
Riya Saini, R.D.Daruwala / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1676-1679

1676 | P a g e

Efficient Implementation of Pipelined Double Precision Floating

Point Multiplier

Riya Saini*, R.D.Daruwala**

M.Tech Student*

*(Department of Electrical Engineering, Veermata Jijabai Technological Institute, Matunga, Mumbai-19)

Professor & Dean**

** (Department of Electrical Engineering, Veermata Jijabai Technological Institute, Matunga, Mumbai-19)

ABSTRACT

Floating-point numbers are widely adopted in

many applications due their dynamic

representation capabilities. Floating-point

representation is able to retain its resolution and

accuracy compared to fixed-point representations.

Unfortunately, floating point operators require

excessive area (or time) for conventional

implementations. The creation of floating point

units under a collection of area, latency, and

throughput constraints is an important

consideration for system designers. This paper

presents the implementation of a general purpose,

scalable architecture used to synthesize floating

point multipliers on FPGAs. Although several

implementations of floating point units targeted to

FPGAs have been previously reported, most of

them are customized for specific applications. This

paper presents a fully parallel floating-point

multiplier compliant with the IEEE 754 Standard

for Floating-point Arithmetic. The design offers

low latency and high throughput. A comparison

between our results and some previously reported

implementations shows that our approach, in

addition to the scalability feature, provides

multipliers with significant improvements in area

and speed. We implemented our algorithms using

Xilinx ISE 12.1, with Xilinx Virtex-II Pro

XC2VP100 FPGA as our target device.

Keywords – Floating Point Multiplier, FPGA,

VHDL.

1. INTRODUCTION
 Field-programmable gate arrays (FPGAs) have

long been attractive for accelerating fixed-point

applications. Early on, FPGAs could deliver tens of

narrow, low latency fixed-point operations. As
FPGAs matured, the amount of parallelism to be

exploited grew rapidly with FPGA size. This was a

boon to many application designers as it enabled

them to capture more of the application. It also meant

that the performance of FPGAs was growing faster

than that of CPUs [3].

 The design of floating-point applications for

FPGAs is much different. Due to the inherent

complexity of floating point arithmetic mapping

difficulties occurred. With the introduction of high

level languages such as VHDL, rapid prototyping of

floating point units has become possible. Elaborate

simulation and synthesis tools at a higher design level
aid the designer for a more controllable and

maintainable product.

 The IEEE standard for binary floating-point

arithmetic [2] provides a detailed description of the

floating-point representation and the specifications

for the various floating-point operations. It also

specifies the method to handle special cases and

exceptions.

 This paper describes the implementation of

pipelining in design the floating-point multiplier

using VHDL and its synthesis for a Xilinx Virtex-II
FPGA using Xilinx‟s Integrated Software

Environment (ISE) 12.1. Pipelining is one of the

popular methods to realize high performance

computing platform. Pipelining is a technique where

multiple instruction executions are overlapped. In the

top-down design approach, four arithmetic modules:

addition, subtraction, multiplication, and division: are

combined to form the floating-point ALU. The

pipeline modules are independent of each other.

 The organization of this paper is as follows:

Section 2 describes background on floating point unit

design. Section 3 describes algorithm for floating
point multiplication. Section 4 describes our

approach to multiply floating numbers. The

simulation environment and results are briefed in

Section 5 and concluding remarks are discussed

Section 6.

2. BACKGROUND
2.1. Floating Point Representation

 Standard floating point numbers are represented

using an
exponent and a mantissa in the following format:

(sign bit) mantissa × baseexponent +bias

 The mantissa is a binary, positive fixed-point

value. Generally, the fixed point is located after the

first bit,m0, so that mantissa = {m0.m1m2...mn},

where mi is the ith bit of the mantissa. The floating

point number is “normalized” when m0 is one. The

Riya Saini, R.D.Daruwala / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1676-1679

1677 | P a g e

exponent, combined with a bias, sets the range of

representable values. A common value for the bias is

−2k−1, where k is the bit-width of the exponent

[4].The double precision floating point format has an

11 bit exponent and 52 bit mantissa plus a sign bit.

This provides a wide dynamic range.

Figure 1. 64-bit Floating Point Format

 The IEEE floating point standard makes floating
point unit implementation portable and the precision

of the results predictable. A variety of different

circuit structures can be applied to the same number

representations, offering flexibility.

