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Abstract
We derive existence results for the
periodic boundary value problem

x™ 4 ax + f(X)%+cx+g(t,x(x=7) = p(t)
x(0) =x(2m), X (0)= X 2x), X0) = X(2x),
X (0)=X (27)

using degree theoretic methods. The uniqueness of
periodic solutions is also examined.
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1. Introduction
In this paper we study the periodic boundary value
problem
X"+ aX +f(X) X +cX+ gt X(t-7)] = p()
1.2

X(0) = x(2n), X (0) = X (27), X0) = X(27),
X 0)=X (2xr)
with fixed delay 7 €[0,277) Where ¢ #0 is a
constant, p: [0, 2z ]->R and g: [0, 27 ]x R —
R are 2m periodic in t and g satisfies certain
Caratheodory conditions.
The unknown function x: [0, 277 ]—R is defined

for 0<t< 7 by x(t- 7)=x(27 -(t-7)
The differential equation Xx™ +aX.+ bX +
h(x) X +g(t, x(t-7)) = p(t)

(1.2)

In which b < 0is a constant was the object of a

recent study [6].
Results on the existence and uniqueness of

27 periodic solutions were established subject to
certain resonant conditions on g. Fourth order
differential equations with delay occur in a variety
of physical problems in fields such as Biology,
Physics, Engineering and Medicine. In recent year,
there have been many publications involving
differential equation with delay; see for example
[1,2,4,5,6,8,9]. However, as far as we know, there
are few results on the existence and uniqueness of
periodic solution to [1.1].

In what follows we shall use the spaces

c([o, 2z 1), c4[o, 27 1)

and L%([0, 271 of continuous, k times
continuously differentiable  or measurable real
functions whose kth power of the absolute value
is Labesgue integrable.

We shall also make use of the sobolev space
defined by

H;n = {{X3[0.27Z]—>R|X, X are

absolutely  continuous on [0,27] and,

X eL[0,27] with norm |X|2 =

, =
Hax

1 cor T o
(Zf xz(t)dt)2+giz_lljj x @[ dt .

2. The Linear cases
In this section we shall first consider the
equation:
xM (1) +aX () + bX (&) + cX(t) + dx(t-7) =0
(2.1)
x(0)=x@2x), X(0)=X2xr), X (0= X2rx),
X0)=¥X 2x)

Where a, b, ¢, d, are constants
Lemma 2.1 Letc#0and Leta/c<0
Suppose that:
0<d/lc<n,n>1 (2.2)
Then (2.1) has no non-trivial 27z periodic solution

for any fixed 7 € [0,27).

Proof

By substituting x(t) = e “with A1=in, 2= -1.
We can see that the conclusion of the Lemma is
trueif ®(n, 7)=an’-cn+dSinnz #0 foralln

>land 7 € [0, 277) (2.3)

By (2.2) we have

1 a .

¢ d(n, 7) = — nn + —Sin n 7<
C C

a

d a
“n*-n+—-<-n*<0
c cC ¢

Therefore ®(n, 7) #0 and the result follows
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If xe L1 [0, 277 ] we shall write
X=o jo x(t)dt, X (t) = x(t) — X
So that

j:” %(t)dt =
We shall consider next the delay equation
X" +ax + X+ cx+ d(t)x(t —7) = 0
(2.4)

x(0) = x(27),X(0) =, X(2z), X(0) = X(2r),
X (0)= X (27)
Wherea , b, c are constants and d € leﬁ

Here the coefficient d in (2.4) is not necessarily
constant. We have he following results which
apart from being of independent interest are also
useful in the non-linear case involving (1.1)

Lemma 2.2 Let ¢ #0 and let a/c < 0 Set I'(t) =

cld(t) Lzﬁ Suppose that

0 <T(t)<1 (2.5)
Then for arbitrary constant b the equation (2.4)

admits in H;” only the trivial solution for every
T €[0, 27).

We note that @ and c are not arbitrary.

