we find

that this can be obtained by XORing the sign of two

inputs.

Figure 3: Sign bit calculator-XOR gate

3.2 Unsigned Adder (for Exponent Addition)

This unsigned adder is responsible for

adding the exponent of the first input to the
exponent of the second input and after that subtract

the Bias (127) from the addition result (i.e.

A_exponent + B_exponent - Bias). The result of this

stage is called the intermediate exponent. The

addition operation is done on 8 bits, and there is no

need for a quick result because most of the

calculation time is spent in the significand

multiplication process (multiplying 24 bits by 24

bits); thus we need a moderate exponent adder and a

fast significand multiplier.An 8-bit ripple carry

adder is used to add the two input exponents. A
ripple carry adder is a chain of cascaded full adders

and one half adder; each full adder has three inputs

(A, B, Ci) and two outputs (S, Co). The carry

out(Co) of each adder is fed to the next full adder

(i.e each carrybit "ripples" to the next full

adder).The addition process produces an 8 bit sum

(S7 to S0) and a carry bit (Co,7). These bits are

concatenated to form a 9 bit addition result (S8 to

S0) from which the Bias is subtracted. The Bias is

subtracted using an array of ripple borrow

subtractors. The addition process produces an 8 bit

sum (S7 to S0) and a carry bit (Co,7). These bits are
concatenated to form a 9 bit addition result (S8 to

S0) from which the Bias is subtracted. The Bias is

subtracted using an array of ripple borrow

subtractors.

Figure 4:Unsigned Adder

3.3 Bias Subtraction

Subtract the bias constant (127 =

001111111) from unsigned exponent adder result

for this, two zero subtractors (ZS) and seven one

subtractors (OS) are used . S0…..S8 is the

unsigned adder result (9 bit) .T=001111111 is the

Bias constant. Bias subtractor result is R =S-T.

Figure 5: Bias Subtractor

3.4 Unsigned Multiplier (for significand

multiplication)

This unit is responsible for multiplying the

unsigned significand and placing the decimal point

in the multiplication product. The result of

significand multiplication will be called the

intermediate product (IP). The unsigned significand

 Remadevi R / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.283-286

285 | P a g e

multiplication is done on 24 bit. Multiplier

performance should be taken into consideration so

as not to affect the whole multiplier‟s performance.

A 24x24 bit carry save multiplier architecture is

used as it has a moderate speed with a simple

architecture. In the carry save multiplier, the carry

bits are passed diagonally downwards (i.e. the carry
bit is propagated to the next stage). Partial products

are made by ANDing the inputs together and

passing them to the appropriate adder.This is done

in significand multiplication process which is one of

the important steps in floating point multiplication

3.5 Normalizer

The result of the significand multiplication

(intermediate product) must be normalized to have a

leading „1‟ just to the left of the decimal point (i.e.

in the bit 46 in the intermediate product). Since the

inputs are normalized numbers then the
intermediate product has the leading one at bit 46 or

47. If the leading one is at bit 46 (i.e. to the left of

the decimal point) then the intermediate product is

already a normalized number and no shift is needed.

If the leading one is at bit 47 then the intermediate

product is shifted to the right and the exponent is

incremented by 1.

3.6 Overflow/underflow Detection

Overflow/underflow means that the result‟s

exponent is too large/small to be represented in the
exponent field. The exponent of the result must be 8

bits in size, and must be between 1 and 254

otherwise the value is not a normalized one .An

overflow may occur while adding the two exponents

or during normalization. Overflow due to exponent

addition maybe compensated during subtraction of

the bias; resulting in a normal output value (normal

operation). An underflow may occur while

subtracting the bias to form the intermediate

exponent. If the intermediate exponent < 0 then it‟s

an underflow that can never be compensated; if the

intermediate exponent = 0 then it‟s an underflow
that may be compensated during normalization by

adding 1 to it .When an overflow occurs an

overflow flag signal goes high and the result turns to

±Infinity (sign determined according to the sign of

the floating point multiplier inputs). When an

underflow occurs an underflow flag signal goes high

and the result turns to ±Zero (sign determined

according to the sign of the floating point multiplier

inputs). Denormalized numbers are signaled to zero

with the appropriate sign calculated from the inputs

and an underflow flag is raised.

IV. XILINX FLOATING POINT

MULTIPLIER CORE
DSP48E is the IP core generated for

simulation.Resource estimation & vhdl program can

be obtained when a core is generated in xilinx.

