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ABSTRACT 
Power quality (PQ) disturbance 

recognition is the foundation of power quality 

monitoring and analysis. The S- transform (ST) is 

an extension of the ideas of the continuous wavelet 

transform (CWT) or variable window of short 

time Fourier transform (STFT). It is based on a 

moving and scalable localizing Gaussian window. 

S-transform has better time frequency and 

localization property than traditional. With the 

excellent time—frequency resolution (TFR) 

characteristics of the S-transform, ST is an 

attractive candidate for the analysis and feature 

extraction of power quality disturbances under 

noisy condition also has the ability to detect the 

disturbance correctly but it involves           high       

computational      overhead which is of the order of  

O(N
2 

log N) . This paper overviewed the theory of 

basis S-transform and fast discrete S-transform 

(FDST) summarized their computational 

requirement in the area of power quality 

disturbance recognition.  

The new Fast discrete S-transform algorithm, with 

a new frequency scaling and band pass filtering, 

Computational complexity is O(N log N) in optimal 

conditions. So it becomes less time consuming and 

decreases cost overhead, tool for power signal 

disturbance assessment.  

Keywords – STFT, CWT,  S-Transform,  Discrete 

S-Transform,  FDST. 

I. INTRODUCTION 

Although the Fourier transform of the entire 

time series does contain information about the 

spectral components in time series, it cannot detect 

the time distribution of different frequency, so for a 

large class of practical applications, the Fourier 

transform is unsuitable. So the time-frequency 

analysis is proposed and applied in some special 
situations. The STFT is most often used. But the 

STFT cannot track the signal dynamics properly for 

non-stationary signal due to the limitations of fixed 

window width. The WT is good at extracting 

information from both time and frequency domains. 

However, the WT is sensitive to noise. The S 

transform was proposed by Stockwell and his 

coworkers in 1996. The properties of S transform are 

that it has a frequency dependent resolution of time- 

 

 
frequency domain and entirely refer to local phase 

information. For example, in the beginning of 

earthquake, the spectral components of the P-wave 

clearly have a strong dependence on time. So we need 

the generalized S transform to emphasize the time 

resolution in the beginning time and the frequency 

resolution in the later of beginning time. Based on 

different purposes, we can apply different window of 

S transform. For example, we will introduce the 

Gaussian window, the bi-Gaussian window, and the 

hyperbolic window. The comparison between the ST-

based method and other methods such as the wavelet-
transform-based method for power-quality 

disturbance recognition shows the method has good 

scalability and very low sensitivity to noise levels. All 

of these show FDST based methods has great 

potential for the future development of fully 

automated monitoring systems with online 

classification capabilities. The analysis direction and 

emphasis of studying about the power quality (PQ) 

disturbance recognition also put forward. 

II. THE S- TRANSFORM 
  There are some different methods of 

achieving the S transform. We introduce the 

relationship between STFT and S transform. And the 

type of deriving the S transform from the "phase 

correction" of the CWT here, learned from [1] 

 

 2.1 The Continuous S Transform 

 2.1.1 Relationship between S Transform and 

STFT 

The STFT of signal h(t) is defined as 

      dtetgthfSFT ftj






  2,

     (2.1) 

where τ and f denote the time of spectral localization 

and Fourier frequency, respectively, and g(t) denote a 

window function. The S transform can derive from 

(2.1) by replacing the window function g(t) with the 

Gaussian function, shown as     
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Then the S transform is defined as 
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So we can say that the S transform is a special case of 

STFT with Gaussian window function. If the window 

of S transform is wider in time domain, S transform 

can provide better frequency resolution for lower 

frequency. While the window is narrower, it can 

provide better time resolution for higher frequency. 

2.1.2 Relationship between S Transform and CWT 

The continuous-time expression of the CWT is 

  

dtdtthdW 




 ),()(),( 

      (2.4) 

where t denotes time, h(t) denotes a function of time, τ 
denotes the time of spectral localization, d denotes the 

"width" of the wavelet w(t, d) and thus it controls the 

resolution, and w(t, d) denotes a scaled copy of the 

fundamental mother wavelet. Along with (2.4), there 

has a constraint of the mother wavelet w(t, d) that w(t, 

d) must have zero mean. 

Then the S transform is defined as a CWT with a 

specific mother wavelet multiplied by the phase factor 

       
),(),( 2 dWefS ftj  

    (2.5) 

where the mother wavelet is defined as 
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Note that the factor d is the inverse of the frequency f. 

However the mother wavelet in (2.6) does not satisfy 

the property of zero mean, (2.5) is not absolutely a 

CWT. In other words, the S transform is not equal to 

CWT, it is given by 
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If the S transform is a representation of the local 

spectrum, we can show that the relation between the S 

transform and Fourier transform as 
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where H(f) is the Fourier transform of h(t). So the h(t) 

is 
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This shows that the concept the S transform is 

different from the CWT. 

The relation between the S transform and Fourier 

transform can be written as 
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By taking the advantage of the efficiency of the Fast 

Fourier transform and the convolution theorem, the 

discrete analog of (2.10) can be used to compute the 

discrete S transform (we will describe it below). If not 

translating the cosinusoid

 

basic functions, the S 

transform can localize the real and imaginary 

components of the spectrum independently.  

