
U.V.R. Sarma,

Sahith Rampelli, Dr. P. Premchand / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January-February 2013, pp.125-131

125 | P a g e

A Catalog of Architectural Design Patterns for Safety-Critical

Real-Time Systems
1
U.V.R. Sarma,

2
Sahith Rampelli,

3
Dr. P. Premchand

1 (CVR College of Engineering, Department of CSE, Ibrahimpatan (M), R.R. District, A.P., India
2 (CVR College of Engineering, Department of CSE, Ibrahimpatan (M), R.R. District, A.P., India

3 (Osmania University, Department of CSE, Hyderabad, A.P., India

Abstract
Design patterns have been the target of a

great deal of research in the last few years. A

design pattern is a general solution to a

commonly occurring problem[1]. They are

composed of three parts: a problem context, a

generalized approach to a solution, and a set of

consequences. This paper concentrates on

developing a catalog for design patterns for

safety-critical real-time systems and allows

flexibility to choose, search a design pattern and

add more design patterns. To support the

designers, a tool is developed to suggest the

patterns that are appropriate for the software

based on its characteristics/design problems. This

tool will be able to help generate the code for the

suitable design pattern.

Keywords—Design Pattern, Safety-Critical

Real-Time Systems, Non-Functional

 Requirements, Safety-Critical Systems

I. INTRODUCTION
Design pattern, originally proposed by the

architect Christopher Alexander, is a universal

approach to describe common solutions to widely

recurring design problems. The concept of applying

of design patterns is popular in Software domain and

Hardware domain.

Design pattern aims at supporting designers

and system architects in their choice of suitable
solutions for commonly recurring design problems.

This concept might also be useful to support the

design of Reliable Real-Time systems. Our proposed

project provides an extended template for an

effective design pattern representation for safety-

critical real-time systems. This pattern representation

includes the traditional pattern concept in

combination with an extension describing the

implications and side effects with respect to the non-

functional requirements such as reliability and safety.

Our paper focuses on the representation of reliability
patterns based on specific properties of the real-time

systems on the construction of a pattern catalog

based on the proposed representation by collecting

and classifying commonly used software design

methods. Also, it is intended to construct the catalog

such that an automatic recommendation of suitable

design pattern for given real-time software can be

achieved. To support the designers, a tool is

developed to suggest the pattern(s) that are

appropriate for the software based on its

characteristics. This tool will be able to help

generate the code for the suitable design pattern.

The UML (Unified Modeling Language) provides

a notation for design patterns but this notation is

targeted primarily towards mechanistic design

patterns The UML pattern notation is based on the

UML class diagram. The elements of most interest

are:

• Pattern

• Class

• Object

• Relation

• Association

• Aggregation

• Composition

• Generalization

• Refinement
In this paper, we will not discuss detailed

design patterns in order to limit its size.

Types of Architectural Design Patterns

Hardware Patterns

It includes the patterns that contain explicit

hardware redundancy to improve either reliability or

safety. This group contains the following 8 patterns:

 Triple Modular Redundancy Pattern.

 Homogeneous Redundancy Pattern.

 Heterogeneous Redundancy Pattern.

 M-Out-Of-N Pattern.

 Monitor-Actuator Pattern.

 Sanity Check Pattern.
 Watchdog Pattern.

 Safety Executive Pattern.

Software Patterns
 N-Version Programming Pattern.

 Recovery Block Pattern.

 Acceptance Voting Pattern.

 N-Self Checking Programming Pattern.

 Recovery Block with Backup Voting

Pattern.

Our Proposed tool provides solutions for the

following six particular Design Problems:

i) Transient Faults
ii) Hardware Random Faults

U.V.R. Sarma,

Sahith Rampelli, Dr. P. Premchand / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January-February 2013, pp.125-131

126 | P a g e

iii) Hardware Systematic Faults

iv) Safety Monitoring

v) Time Base Faults (Sequence Monitoring)

vi) Software Faults

Let us consider the ―Homogeneous Redundancy

Pattern‖ and then generate the template code using

our catalog.

A. Homogeneous Redundancy Pattern

Other Names: Switch-To-Backup Pattern,
Homogeneous Redundancy Pattern, Standby Spare

Pattern, Dynamic Redundancy Pattern, Two Channel

Redundancy Pattern.

