
S.Jagadeesh
 1
, K.Ravinder

 2
, Dr.M.Ashok / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 3, Issue 1, January -February 2013, pp.1054-1060

1054 | P a g e

SOC TRACER ARCHICTECTURE USING AHB BUS

S.JAGADEESH
 1
, K.RAVINDER

 2
, DR.M.ASHOK

 3

1Associate Professor & HOD, Department of Electronics and Communication Engineering, Sri Sai Jyothi

Engineering College, Gandipet, JNTUH(A. P.), India
2P.G. Student, M.Tech. (VLSI), Department of Electronics and Communication Engineering, Sri Sai Jyothi

Engineering College, Gandipet, JNTUH(A. P.), India
3 Professor, Department of Computer Science and Engineering, Sri Sai Jyothi Engineering College,

Gandipet,JNTUH(A. P.), India

ABSTRACT
In the system-on-chip (SoC) debugging

and performance analysis/optimization,

monitoring the on-chip bus signals are necessary.

But, such signals are difficult to observe since they

are deeply embedded in a SoC and no sufficient

I/O pins to access those signals. Therefore, we

embed a bus tracer in SoC to capture the bus

signals and store them. The stored trace memory

can be loaded to the trace analyzer software for

analysis. In this paper a multiresolution AHB On-

Chip bus tracer is proposed for system-on-chip

(SoC) debugging and monitoring which is capable

of capturing the bus trace with different

resolutions and efficient built-in compression

mechanisms. In addition, it allows the user to

switch the trace resolution dynamically so that

appropriate resolution levels can be applied to

different segments of the trace. It also supports

tracing after/before an event triggering, named

post-triggering trace/pre-triggering trace,

respectively. The SoC can be verified in field-

programmable gate array. A multiresolution AHB

on-chip bus tracer is named as SYS_HMRBT

(AHB Multiresolution Bus Tracer) and is used

monitoring. By using this SYS_HMRBT, we can

achieve 79%-96% of compression depending on

selected resolution mode.

 Keywords - AHB, on-chip bus, compression, multi-

resolution, tracing

1. Introduction
In the System-on-a-Chip (SoC) era, it is a

challenge to verify and debug system chip efficiently

and rapidly. For design verification and debugging at

system level and chip level, not only external I/O

signals observation, but also internal signals tracing

can help designer to efficiently analyze and verify the

design such as the software program, hardware

protocol, and system performance. SoC bus signal

tracing can be accomplished with either software or

hardware approaches. The software approach trace

only program address, and the cost of hardware

implementation of software approaches would be
high.On the other hand, the hardware approach can

trace signals at the target system directly. However,

the main problem with hardware-based tracing

techniques is that the cyclebased traces size is usually
extremely large.

To address the bus tracing issue, we propose an

embedded multi-resolution signal tracing for AMBA

AHB. The bus tracer consists of two major tracing

approaches: (1)signal monitor/tracing approach, and

(2) trace reduction approach. In the first approach, it

provides the trade-off between the trace accuracy and

the trace depth. Designers can decide to trace AHB

signals in detail or in rough depend on debugging

objectives; moreover, the trace granularities can be

changed while tracing is processed. In other words,

different trace strategy results can be stored in a single
trace file. In the second approach, the bus tracer

compresses the trace data according to AHB signal

characteristics such as address, data, and control

signals. The trace data will be decompressed on the

host, translated into VCD (Value Change Dump) [1]

format, and displayed on a waveform viewer. The bus

tracer is integrated into an ARM EASY (Example

AMBA System) [2] [3] environment with a 3D

graphic hardware acceleration system to demonstrate.