2.2 The Instantaneous Frequency 

       We set the 1-D function of the variable τ and 

fixed parameter f1 as S(τ, f1) and called “voice”. 
Then the function can be written as 
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where A and Φ are the amplitude and phase. Because 

a voice isolates a particular frequency f1, we can use 

the phase Φ to determine the instantaneous frequency 
(IF): 
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The correctness of (2.11) can use a simple case of            

h(t) = cos(2πωt), where the function 

 )(2),( ff 
 

2.3 The Discrete S Transform 

Let h[kT], k=0, 1, …, N – 1 denote a discrete time 

series corresponding to h(t) with a time sampling 

interval of T. The discrete Fourier transform is shown 

as 
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Using (2.10) and (2.13), the discrete time series 

h[kT]’s S transform is shown as 
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where j, m, and n = 0, 1, ..., N-1. If n = 0 voice, it is 

equal to the constant defined as 
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This equation makes the constant average of the time 

series into the zero frequency voice, so it will ensure 

that the inverse is exact. The inverse of the discrete S 

transform is 
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III. GENERALIZED S-TRANSFORM 

3.1 The Generalized S Transform 

The generalized S transform is defined as [3] 
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where p denotes a set of parameters which determine 

the shape and properties of w and w denotes the S 
transform window shown as 
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given by As (2.10), the generalized S transform can 

also be obtained by the Fourier transform 

        depfWfHpfS j2,,,, 






                                               

                                                                          (3.3) 

The S transform window w has to satisfy four 

conditions. The four conditions are as below 
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The first two conditions assure that when integrated 

over all τ, the S transform converges to the Fourier 

transform: 

   .,,




 fHdpfS 

                             (3.8) 

The third condition can ensure the property of 

symmetry between the shapes of the S transform 

analyzing function at positive and negative 

frequencies. 

3.2 The Gaussian Window 

Before introducing the bi-Gaussian window, we first 

mention the Gaussian window. As we can see in (3.2), 

ω is a Gaussian. To difference Gaussian window from 

the bi-Gaussian, we use the subscript GS to represent 

(3.2)'s modification. ωGS is rewritten as [4] 
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Where GS    is the number of periods of Fourier 

sinusoid which are contained within one standard 

deviation of the Gaussian window. We show the 

Gaussian S transform of the time series for GS   = 1 

in Fig. 3.1. The result of Fig. 3.1 is obtained by using 

the discrete S transform (2.14), shown as  GSS    . In 

order to get GSS    , we have to obtain GSW   first. 

GSW   is shown as 
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From Fig. 3.1, there has a problem that the long front 

taper of the window let the correlation of event 

signatures with the time of event initiation be complex 

 

Fig. 3.1 The time series and the amplitude spectrum 

of Gaussian S transform of time series at GS =1. 

From the event signatures, we can see the “holes”, 

which is due to localized destructive interference 

between signal components. [4] 

In order to improve the front time resolution of  GS     

, we can decrease the value of GS   for narrowing the 

window. However, a drawback is that if  GS   is too 

small, the window may reserve too few cycles of the 

sinusoid. So the frequency resolution may be poor and 

may let the time-frequency spectrum be meaningless. 

There is an example in Fig. 3.2. 

 

Fig. 3.2 The time series and the amplitude spectrum 

of Gaussian S transform of time series at     GS  = 

0.5. “a” is the position that has destructive localized 
interference between two events and “b” is a phantom 

fifth event between second and third real events. [4] 

IV. THE FAST DISCRETE S-TRANSFORM 

The next Chapter describes the Fast discrete 

S-Transform and the time-frequency analysis of the 

power signal disturbance using the modified S-

Transform. 

S-Transform is a powerful tool for power signal 

disturbance assessment it involves high computational 

overhead which is of the order of O(N2 log N) using 

the entire data window for the signal. The 

computational complexity of S-transform involves 

long calculation time even for short data window and 

processing large volumes of power signal data it 

becomes time consuming and increases cost overhead. 
Thus to reduce the computational overhead of S-

transform, several attempts for generalization and 

faster computation of the S-transform have been 

proposed using Generalized Fourier family transform 

(GFT) [11-13]. In this work, earlier proposed 

techniques are explored and a new Fast discrete S-

transform algorithm, with a new frequency scaling 

and band pass filtering for primarily analyzing power 

signals is presented. Computational complexity of this 

new approach known as Fast S-Transform (DFST)      

is O(N log N) in optimal conditions. 

V. CONCLUSION 

We have shown the concept of the transform 

between the S transform and the STFT, WT. From the 

power quality analysis, the S transform exhibit the 

ability of identifying the power quality disturbance by 

noise or transient. This is the wavelet transform 
cannot achieve because its drawback of sensitive to 

noise. But the S transform still have two drawbacks, 

first one is in the DC term (frequency = 0), the S 

transform cannot analyze the variation of S transform 

on time. Second, in high frequency, the window will 

be too narrow, so the points we can practically apply 

will be too less. ST involves           high       

computational      overhead which is of the order of  

O(N2 log N).  

A Fast Discrete S-transform which uses frequency 

scaling and band pass filtering reduces the 
computational overhead of implementing the S-

transform significantly in the order of O(N log N)  

and is thus very useful for the analysis of huge 

amount power quality data.  
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