Type: Hardware Pattern

Abstract: An obvious approach to solving the

problem of things breaking is to provide multiple

copies of that thing. In safety and reliability

architectures, the fundamental unit is called a

channel. A channel is a kind of subsystem, or run-

time organizational unit, which is end-to-end in its
scope, from the monitoring of real world signals to

the control of actuators that do the work of the

system. The Homogeneous Redundancy Pattern

replicates channels with a switch-to-backup policy in

the case of an error.

Context: Homogeneous Redundancy Pattern is

primarily a pattern to improve reliability by offering

multiple channels. These channels can operate in

sequence, as in the Switch To Backup Pattern

(another name for this pattern), or in parallel, as in

the Triple Modular Redundancy Pattern. The pattern

improves reliability by addressing random faults
(failures). Since the redundancy is homogeneous, by

definition any systematic fault in one copy of the

system is replicated in its clones, so it provides no

protection against systematic faults (errors).

Problem: The problem addressed by the

Homogeneous Redundancy Pattern is to provide

protection against random faults-that is, failures—in

the system execution and to be able to continue to

provide functionality in the presence of a failure.

The primary channel should continue to run as long

as there are no problems. In the case of failure
within the channel, the system must be able to detect

the fault and switch to the backup channel.

Structure: The checking components implement a

switch-to-backup policy by invoking the other

channel when an error is detected in the currently

operating channel.

Implication: Safety and reliability in the presence of

either systematic or random faults.

Implementation: The implementation of this

pattern is to remove common fault modes, the

computing hardware (CPU, memory, etc.) as well as

mechanical systems should be replicated. The only
special work is the logic to identify the faults and

switch to the alternative channel when a fault is

detected.

Consequences: The Homogeneous Redundancy

Pattern has a number of advantages. It is

conceptually simple and easy to design. It provides

good coverage for random (that is, hardware and

transient) faults, although only if the hardware is
itself replicated. It is usually a simple matter to get

good isolation of faults and to eliminate common

mode faults. The pattern applies when random faults

occur at a significantly higher rate than systematic

faults, such as in rough or arduous physical

environments. It also is useful for safety-critical or

high-reliability systems that must continue to operate

in the presence of faults. An advantage of this

pattern is the low R&D cost – since there is only a

single channel to design. Its primary disadvantage is

the lack of coverage for systematic faults and

increased deployment costs over non-redundant
systems. The disadvantages of the pattern are

primarily the higher recurring cost and a lack of

coverage for systematic faults. Because the

electronic and mechanical hardware must be

duplicated for maximal coverage, each shipping

system must bear the cost of additional hardware

components. Furthermore, since the channels are

clones, any systematic fault in one channel must, by

definition, appear in the other. The pattern runs a

single channel and switches over to a backup

channel only when a fault is detected. This means
that the computation step is lost when a fault is

detected and either the data is lost or recovery time

to redo the computation must be taken into account

in time-critical situations.

Related Patterns: Protected Single Channel Pattern,

Heterogeneous redundancy patterns, Triple Modular

Redundancy Pattern (TMR). To eliminate much of

the recurring cost of this pattern, we can use the

Protected Single Channel Pattern. To add coverage

of systematic faults as well, one of the

heterogeneous redundancy patterns can be used. The
Triple Modular Redundancy Pattern (TMR) also

provides reliability in the presence of random faults,

just like the Homogeneous Redundancy Pattern, but

TMR does not have to restart a computation when a

failure is detected. However, TMR is a more

expensive design pattern to apply.

Following Figure1 shows details about

Homogeneous pattern implementation in UML.

Architectural Design Patterns should be

standardized to meet the needs of developers and

readers. We take this opportunity to generate class
diagram and thereby generate the source code for

Architectural Design Patterns.

U.V.R. Sarma,

Sahith Rampelli, Dr. P. Premchand / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January-February 2013, pp.125-131

127 | P a g e

Figure 1: UML - Class Diagram Representation for

Homogeneous Redundancy Pattern

II. ARCHITECTURE

This section describes the architecture that

will be used to develop the Design Pattern Catalog.

To implement the required features for the current

catalog, the software is divided into a set of modules.

Figure 2: The architecture of the Catalog software

Graphical User Interface (GUI)

 The interactive browsing interface provides a

graphical display for the pattern structure and the

ability to navigate the different components

PDF Viewer
 The PDF Viewer provides a list of PDF files

for the available patterns. Furthermore, it has been

implemented using a PDF plug-in, which gives users

the ability to browse, save, and print the patterns

similar to the original Adobe Acrobat Reader

software.