This paper presents a real-time multiresolution AHB
on-chip bus tracer, named SYSHMRBT (aHb

multiresolution bus tracer)[1]. The bus tracer adopts

three trace compression mechanisms to achieve high

trace compression ratio. It supports „multiresolution

tracing‟ by capturing traces at different timing and

signal abstraction levels. In addition, it provides the

„dynamic mode change‟ feature to allow users to

switch the resolution on-the-fly for different portions

of the trace to match specific debugging/analysis

needs. Given a trace memory of fixed size, the user

can trade off between the granularity and trace length
to make the most use of the trace memory. In

addition, the bus tracer is capable of tracing signals

before/after the event triggering, named pre- T/post-T

tracing, respectively. This feature provides a more

flexible tracing to focus on the interesting points.

The rest of this documentation is organized as

follows. Chapter1.1 surveys the related work.

Chapter2 illustrates the literature survey of abstraction

level. Chapter3 presents the hardware architecture of

S.Jagadeesh
 1
, K.Ravinder

 2
, Dr.M.Ashok / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 3, Issue 1, January -February 2013, pp.1054-1060

1055 | P a g e

our bus tracer. Chapter4 provides simulation results of

our bus tracer so as to analyze the expected errors

while processing the signal through bus tracer used in

SoC. . Finally, Chapter5 concludes this project and
gives directions for future research.

1.1 Related Work

Existing on-chip bus tracers mostly adopt lossless

compression approaches. ARM provides the AMBA

AHB trace macro-cell (HTM) [3] that is capable of

tracing AHB bus signals. We characterize the bus
signals into three categories: program address, data

address/data and control signals. For program

addresses, astraight forward way is to discard the

continuous instruction addresses and retain only the

discontinuous ones, so called branch/target filtering.

This approach has been used in some commercial

tracers, such as theTC1775 trace module in Tri Core

[5] and ARM’s Embedded Trace Macrocell (ETM)

[6],[4].For data address/value , the most popular

method is the differential approach which records the

difference between consecutive data. Since the

difference usually could be represented with less
number of bits than the original value, the information

size is reduced. For control signals, ARM HTM [3]

encodes them with the slice compression approach:

the control signal is recorded only when the value

changes. The spirit of a hardware tracer is its data

reduction or compression techniques. For program

address tracing, an intuitive way is to discard the

continuous instruction addresses and retain only the

discontinuous ones, such as the addresses of

branching and target instructions, with some hardware

filters. This approach has been used in some
commercial processors, such as TriCore [4] [5], and

ARM’s Embedded Trace Macrocell [6]. The hardware

overhead of these works is small since the filtering

mechanism is simple to implement in hardware.

However, the effectiveness of these techniques is

mainly limited by the average basic block size, which

is roughly around four or five instructions per basic

block, as reported in [7] and [8]. For data address and

value tracing, the most popular method is used the

differential approach based on subtraction. Some

researchers have shown that using the differential

method can reduce the data address and data values
traces by about 40 percent and 14 percent respectively

[9] [10]. Besides the address and data bus, there are

several control signals on system bus that need to be

traced. Some FPGA boards have built-in signal trace

tools, such as the Altera Signal Tap [11] and Xilinx

Chip- Scope [12]. FS2 AMBA Navigator [13]

supports bus clock mode and bus transfer mode to

trace bus signals on every clock and bus transfer

respectively. Trace buffer stores bus cycles or bus

transfers based on local internal memory size.

Although these approaches support multiple trace
modes such as tracing at cycle by-cycle or at signal

transaction, only one mode can use during a tracing

process. the transaction level. They point out that the

traditional hardware and software debugging cannot

work collaboratively, since the software debugging is
at the functional level and the hardware debugging is

at the signal level. As a solution, the transaction-level

debugging can provide software and hardware

designers a common abstraction level to diagnose

bugs collaboratively, and thus, help focus problems

quickly. Both works indicate that the transaction-level

debugging is a must in SoC development.