2.2. Floating Point Implementations in FPGAs

 Several efforts to build floating point units using

FPGAs have been made. These approaches have

generally explored

bit-width variation as a means to control precision. A

floating point library containing units with

parameterized bitwidth was described in [6]. In this
library, mantissa and exponent bit-width can be

customized. The library includes a unit that can

convert between fixed point and floating point

numbers. The floating point units are arranged in

fixed pipeline stages.

 Several researchers [7, 9, 10] have implemented

FPGA floating point adders and multipliers that meet

IEEE754 floating point standards. Most commercial

floating point libraries provide units that comply with

the IEEE754 standard [7]. Luk [8] showed that in

order to cover the same dynamic range, a fixed point
design must be five times larger and 40% slower than

a corresponding floating point design. In contrast to

earlier approaches, our floating point unit generation

tool automates floating point unit creation.

3. FLOATING POINT MULTIPLICATION

ALGORITHM
 The aim in developing a floating point multiplier

routine was to pipeline the unit in order to produce a

result every clock cycle. By pipelining the multiplier,

the speed increased, however, the area increased as

well. Different coding structures were tried in the

VHDL code used to program the Xilinx chips in

order to minimize size.

3.1 Algorithm

 The multiplier structure is organized as a three-

stage pipeline. This arrangement allows the system to
produce one result every clock cycle, after the first

three values are entered into the unit. Figure 2 shows

a flow chart of the multiplier structure.

Figure 2. Floating Point Algorithm

 The two mantissas are to be multiplied, and the

two exponents are to be added. In order to perform

floating-point multiplication, a simple algorithm is

realized:

1. Add the exponents and subtract bias.

2. Multiply the mantissas and determine the sign of

the result.
3. Normalize the resulting value, if necessary.

4. PIPELINED FLOATING POINT

MULTIPLICATION MODULE

 Multiplication entity has three 64-bit inputs and

two 64-bit outputs. Selection input is used to enable

or disable the entity. Multiplication module is divided
into check zero, add exponent, multiply mantissa,

check sign, and normalize and concatenate all

modules, which are executed concurrently. Status

signal indicates special result cases such as overflow,

underflow and result zero.

 In this paper, pipelined floating point

multiplication is divided into three stages (Fig. 3).

Figure 3. Pipelined Floating Point Multiplier

Riya Saini, R.D.Daruwala / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1676-1679

1678 | P a g e

 Stage 1 check whether the operand is 0 and report

the result accordingly. Stage 2 determines the product

sign add exponents and multiply fractions. Stage3

normalize and concatenate the product.

4.1 Check Zero module:

 Initially, two operands are checked to determine
whether they contain a zero. If one of the operands is

zero, the zero_flag is set to 1. The output results zero,

which is passed through all the stages and outputted.

If neither of them are zero, then the inputs with

IEEE754 format is unpacked and assigned to the

check sign, add exponent and multiply mantissa

modules. The mantissa is packed with the hidden bit

„1‟.

4.2 Add exponent module:

 The module is activated if the zero flag is set.

Else, zero is passed to the next stage and exp_flag is
set to 0. Two extra bits are added to the exponent

indicating overflow and underflow. The resulting

sum has a double bias. So, the extra bias is subtracted

from the exponent sum. After this, the exp_flag is set

to 1.

4.3 Multiply mantissa module:

 In this stage zero_flag is checked first. If the

zero_flag is set to 0, then no calculation and

normalization is performed. The mant_flag is set to 0.

If both operands are not zero, the operation is done
with multiplication operator. Mant_flag is set to 1 to

indicate that this operation is executed. It then

produces 46 bits where the lower order 32 bits of the

product are truncated.

4.4 Check sign module:

 This module determines the product sign of two

operands. The product is positive when the two

operands have the same sign; otherwise it is negative.

The sign bits are compared using an XOR circuit.

The sign_flag is set to 1.

4.5 Normalize and concatenate all modules:

 This module checks the overflow and underflow

after adding the exponent. Underflow occurs if the

9th bit is 1. Overflow occurs if the 8 bits is 1. If

exp_flag, sign_flag and mant_flag are set, then

normalization is carried out. Otherwise, 32 zero bits

are assigned to the output.