Proof

If xe H;”is a possible solution of (2.4) then on

multiplying (2.4) by X + X (t) and integrating over
[0, 27z ] noting that

1 %5
o j (X +X(1))
e[ +ax + bx]= 22 [ 5 ()

We have that
0=

%1 ®+X()

1a2

27Z'C

(% X2 (t)dt to j (X + X (0))[x + D(t)x(t — 7)dt]

0

2

> L j +X(0)X() + TE)X(t — 7))t

0

,1[X(iv) —I—aX+bX ]—|— x+F(t)X(t _T) }dt

1 7[4‘2 2 - 1271' _2
— | X (O)dt + | C(t)xx(t — 7r)dt + — | [(t)X"dt
£ X 0de [roRe-adt 2 [

1% _

+— | T)XX(t - 7)dt
27[! (LXK (t—7)

Using the identity

(a+b)? a? b?

ab=

We get

1 27[412 1 2z o 1 2z -
—— [X*(Mdt+— [TO)x*dt+—— [TO)xX(t - 7)dt
Ty 27y 2r s,

+i

2

o xt=-0)+X®OF x* X3(t-1)
{””{ > W2 N2
—XX(t—7)— )_(—Zz}dt

-1

_27r

j 2 (t)dlt — j F;t)[ FR2(t— )+

2z

j LO k- +xf + 22 ot

2 -
Using (2.5) we get

0

2z
>4 [X*(M)dt—4
0

2z

I?[§Z+§2(t—r)}it

0

From the periodicity of X we have that

Tiz (t)dt :TW (t—7)dt

0 23IE [ TORE- K+

LI [0 - TR - Dl
" 26)

Using (2.5) we can see that the last expression is
non-negative hence
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0> 4[ ZAf(XZ(t—r)—r(t)iz(t—f)]dt

= 5|X|H§,r
By Lemma 1 of [8] where 0> 0 is a constant.

This implies X = 0 a.eand thatx = X
But a constant map cannot be a solution of (2.4)

sinceI'(t) =0
Thusx=0

Theorem 2.1
Let all the conditions of Lemma 2.2 hold and let

O be related to I by Lemma 2.2.Suppose
further that V e Lj,, satisfies

0SV({A)<T'(t)+& aete [0,272'] where & >
0 then

XM 4 axX + f (X)X +cx + g(t, x(t — 7)) = p(t)
(3.1)

x(0) = x(27), X(0) = X(27), %(0) = %(27), X (0) = X (27)

where f: R — R is a continuous function and
g :[0,27]xR — NRis such

that g(. x) is a measurable on [0,27[] for each
xe R and Q(t,.)

is continuous on ‘R for almost each te[0,27]
We assume moreover that for each r >0

4 1
there exists Y, € |_ . such that

9 <Y, ) (3.2)
for aete [0,27] and all xe [-r,r]suchag is

said to satisfy the
Caratheodory’s condition.

Theorem 3.1

Let ¢c#0 and leta/c < 0
Suppose  that g is a caratheodory function
satisfying the inequalities

% T()‘( + i(t)){c—l[x(iv) +aX + f (K] +X +V (Ox(E —7) jdt
> (56— g)‘i 2.7)
Proof

We have from the proof of Lemma 2.2 that

ot j (X + KO x® +ax + f (%] +x+V (t)x(tlllr:) g ek

2z

z%(i{(iza—r)—va) 2(t-7) )dt+= (—

> %(i 2f(?z(t —7)—T(O)X*(t—17))dt — £(% Zfiz(t Supioke

G T&Z(t) ~TOX* )t -5
Tiz (t)dt

From condition (2.5) , Lemman 2.2 and
Wirtinger’s inequality we have

1
2z

_ ~ > o~
H3, S‘X‘Lg,, - 5|X

3. The Non Linear Case
We shall consider the non-linear delay
equation

cxg(t,x)=0 (X =r) (3.3)

g(t, x) < T (t) @9

j RPIBR? (R0 where > 0 s

27 constantand I € LG is such that

0<I(2) < 1.
pel’is such that

ﬁ—ifﬂ p(t)dt= 0 then for arbitrary
270

continuous  function f the boundary value
problem (3.1) has at least one solution for every

7 €[0,27)

