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Abstract 
 Distributed Systems have enabled 

sharing of data across networks. In this paper 

four Distributed File Systems Architectures: 

Andrew, Sun Network, Google and Hadoop will 

be reviewed with their implemented 

architectures, file system implementation, 

replication and concurrency control techniques 

employed. For better understanding of the file 

systems a comparative study is required. 
 

Keywords— Distributed File Systems, Andrew 

File System, Sun Network File System, Google File 
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I. INTRODUCTION 
 File system is a subsystem of an operating 

system whose purpose is to organize, retrieve, store 

and allow sharing of data files. A Distributed File 

System is a distributed implementation of the 

classical time-sharing model of a file system, where 

multiple users who are geographically dispersed 

share files and storage resources. Accordingly, the 

file service activity in a distributed system has to be 

carried out across the network, and instead of a 

single centralized data repository there are multiple 

and independent storage devices. 

 The DFS can also be defined in terms of the 
abstract notation of a file. Permanent storage is a 

fundamental abstraction in computing. It consists of 

a named set of objects that come into existence by 

explicit creation, are immune to temporary failures 

of the system, and persist until explicitly destroyed. 

A file system is the refinement of such an 

abstraction. A DFS is a file system that supports the 

sharing of files in the form of persistent storage over 

a set of network connected nodes. The DFS has to 

satisfy three important requirements: Transparency, 

Fault Tolerance and Scalability. 
  

II. CASE STUDY 1: ANDREW FILE SYSTEM 
 Andrew is a distributed computing 

environment being developed in a joint project by 

Carnegie Mellon University and IBM. One of the 

major components of Andrew is a distributed file 

system. The goal of the Andrew File System is to 

support growth up to at least 7000 workstations (one 

for each student, faculty member, and staff at 
Carnegie Mellon) while providing users, application 

programs, and system administrators with the 

amenities of a shared file system.  

 

 

 
 

Architecture 

 
Figure 1: Andrew File System Architecture 

 

File System 

 The general goal of widespread 

accessibility of computational and informational 

facilities, coupled with the choice of UNIX, led to 

the decision to provide an integrated, campus-wide 

file system with functional characteristics as close to 

that of UNIX as possible. The first design choice 

was to make the file system compatible with UNIX 

at the system call level.  
 The second design decision was to use 

whole files as the basic unit of data movement and 

storage, rather than some smaller unit such as 

physical or logical records. This is undoubtedly the 

most controversial and interesting aspect of the 

Andrew File System. It means that before a 

workstation can use a file, it must copy the entire file 

to its local disk, and it must write modified files 

back to the file system in their entirety. This in turn 

requires using a local disk to hold recently-used 

files. On the other hand, it provides significant 
benefits in performance and to some degree in 

availability. Once a workstation has a copy of a file 

it can use it independently of the central file system. 

This dramatically reduces network traffic and file 

server loads as compared to record-based distributed 

file systems. Furthermore, it is possible to cache and 

reuse files on the local disk, resulting in further 

reductions in server - loads and in additional 

workstation autonomy. 

 Two functional issues with the whole file 

strategy are often raised. The first concerns file 

sizes: only files small enough to fit in the local disks 
can be handled. Where this matters in the 

environment, the large files had to be broken into 

smaller parts which fit. The second has to do with 

updates. Modified files are returned to the central 

system only when they are closed, thus rendering 
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record-level updates impossible. This is a 

fundamental property of the design. However, it is 

not a serious problem in the university computing 

environment. The main application for record-level 

updates is databases. Serious multi-user databases 

have many other requirements (such as record- or 

field-granularity authorization, physical disk write 
ordering controls, and update serialization) which 

are not satisfied by UNIX file system semantics, 

even in a non-distributed environment.  

 The third and last key design decision in the 

Andrew File System was to implement it with many 

relatively small servers rather than a single large 

machine. This decision was based on the desire to 

support growth gracefully, to enhance availability 

(since if any single server fails, the others should 

continue), and to simplify the development process 

by using the same hardware and operating system as 

the workstations. At the present time, an Andrew. 
file server consists of a workstation with three to six 

400-megabyte disks attached. A price/performance 

goal of supporting at least 50 active workstations per 

file server is acheived, so that the centralized costs 

of the file system would be reasonable. In a large 

configuration like the one at Carnegie Mellon, a 

separate "system control machine" to broadcast 

global information (such as where specific users' 

files are to be found) to the file servers is used. In a 

small configuration the system control machine is 

combined with a (the) server machine. 
 