Interactive Browsing for Design Pattern

It includes a selective navigation of the

contents of the pattern. This feature gives users the

ability to select, retrieve, and copy complete

information about any part of the selected pattern.

Search Wizard:

The search wizard module includes the

decision support feature provided by this tool. It

gives users the ability to find a suitable pattern or a

combination of patterns for the desired application

by answering questions in an oriented step by step

wizard.

Modifying Database :

This module serves two purposes. First, it

allows users to modify the catalog contents, such as:
the fields of the patterns, solutions, decision points

(requirements), problems, and decision trees.

 Second, it provides the functionality to add

new elements to the database such as creating a new

pattern, a new solution. These two features offer an

easy way to modify and extend the current catalog.

Code Generation:

The construction of a pattern catalog is based on

the proposed representation by collecting and

classifying commonly used hardware and software
design methods. And an automatic recommendation

of suitable design methods for a given application.

Moreover, it is intended to provide the code for the

suitable design pattern for given real-time software

III. IMPLEMENTATION

A. Presentation Layer

The presentation layer allows querying the

Database for editing catalog, interacting with the
Database locally through a JDBC (Java Database

Connectivity) for administrators and end users. It,

mainly, provide support assistance to developers and

other functionalities dealing with object-oriented

side of the framework like UML representation and

code generation. The user interface may be a

standalone solution. The following Fig 4 shows an

interface for the management of the Design Patterns

Catalog. Readers can browse the list of formalisms

and the corresponding patterns. Users may also add

new patterns to the existing Database.

U.V.R. Sarma,

Sahith Rampelli, Dr. P. Premchand / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January-February 2013, pp.125-131

128 | P a g e

Figure 3: Tomcat 6.0 Admin Page

Figure 3, shows Tomcat Admin page, where our tool
is deployed to execute.

The following figure shows the Home page of the

catalog.

Fig 4: Design Pattern Catalog-Interface

B. Result screens

Our tool is based on the applicability of the

description of Design Patterns. We collect a set of

criteria from the description of Design Patterns and

classified by their applicability. In order to extract

Patterns from the Database, we opted for a

categorization into a database of pertinent keywords

which characterize the statement criteria. This is

mainly restricted to the applicability part of Design

Patterns and can easily be extended to cover other

literal description parts. The set of criteria and the
corresponding keywords database must be thinking

out enough and enough to cover the most knowledge

of Design Patterns. To exploit the platform that we

built, the tool provides the end-user with a non-

exhaustive list of keywords, that we have collected,

to be used automatically and the tool will help end-

users to choose the appropriate Design Patterns.

The wizard is a Java platform which enables the

search and the selection of suitable Design Patterns

regards to the situations in which to use the desired

Design Pattern.

The first constraint involves the selection of

keywords that match the scope of the user interest.

It's an important phase in which the operation

intends the filtering and the refining of the user's

ideas in order to reduce the search field and have
closely results to the desired Patterns.

With the second constraint, the program

will suggest a list of all the situations matching the

selected keyword. The user is required to read these

criteria and select those that best describe the

situations he query for. By checking appropriate

statements the user is ready to generate the suitable

Design Patterns.

The following figure 5 is the Design Pattern

search wizard interface.

Figure 5: Design Pattern Search Wizard interface

The following figure shows the Add Pattern Page,

Where User can add new pattern information, the

pattern details are permanently stored in the back-

end Database (i.e. Oracle 10g).

Figure 6: Add Patterns

The Pattern Information can be fetched

from the Database by sending an appropriate SQL

Query. The Pattern Data can be updated or modified

when ever it is required.

The Pattern information can be viewed in

two different ways. First, the user can Click on View

Patterns link and can find the list of existing patterns.

Second, user can browse the pattern by navigating

the Tree View Structure. All the pattern are provided

in Tree View Format, which is implemented using
Java-JTreeView technology.

Figure 8 shows the contents of the pattern. For user’s

convenience the pattern information can be provided

U.V.R. Sarma,

Sahith Rampelli, Dr. P. Premchand / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January-February 2013, pp.125-131

129 | P a g e

in PDF format. Our application is rich featured and

users can access the patterns very comfortably.

Figure 7 : View Patterns

 Figure 8. View Pattern Content

Fig 9: PDF Conversion

Code generation output screens are given below

as figure 10 and figure 11. The code is generated

using the tool.