Using this vhdl program its simulation can be done

So this simulation result can compare with

proposed floating point multiplier

Figure 6: Xilinx floating point multiplier core

generated by Xilinx core generator tool

The whole multiplier (top unit) was tested

against the Xilinx floating point multiplier core

generated by Xilinx core generator. Xilinx core was
customized to have two flags to indicate overflow

and underflow conditions. Xilinx core implements

the “round to nearest” rounding mode .A testbench

is used to generate the stimulus and applies it to the

implemented floating point multiplier and to the

Xilinx core then compares the results. The area of

Xilinx core is less than the proposed floating point

multiplier because the latter doesn‟t truncate/round

the 48 bits result of the mantissa multiplier which is

reflected in the amount of function generators and

registers used to perform operations on the extra
bits. But the proposed one indicates Normalized

significand product of 48 bits separately give more

precision when compared to Xilinx floating point

core..So proposed floating point multiplier has

greater importance when it utilized in another Unit-

floating point adder to form a MAC unit involving

large dynamic range

V. SOFTWARE TOOLS

Xilinx ISE Design Suite 13.3 tool &

VHDL programming is used. ISIM tool is used for

Simulation process .Xilinx core generator tool is

used to generate Xilinx floating point multiplier core

The whole multiplier (top unit) was tested against

theXilinx floating point multiplier core. Xilinx core

was customized to have two flags to indicate

overflow and underflow conditions. Xilinx core
implements the “round to nearest” rounding mode.A

testbench is used to generate the stimulus and

applies it to the proposed floating point multiplier

and to the Xilinx core then compares the results.

VI.SIMULATION RESULTS
ISIM tool is used for Simulation process

Xilinx core generator tool is used to generate Xilinx

floating point multiplier core The whole multiplier
(top unit) was tested against the Xilinx floating

point multiplier core.

 Remadevi R / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.283-286

286 | P a g e

6.1 Simulation results of floating point multiplier

core generated by Xilinx core generator tool

Figure 7: Simulation result of Xilinx floating point

multiplier core generated by Xilinx core generator

tool

Figure 8: RTL Schematic of Xilinx floating point

multiplier core generated by Xilinx core generator

tool

6.2 Simulation results of proposed floating point

multiplier

Figure 9: Simulation result of Proposed floating

point multiplier

Figure 10: RTL Schematic of proposed Xilinx
floating point multiplier

VII.CONCLUSION
This paper presents design and simulation

of a floating point multiplier that supports the IEEE

754-2008 binary interchange format, the proposed

multiplier doesn‟t implement rounding and presents

the significand multiplication result as is (48 bits),

this gives better precision if the whole 48 bits are

utilized in another unit; i.e.with a floating point

adder to form a MAC unit. But the floating point

multiplier core generated by Xilinx core generator

does not indicates the entire 48 bits of mantissa due

to rounding and is not beneficial in case of DSP

application of large dynamic range especially when
using it in another high precision floating point units

like Multiply and Accumulate (MAC) unit.

REFERENCES
[1] IEEE 754-2008, IEEE Standard for

Floating-Point Arithmetic, 2008.

[2] B. Fagin and C. Renard, “Field

Programmable Gate Arrays and

FloatingPoint Arithmetic,” IEEE

Transactions on VLSI, vol. 2, no. 3, pp.
365–367, 1994.

[3] N. Shirazi, A. Walters, and P. Athanas,

“Quantitative Analysis ofFloating Point

Arithmetic on FPGA Based Custom

Computing Machines,” Proceedings of the

IEEE Symposium on FPGAs for

CustomComputing Machines (FCCM’95),

pp.155–162, 1995.

[4] L. Louca, T. A. Cook, and W. H. Johnson,

“Implementation of IEEESingle Precision

Floating Point Addition and Multiplication
on FPGAs,”Proceedings of 83 the IEEE

Symposium on FPGAs for

CustomComputing Machines (FCCM’96),

pp. 107–116, 1996.

[5] A. Jaenicke and W. Luk, "Parameterized

Floating-Point Arithmetic on FPGAs",

Proc. of IEEE ICASSP, 2001, vol. 2,

pp.897-900.

[6] B. Lee and N. Burgess, “Parameterisable

Floating-point Operations on FPGA,”

Conference Record of the Thirty-Sixth
Asilomar Conference onSignals, Systems,

and Computers, 2002

[7] Mohamed Al-Ashrafy, Ashraf Salem and

Wagdy Anis” An Efficient Implementation

of Floating PointMultiplier” Electronics,

Communications and Photonics

Conference (SIECPC), 2011 Saudi

International