III.  CASE STUDY 2: SUN NETWORK FILE 

SYSTEM 
 NFS views a set of interconnected 

workstations as a set of independent machines with 

independent file systems. The goal is to allow some 

degree of sharing among these file systems in a 
transparent manner. Sharing is based on server-client 

relationship. A machine may be, and often is, both a 

client and a server. Sharing is allowed between any 

pair of machines, not only with dedicated server 

machines. Consistent with the independence of a 

machine is the critical observation that NFS sharing 

of a remote file system affects only the client 

machine and no other machine. Therefore, there is 

no notion of a globally shared file system as in 

Locus, Sprite, UNIX United, and Andrew. 

 To make a remote directory accessible in a 
transparent manner from a client machine, a user of 

that machine first has to carry out a mount operation. 

Actually, only a superuser can invoke the mount 

operation. Specifying the remote directory as an 

argument for the mount operation is done in a 

nontransparent manner; the location (i.e., hostname) 

of the remote directory has to be provided. From 

then on, users on the client machine can access files 

in the remote directory in a totally transparent 

manner, as if the directory were local. Since each 

machine is free to configure its own name space, it is 

not guaranteed that all machines have a common 

view of the shared space. The convention is to 

configure the system to have a uniform name space. 

By mounting a shared file system over user home 

directories on all the machines, a user can log in to 

any workstation and get his or her home 

environment. Thus, user mobility can be provided, 

although again by convention. 
 Subject to access rights accreditation, 

potentially any file system or a directory within a 

file system can be remotely mounted on top of any 

local directory. In the latest NFS version, diskless 

workstations can even mount their own roots from 

servers (Version 4.0, May 1988 described in Sun 

Microsystems Inc. . In previous NFS versions, a 

diskless workstation depends on the Network Disk 

(ND) protocol that provides raw block I/O service 

from remote disks; the server disk was partitioned 

and no sharing of root file systems was allowed. 

One of the design goals of NFS is to provide file 
services in a heterogeneous environment of different 

machines, operating systems, and network 

architecture. The NFS specification is independent 

of these media and thus encourages other 

implementations. 

 This independence is achieved through the 

use of RPC primitives built on top of an External 

Date Representation (XDR) protocol-two 

implementation independent interfaces [Sun 

Microsystems Inc. 19881. Hence, if the system 

consists of heterogeneous machines and file systems 
that are properly interfaced to NFS, file systems of 

different types can be mounted both locally and 

remotely. 

 

Architecture  

In general, Sun’s implementation of NFS is 

integrated with the SunOS kernel for reasons of 

efficiency (although such integration is not strictly 

necessary). 

  
Figure 2: Schematic View of NFS Architecture 

 

 The NFS architecture is schematically 

depicted in Figure 6. The user interface is the UNIX 

system calls interface based on the Open, Read, 

Write, Close calls, and file descriptors. This 

interface is on top of a middle layer called the 
Virtual File System (VFS) layer. The bottom layer is 

the one that implements the NFS protocol and is 
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called the NFS layer. These layers comprise the NFS 

software architecture. The figure also shows the 

RPC/XDR software layer, local file systems, and the 

network and thus can serve to illustrate the 

integration of a DFS with all these components. The 

VFS serves two important functions: 

 It separates file system generic operations 
from their implementation by defining a clean 

interface. Several implementations for the VFS 

interface may coexist on the same machine, allowing 

transparent access to a variety of types of file 

systems mounted locally (e.g., 4.2 BSD or MS-

DOS). 

 The VFS is based on a file representation 

structure called a unode, which contains a numerical 

designator for a file that is networkwide unique. 

(Recall that UNIXi- nodes are unique only within a 

single file system.) The kernel maintains one vnode 

structure for each active node (file or directory).  
Essentially, for every file the vnode structures 

complemented by the mount table provide a pointer 

to its parent file system, as well as to the file system 

over which it is mounted. Thus, the VFS 

distinguishes local files from remote ones, and local 

files are further distinguished according to their file 

system types. The VFS activates file system specific 

operations to handle local requests according to their 

file system types and calls the NFS protocol 

procedures for remote requests. File handles are 

constructed from the relevant vnodes and passed as 
arguments to these procedures. 

 As an illustration of the architecture, let us 

trace how an operation on an already open remote 

file is handled (follow the example in Figure 6). The 

client initiates the operation by a regular system call. 