2. Abstraction level
This paper presents the multi-resolution

approach that can use different trace modes during a

bus signal tracing process. The transaction-level

debugging provides software and hardware designers

a common abstraction level to diagnose bugs. The

abstraction level is in two dimensions: timing

abstraction and signal abstraction. The timing

dimension has two abstraction levels which are the

cycle level and transaction level. The cycle level

captures the signals at every cycle. The transaction

level records the signals only when their value
changes. The signal dimension involves grouping of

AHB bus signals into four categories: program

address, data address/value, access control signals

(ACS), and protocol control signals (PCS). Then, we

define three abstraction levels for those signals. They

are full signal level, bus state level, and master

operation level. The full signal level captures all bus

signals. The bus state level further abstracts the PCS

by encoding them as states according to the bus-state-

machine (BSM).The states represent bus handshaking

activities within a bus transaction. The master state

level further abstracts the bus state level by only
recording the transfer activities of bus masters and

ignoring the handshaking activities within

transactions. This level also ignores the signals when

the bus state is IDLE, WAIT, and BUSY. The BSM is

designed based on the AMBA AHB 2.0 protocol to

represent the key bus handshaking activities within a

transaction. The transitions between BSM states

follow the AMBA protocol control signals.

Combining the abstraction levels in the timing

dimension and the signal dimension, we provide five

modes in different granularities They are Mode FC
(full signal, cycle level), Mode FT (full signal,

transaction level), Mode BC (bus state, cycle level),

Mode BT (bus state, transaction level), and Mode MT

(master state, transaction level). At Mode FC, the

tracer traces all bus signals cycle-by-cycle so the

detailed bus activities can be observed. At Mode FT,

the tracer traces all signals only when their values are

changed. At Mode BC, the tracer uses the BSM, such

as NORMAL, IDLE, ERROR, and so on, to represent

bus transfer activities in cycle accurate level. At Mode

BT, the tracer uses bus state to represent bus transfer

activities in transaction level Our bus tracer also

S.Jagadeesh
 1
, K.Ravinder

 2
, Dr.M.Ashok / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 3, Issue 1, January -February 2013, pp.1054-1060

1056 | P a g e

supports dynamic mode change (DMC) feature which

allows designers to change the trace mode

dynamically in real-time.

The post-T trace captures signals after a triggering
event, while the pre-T trace captures signals before

the triggering event. The post-T trace is usually used

to observe signals after a known event. The pre-T

trace is used to diagnose the cause for unexpected

errors by capturing the signals before the errors. In

order to overcome the problem, we adopt a periodical

triggering technique.

We divide the entire trace into several independent

small traces. Destroying the initial state of one trace

does not affect other traces since every trace has its

own initial state. This technique can be accomplished
by periodically triggering a new trace. With minor

modification to their control circuitry it can be easily

accomplished by the existing trace compression

engines.

Fig. 1. BSM for encoding bus master behaviors.

TABLE I

 Signal Abstraction

AHB

Signals

Full

Signal

Bus State Master

Operation

Program

Address

All All Partial

Data

Address

All All Partial

ACS All All Partial

PCS All Encoded N/A

3. Hardware architecture of bus tracer

Fig. 2 is the bus tracer overview. It mainly contains

four parts: Event Generation Module, Abstraction

Module, Compression Modules, and Packing Module.

ule. The Event Generation Module controls the

start/stop time, the trace mode, and the trace depth of

traces. This information is sent to the following

modules. Based on the trace mode, the Abstraction
Module abstracts the signals in both timing dimension

and signal dimension. The abstracted data are further

compressed by the Compression Module to reduce the

data size. Finally, the compressed results are packed

with proper headers and written to the trace memory

by the Packing Module.

Fig. 2. SoC Tracer Architecture Using AHB Bus

3.1 Event Generation Module:

The trace and trace mode starting and
stopping are decided by event generation module. The

triggering events on the bus controlled by event

registers. The matching circuit is used to compare bus

activities with the events specified in the event

registers. We can connect an AHB bus protocol

checker (HPChecker) [10] to the Event Generation

Module, as shown in Fig.2, to capture the bus protocol

related trace.

TABLE II

Event Register

S.Jagadeesh
 1
, K.Ravinder

 2
, Dr.M.Ashok / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 3, Issue 1, January -February 2013, pp.1054-1060

1057 | P a g e

The Event Generation Module decides the starting

and stopping of a trace and its trace mode. The

module has configurable event registers which specify

the triggering events on the bus and a corresponding
matching circuit to compare the bus activity with the

events specified in the event registers. Optionally, this

module can also accept events from external modules.