 During the normalization operation, the mantissa's

MSB is 1. Hence, no normalization is needed. The

hidden bit is dropped and the remaining bit is packed

and assigned to the output port. Normalization
module set the mantissa's MSB to 1. The current

mantissa is shifted left until a 1 is encountered. For

each shift the exponent is decreased by 1. Therefore,

if the mantissa's MSB is 1, normalization is

completed and first bit is the implied bit and dropped.

The remaining bits are packed and assigned to the

output port. The final normalized product with the

correct biased exponent is concatenated with product

sign.

5. RESULT AND ANALYSIS
 Design is verified through simulation, which is

done in a bottom-up fashion. The aim in designing

the floating point units was to pipeline each unit a

sufficient number of times in order to maximize

speed and to minimize area.

 The simulation output is obtained by using Xilinx

simulation tool is as follows.

Figure 4. Synthesize result of multiplier

Figure 5. Simulation result of multiplier

6. CONCLUSION
 Pipeline floating point multiplier design using

VHDL is successfully designed, implemented, and

tested. With the help of pipelined architecture i.e.

concurrent processing there will be less

combinational delay which means faster response and

better throughput with less latency as compared with

sequential processing but there will be a tradeoff

between speed and chip area. Pipelined architecture

provide a faster response in floating point
multiplication but also consumes more area i.e.

number of slices used on reconfigurable hardware are

more as compared with standard architecture.

Pipelining is used to decrease clock period. Using

sequential processing there is larger latency but less

number of slices are used on FPGAs as compared

with pipelined architecture. Currently, we are

conducting further research that considers the further

Riya Saini, R.D.Daruwala / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1676-1679

1679 | P a g e

reductions in the hardware complexity in terms of

synthesis.

REFERENCES
[1] M. de Lorimier and A. DeHon. Floating point

sparsematrix-vector multiply for FPGAs. In
Proceedings of the ACM International

Symposium on Field Programmable Gate

Arrays, Monterey, CA, February 2005.

[2] The Institute of Electrical and Electronic

Engineers, Inc. IEEE Standard for Binary

Floating-point Arithmetic. ANSI/IEEE Std 754-

1985.

[3] K. D. Underwood. FPGAs vs. CPUs: Trends in

peak floating-point performance. In Proceedings

of the ACM International Symposium on Field

Programmable Gate Arrays, Monterrey, CA,

February 2004.
[4] I. Koren. Computer Arithmetic Algorithms.

Brookside Court Publishers, Amherst, MA,

1998.

[5] IEEE Standards Board. IEEE standard for binary

floating-point arithmetic. Technical Report

ANSI/IEEE Std. 754-1985, The Institute of

Electrical and Electronic Engineers, New York,

1985.

[6] P. Belanovi´c and M. Leeser. A Library of

Parameterized Floating Point Modules and Their

Use. In Proceedings, International Conference
on Field Programmable Logic and Applications,

Montpelier, France, Aug. 2002.

[7] B. Fagin and C. Renard. Field programmable

gate arrays and floating point arithmetic. IEEE

Transactions on VLSI Systems, 2(3):365–367,

Sept. 1994.

[8] A. A. Gaffar, W. Luk, P. Y. Cheung, N. Shirazi,

and J. Hwang. Automating Customization of

Floating-point Designs. In Proceedings,

International Conference on Field-

Programmable Logic and Applications,
Montpelier, France, Aug. 2002.

[9] W. B. Ligon, S. McMillan, G. Monn, F. Stivers,

and K. D. Underwood. A Re-evaluation of the

Practicality of Floating-Point Operations on

FPGAs. In Proceedings, IEEE Symposium on

Field-Programmable Custom Computing

Machines, pages 206–215, Napa, CA, Apr. 1998.

[10] L. Louca, W. H. Johnson, and T. A. Cook.

Implementation of IEEE Single Precision

Floating Point Addition and Multiplication on

FPGAs. In Proceedings, IEEE Workshop on

FPGAs for Custom Computing Machines, pages
107–116, Napa, CA, Apr. 1996.

[11] E. M. Schwarz, M. Schmookler, and S. D.

Trong. FPU implementations with denormalized

numbers. IEEE Transactions on Computers,

54(7), July 2005.

[12] Virtex-II Pro and Virtex-II Pro X Platform

FPGAs: Complete Data Sheet. June 2005 (Rev

4.3), [cited Aug 2005].