The operating system layer maps this call to a VFS 

operation on the appropriate vnode. The VFS layer 

identifies the file as a remote one and invokes the 

appropriate NFS procedure. An RPC call is made to 

the NFS service layer at the remote server. This call 

is reinjected into the VFS layer, which finds that it is 

local and invokes the appropriate file system 
operation. This path is retraced to return the result. 

An advantage of this architecture is that the client 

and the server are identical; thus, it is possible for a 

machine to be a client, or a server, or both. The 

actual service on each server is performed by several 

kernel processes, which provide a temporary 

substitute to a LWP facility. 

 

IV.   CASE STUDY 3: GOOGLE FILE SYSTEM 

 The Google File System (GFS) is a 

proprietary DFS developed by Google. It is designed 

to provide efficient, reliable access to data using 

large clusters of commodity hardware. The files are 

huge and divided into chunks of 64 megabytes. Most 

files are mutated by appending new data rather than 

overwriting existing data: once written, the files are 

only read and often only sequentially. This DFS is 

best suited for scenarios in which many large files 

are created once but read many times. The GFS is 

optimized to run on computing clusters where the 

nodes are cheap computers. Hence, there is a need 

for precautions against the high failure rate of 

individual nodes and data loss. 

 

Motivation for the GFS Design: 
The GFS was developed based on the following 

assumptions: 

a.  Systems are prone to failure. Hence there is a 

need for self monitoring and self recovery from 

failure. 

b.   The file system stores a modest number of large 

files, where the file size is greater than 100 MB. 

c.   There are two types of reads: Large streaming 

reads of 1MB or more. These types of reads are from 

a contiguous region of a file by the same client. The 

other is a set of small random reads of a few KBs. 

d.    Many large sequential writes are performed. The 
writes are performed by appending data to files and 

once written the files are seldom modified. 

e.   Need to support multiple clients concurrently 

appending the same file. 

 

Architecture 

Master – Chunk Servers – Client 

 A GFS cluster consists of a single master 

and multiple chunkservers and is accessed by 

multiple clients. Files are divided into fixed-size 

chunks. Each chunk is identified by an immutable 
and globally unique 64 bit chunk handle assigned by 

the master at the time of chunk creation. 

Chunkservers store chunks on local disks as Linux 

files and read or write chunk data specified by a 

chunk handle and byte range. 

 For reliability, each chunk is replicated on 

multiple chunkservers. By default, we store three 

replicas, though users can designate different 

replication levels for different regions of the file 

namespace. The master maintains all file system 

metadata. This includes the namespace, access 

control information, the mapping from files to 
chunks, and the current locations of chunks. It also 

controls system-wide activities such as chunk lease 

management, garbage collection of orphaned 

chunks, and chunk migration between chunkservers. 

The master periodically communicates with each 

chunkserver in HeartBeat messages to give it 

instructions and collect its state. Neither the client 

nor the chunkserver caches file data. 

The GFS architecture diagram is shown below: 
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Figure 3: Google File System Architecture 

Chunk Size 

The GFS uses a large chunk size of 64MB. This has 

the following advantages: 

a.   Reduces clients’ need to interact with the master 

because reads and writes on the same chunk require 
only one initial request to the master for chunk 

location information. 

b.  Reduce network overhead by keeping a persistent 

TCP connection to the chunkserver over an extended 

period of time. 

c.   Reduces the size of the metadata stored on the 

master. This allows keeping the metadata in memory 

of master. 

 

File Access Method 

File Read 
A simple file read is performed as follows: 

a.   Client translates the file name and byte offset 

specified by the application into a chunk index 

within the file using the fixed chunk size. 

b.   It sends the master a request containing the file 

name and chunk index. 

c.   The master replies with the corresponding chunk 

handle and locations of the replicas. The client 

caches this information using the file name and 

chunk index as the key. 

d.  The client then sends a request to one of the 

replicas, most likely the closest one. The request 
specifies the chunk handle and a byte range within 

that chunk. 

e.   Further reads of the same chunk require no more 

client-master interaction until the cached 

information expires or the file is reopened. 

 

This file read sequence is illustrated below: 

 
Figure 4: File Read System 

 

 

File Write 

The control flow of a write is given below as 

numbered steps: 

1.   Client translates the file name and byte offset 

specified by the application into a chunk index 

within the file using the fixed chunk size. It sends 

the master a request containing the file name and 
chunk index. 

2.   The master replies with the corresponding chunk 

handle and locations of the replicas 

3.   The client pushes the data to all the replicas. 

Data stored in internal buffer of chunkserver. 