Fig 10: Code Generation

As specified in figure 10, we can give the

class details; attribute details and operation details in

the tool.

Fig 11: Automatic UML and JAVA Code generation

tool.

C. Relationship

Fig 12: Relationships with in Classes

The above Figure 12, Allows the user to

maintain the relationships with the given classes.

Source Class and Destination class is

selected along with the Relationship (i.e.,

Association, Aggregation and Generalization etc).

U.V.R. Sarma,

Sahith Rampelli, Dr. P. Premchand / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January-February 2013, pp.125-131

130 | P a g e

IV. CODE GENERATION FOR

HOMOGENEOUS REDUNDANCY PATTERN

The Java file is selected to view the Java

Code, which consists of Classes, Attributes and

Methods. Skeleton Code will be provided to the user

and can be customized/enhanced in future as per the
requirements.

Fig 13: UML – Class Diagram for Homogeneous

Redundancy Pattern, Drawn using our proposed tool.

The below figure 15, figure 16, figure 17

and figure 18, provide the Skeleton Code (Code

Template) for the Homogeneous Pattern.

Figure 14: Input text file to Generate Code

Template

Figure 14 is a text file, which consists of the meta
information of each class. This text file will be

submitted to View Code link to generate the code for

the Design Pattern.

Fig 15: Code Template for Homogeneous

Redundancy Pattern

Fig 16: Code Template for Homogeneous

Redundancy Pattern

Fig 17: Code Template for Homogeneous

Redundancy Pattern

Fig 18: Code Template for Homogeneous

Redundancy Pattern

View UML link will provide the UML Diagram.

V. CONCLUSION

We currently constructed a Design Pattern

catalog by collecting and classifying commonly used

hardware and software design methods. Moreover,

automatic recommendation of suitable design

methods for a given application is achieved.

In support of the designers, a tool is

developed to suggest the patterns that are

appropriate for the Real-Time applications based on

its Design Problems. This tool will be able to help

U.V.R. Sarma,

Sahith Rampelli, Dr. P. Premchand / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January-February 2013, pp.125-131

131 | P a g e

the designers by generating the code template for the

selected design pattern.

VI. FUTURE ENHANCEMENTS

This Design Pattern catalog can be

extended to include more patterns, which addresses

the various design problems in the real-time systems.
A Simulation Module extends the

capability of our tool to offer desirable comparison

and assessment of the Design Patterns.

ACKNOWLEDGMENT
The authors would like to thank CVR

College of Engineering, R.R.Dist, for providing its

amenities.

REFERENCES
[1] Design Pattern Representation for Safety-

Critical Embedded Systems, Ashraf

Armoush, Falk Salewski, Stefan

Kowalewski, J.Software Engineering &

Application,2009, 2:1-12,Published Online

April 2009 in

SciRes(www.SciRP.org/journal/jsea),

Scientific Research Publishing.

[2] Design Patterns for Safety-Critical
Embedded System, Ashraf Armoush, 2010.

[3] Design patterns to implement safety and

Fault Tolerance, Hemangi Gawand,

R.S,Mundada, P.Swaminathn, International

Journal of Computer Applications(0975 –

8887), Volume 18- No. 2, March 2011.

[4] Application-Level Fault Tolerance in Real-

time Embedded Systems, Francisco Afonso,

University of Minho, published in
2008@IEEE.

[5] Design Patterns: Element of Reusable

Object-Oriented Software by Erich Gamma,

Richard Helm, Ralph Johnson and John

Vlissides. Edition published in 2012.

[6] http://www.patternrepository.com

[7] Real-Time Software Design Patterns,

Janusz ZALEWSKI.

[8] Pattern-Based Architectures Analysis and

Design of Embedded Software Product

Lines, Public version,EMPRESS 15 Dec

2003.
[9] Modeling Real-Time applications with

Reusable Design Patterns, Saoussen Rekhis,

Nadia Bouassida,Rafik Bouaziz MIRACL-

ISIMS, Sfax University, BP1088, 3018,

Sfax, Tunisia.International Journal of

Advanced Science and Technology,Vol. 22,

September, 2010.

[10] A. Armoush, E. Beckschulze, and S.

Kowalewski. Safety assessment of design

patterns for safety-critical embedded

systems. In 35th Euromicro Conference on
Software Engineering and Advanced

Applications (SEAA 2009). IEEE CS, Aug.

2009