Proof

Let & = O be related toI" as in Lemma
2.2 so that by (3.3) and (3.4) there exists a
constant R; such that for Izl = R,

LE %’:‘} =) + 9/, (3.5)

Define #(t,x) by
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(©) " g(t,x)
(cR)*g(t,R,)

y(t.x) = >
_(CRl) g(t’_Rl)
(1)

X >R,

0<x<R

-R <x<0

x=0

(3.6)

Then 3
0< Y(t,X)<I(t) + "fz

3.7)
fora.et €[0,27] and all x € R. Moreover the

function Y(t, X) satisfy Caratheodory’s conditions
and g: [0.2x] X R — ‘R defined by

g(t,x(t—7))=g(t,x(t—7))—cx(t—7) ¥ (t, x(t - 7))

(3.8)
is such that for a.e te [0,2n] and all x€ ‘R.

|9(t,x(t- 7)) S ex(t) for some ax(t) € L3,
Let A €[0,1] be such that

U x™ + aX + AR X)X] + X+ - 1) TOx(t-t) + Ay

x(t-1) X(t —7)

+et(L- bR+ At x(t - 7)) — ¢ Ap(t) = 0

(3.9

For A=0 we obtain (2.1) which by Lemma 2.2
admits only the trivial solution

For A =1 we get the original equation (1.1). To
prove that equation (3.1) has at least one solution,
we show according to the Leray-Shauder Method
that the possible solution of the family of
equations (3.9) are apriori bounded in C*0,2x]

independently of 4 €[0,1].

Notice that by (3.5) one has .
0<(@L-MTO+AY txtt)<T®+°/> (3.10)
Then using Theorem 2.1 with V(t) = (1- VI'(t) +
A 37 (t, x(t-t)) and Cauchy Schwarz inequality we
get

0 =
zizf(x FROMeX™ +ax + Af (K] + X+
%

(1-MI() x(t-1) + Ay (txt-0+ A (t, X(t —7)
+(1-1) b X - Ap(t)}dt.

A CREER
>35IR[% ~ AR+ R, )

Thus
o 2B, e
"], S7[3(|><|+|X ) (3.11)

with >0 independent of X and A
Antegrating  (3.9) over [0,2n}We  obtain

(1- ﬂ)zfl“(t)x(t —7)dt = —cl/lzfg (t,x(t - 1))

(3.12)
Since I'(t)> 0 we derive that
27
+ [Pdt=T>0 (3.13)
0

Hence if x(t) > r for all te [0,2x], (3.3) and (3.12)
implies that (1—A) T <0 contradicting T" >0.

Similarly if x(t) < - rforallt € [0,2n] we reach
a contradiction.
Thus there exists a, t;, € [0,2n] such that

‘X(tl )‘ <r. Let,be such that
t

X =X(t,) = X(t,) + [X(s)ds. ~ This
4]

implies that |X| < r +27]X] ,,

2z
Substituting this in (3.11) we get
~|2 ~
[Xlys, <Rl

or |>~<|H%” <c,c, >0 (3.14)

Now

X, <|X] +|§|H%” <r+ 2z +1)c, =c,

2z

(3.15)
Thus
X, <¢5,¢,>0 (3.16)
From (3.16)we have
X_<c,,c,>0 (3.17)

Multiplying (3.9) by - X(t) and integrating over
[0,2n] we have

8z <ol O, +1+ 418,14, +led ¥, + o], 14,)

Hence
X, < 5,6, >0 (3.18)
And thus

X <cg,c>0 (3.19)
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Multiplying (3.9) by — X(t) and integrating over Where S(t) € L3 is defined by
[0,27] _
We get B(t)
g(t, %, (t = 7)) — gt X, (t - 7))
2 oAl (o2 . -1 . . .
X[, <[ TG [X; + 2+ 920, X, +[cl e, X1, +[l, %], + bl 0y = X,)
Ifu=x;-x% #0and since 0<p(t) < I'(t) for
Thus a.e t€ [0,2n] then using the arguments of
theorem 2.1 we have that u= 0and thus x;
X|, <c,,c; >0 (3.20) S A e
And hence
X <cgcy>0 (3.21) REFERENCES
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