4.   Client sends a write request to the primary. The 

primary assigns serial numbers to all the write 

requests it receives. Perform write on data it stores in 

the serial number order 

5.   The primary forwards the write request to all 

secondary replicas 

6.   The secondaries all reply to the primary on 
completion of write 

7.   The primary replies to the client. 

 
Figure 5: A File Write Sequence 

 

Replication and Consistency 

Consistency 

 The GFS applies mutations to a chunk in 

the same order on all its replicas. A mutation is an 

operation that changes the contents or metadata of a 

chunk such as a write or an append operation. It uses 
the chunk version numbers to detect any replica that 

has become stale due to missed mutations while its 

chunkserver was down. The chance of a client 

reading from a stale replica stored in its cache is 

small. This is because the cache entry uses a timeout 

mechanism. Also, it purges all chunk information for 

that file on the next file open. 

 

Replication 

The GFS employs both chunk replication and master 

replication for added reliability. 
 

System Availability 

 The GFS supports Fast Recovery to ensure 

availability. Both the master and the chunkserver are 
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designed to restore their state and start in seconds no 

matter how they terminated. The normal and 

abnormal termination are not distinguished. Hence, 

any fault will result in the same recovery process as 

a successful termination. 

 

Data Integrity  
 The GFS employs a checksum mechanism 

to ensure integrity of data being read / written. A 32 

bit checksum is included for every 64KB block of 

chunk. For reads, the chunkserver verifies the 

checksum of data blocks that overlap the read range 

before returning any data to the requester. For writes 

(append to end of a chunk) incrementally update the 

checksum for the last partial checksum block, and 

compute new checksums for any brand new 

checksum blocks filled by the append. 

 

Limitations of the GFS 
1. No standard API such as POSIX for 

programming. 

2. The Application / client have opportunity to get a 

stale chunk replica, though this probability is low. 

3. Some of the performance issues depend on the 

client and application implementation. 

4. If a write by the application is large or straddles a 

chunk boundary, it may be added fragments from 

other clients. 

 

V.  CASE STUDY 4: HADOOP FILE SYSTEM 
 The Hadoop is a distributed parallel fault 

tolerant file system inspired by the Google File 

System. It was designed to reliably store very large 

files across machines in a large cluster. Each file 

stored as a sequence of blocks; all blocks in a file 

except the last block are the same size. Blocks 

belonging to a file are replicated for fault tolerance. 
The block size and replication factor are 

configurable per file. The files are “write once” and 

have strictly one writer at any time. This DFS has 

been used by Facebook and Yahoo. 

 

Architecture 

 The file system metadata and application 

data stored separately. The Metadata stored on a 

dedicated server called the NameNode. Application 

data are stored on other servers called DataNodes. 

All servers are fully connected and communicate 
with each other using TCP-based protocols. File 

content is split into large blocks (typically 128MB) 

and each block of the file is independently replicated 

at multiple DataNodes for reliability. 

 

Name Node 

 The files and directories represented by 

inodes, which record attributes like permissions, 

modification and access times, namespace and disk 

space quotas. The metadata comprising the inode 

data and the list of blocks belonging to each file is 

called the Image. Checkpoints are the persistent 

record of the image stored in the local host’s native 

files system. The modification log of the image 

stored in the local host’s native file system is 

referred to as the Journal. During restarts the 

NameNode restores the namespace by reading the 

namespace and replaying the journal. 

 

Data Node 

 Each block replica on a DataNode is 

represented by two files in the local host’s native file 

system. The first file contains the data itself and the 

second file is block’s metadata including checksums 

for the block data and the block’s generation stamp. 

The size of the data file equals the actual length of 

the block and does not require extra space to round it 

up to the nominal block size as in traditional file 

systems. Thus, if a block is half full it needs only 

half of the space of the full block on the local drive. 

During startup each DataNode connects to the 
NameNode and performs a handshake. The purpose 

of the handshake is to verify the namespace ID and 

the software version of the DataNode. If either does 

not match that of the NameNode the DataNode 

automatically shuts down. A DataNode identifies 

block replicas in its possession to the NameNode by 

sending a block report. A block report contains the 

block id, the generation stamp and the length for 

each block replica the server hosts. The first block 

report is sent immediately after the DataNode 

registration. Subsequent block reports are sent every 
hour and provide the NameNode with an up-to date 

view of where block replicas are located on the 

cluster. 

 

File Access Method 

File Read 

 When an application reads a file, the HDFS 

client first asks the NameNode for the list of 

DataNodes that host replicas of the blocks of the file. 

It then contacts a DataNode directly and requests the 

transfer of the desired block. 

 

File Write 

 When a client writes, it first asks the 

NameNode to choose DataNodes to host replicas of 

the first block of the file. The client organizes a 

pipeline from node-to-node and sends the data. 

When the first block is filled, the client requests new 

DataNodes to be chosen to host replicas of the next 

block. A new pipeline is organized, and the client 

sends the further bytes of the file. Each choice of 

DataNodes is likely to be different. 

 

Synchronization  

 The Hadoop DFS implements a single-

writer, multiple-reader model. The Hadoop client 

that opens a file for writing is granted a lease for the 

file; no other client can write to the file. The writing 

client periodically renews the lease. When the file is 

closed, the lease is revoked. The writer's lease does 
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not prevent other clients from reading the file; a file 

may have many concurrent readers. 

The interactions involved are shown in the figure 

below: 

 
Figure 4: File Access in Hadoop 

 

Replication Management 

 The blocks are replicated for reliability. 

Hadoop has a method to identify and overcome the 

issues of under-replication and over- replication. The 

default number of replicas for each block is 3. 

NameNode detects that a block has become under- 
or over-replicated based on DataNode’s block 

report. If over replicated, the NameNode chooses a 

replica to remove. Preference is given to remove 

from the DataNode with the least amount of 

available disk space. If under-replicated, it is put in 

the replication priority queue. A block with only one 

replica has the highest priority, while a block with a 

number of replicas that is greater than two thirds of 

its replication factor has the lowest priority. It also 

ensures that not all replicas of a block are located on 

same physical location. 

 

Consistency 

 The Hadoop DFS use checksums with each 

data block to maintain data consistency. The 

checksums are verified by the client while reading to 

help detect corruption caused either by the client, the 

DataNodes, or network. When a client creates an 

HDFS file, it computes the checksum sequence for 

each block and sends it to a DataNode along with the 

data. DataNode stores checksums in a metadata file 

separate from the block’s data file. When HDFS 

reads a file, each block’s data and checksums are 
returned to the client. 

 

Limitations of Hadoop DFS 

1. Centralization: The Hadoop system uses a 

centralized master server. So, the Hadoop cluster is 

effectively unavailable when its NameNode is down. 

Restarting the NameNode has been a satisfactory 

recovery method so far and steps being taken 

towards automated recovery. 

2. Scalability: Since the NameNode keeps all the 

namespace and block locations in memory, the size 

of the NameNode heap limits number of files and 
blocks addressable. One solution is to allow multiple 

namespaces (and NameNodes) to share the physical 

storage within a cluster. 

VI.  COMPARISON OF FILE SYSTEMS  

File System AFS NFS GFS Hadoop 

Architecture symmetric symmetric Clustered-
based, 
asymmetric, 

parallel, 
objectbased 

Clustered-
based, 
asymmetric

, parallel, 
objectbased 

Processes Stateless Stateless Stateful Stateful 

Communication  RPC/ 

TCP 

RPC/ 

TCP or 
UDP 

RPC/TCP RPC/TCP 

& UDP 

Naming  -  - Central 
metadata 
server 

Central 
metadata 
server 

Synchronizatio

n 

Callback 

promise 

Read-

ahead, 
delayed
-write 

Write-once-

read-many, 

Multiple 

producer/Sing

le consumer, 

Give locks on 

objects to 

clients, using 

leases 

Write-

once-read-
many, give 
locks on 
objects to 
clients, 
using 
leases 

Consistency 
and  
Replication 

Callback 
mechanis
m 

 One 

copy 
semantics

, read 

only file 

stores 

can be 

replicate

d 

Server side 

replication, 

Asynchronous 

replication, 

checksum, 

relax 

consistency 

Among 

replications of 

data objects 

Server side 

replication, 

Asynchrono

us 

replication, 

Checksum 

Fault 
Tolerance 

Failure as 
norm 

Failure 
as norm 

Failure as 
norm 

Failure as 
norm 

Table 1: Comparision of AFS, NFS, GFS and 

Hadoop 

 

VII.  CONCLUSION 
 In this paper the Distributed Systems 

implementations of Andrew, Sun Network, Google 

and Hadoop are reviewed with their Architecture, 
File System implementation, replication and 

concurrency control techniques. The filesystems are 

also compared based on their implementation. 
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