Table II is the format of an event register.

3.2 Abstraction Module

This Module monitors the AMBA bus and

selects/filters signals based on the abstraction mode.

Depending on the abstraction mode, some signals are

ignored, and some signals are reduced.

Fig.3 Multiresolution abstraction trace modes

3.3 Compression Module

This Module monitors the AMBA bus and

selects/filters signals based on the abstraction mode.

Depending on the abstraction mode, some signals are
ignored, and some signals are reduced.

The purpose of the Compression Module is to reduce

the trace size. It accepts the signals from the

abstraction module. To achieve real-time

compression, the Compression Module is pipelined to

increase the performance. Every signal type has an

appropriate compression method, as shown in the

Figure-1 the program address is compressed by a

combination of the branch/target filtering, the

dictionary-based compression, and the slicing. The

data address and the data value are compressed by a

combination of the differential and encoding methods.
The ACS and PCS signals are compressed by the

dictionary-based compression. Details will be

discussed below Compression Mechanism.

3.3.1 Program Address Compression

We divide the program address compression

into three phases for the spatial locality and the

temporal locality. Figure-1 shows the compression
flow. There are three approaches: branch/target filter,

dictionary based compression, and slicing. Here we

have three parts in address compression:

--Branch/Target Filtering

--Dictionary based Compression

--Slicing

3.3.2 Branch/Target Filtering

This technique aims at the spatial locality of the

program address. Spatial locality exists since the

program addresses are sequential mostly. Software
programs (in assembly level) are composed by a

number of basic blocks and the instructions in each

basic block are sequential. Because of these

characteristics, Branch/target filtering can records

only the first instruction‟s address (Target) and the

last instruction‟s address (Branch) of a basic block.

The rest of the instructions are filtered since they are

sequential and predictable.

3.3.3 Dictionary-Based Compression

To further reduce the size, we take the advantage of

the temporal locality. Temporal locality exists since

the basic blocks repeat frequently (loop structure),

which implies the branch and target addresses after

Phase 1 repeat frequently. Therefore, we can use the

dictionary based compression.

Fig. 4 Block diagram of the dictionary based

compression circuit

3.3.4 Slicing

The miss address can also be compressed

with the Slicing approach. Because of the spatial

locality, the basic blocks are often near each other,

which means the high-order bits of branch/target

addresses nearly have no change. Therefore, the

concept of the Slicing is to reduce the data size by

recording only the different digits of two consecutive

miss addresses. To implement this concept in

hardware, the address is partitioned into several slices

of a equal size. The comparison between two
consecutive miss addresses is at the slice level. For

example, there are three address sequences: A

(0001_0010_0000), B (0001_0010_0110), C

(0001_0110_0110). At first, we record instruction A‟s

full address. Next, since the upper two slices of

address B are the same as that of the address A, only

the leastsignificant slice is recorded. For address C,

since the most significant slice is the same to that of

the address B, only the lower two slices are recorded.

Figure 5 shows the hardware architecture. It has the

register REG storing the previous data (dini-1).

S.Jagadeesh
 1
, K.Ravinder

 2
, Dr.M.Ashok / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 3, Issue 1, January -February 2013, pp.1054-1060

1058 | P a g e

Fig. 5 Block diagram of slicing circuit

3.3.5 Data Address/Value Compression

Data address and data value tends to be

irregular and random. Therefore, there is no effective

compression approach for data address/value.

Considering using minimal hardware resources to

achieve a good compression ratio, we use a
differential approach based on the subtraction. Figure

5 shows the hardware compressor. The register REG

saves the current datum dini and outputs the previous

datum dini-1. By comparing the current datum with

the previous data value, the three modules comp,

differential, and sizeof output the encoded results. The

comp module computes the sign bit (signed_bit) of

the difference value. The differential module

calculates the absolute difference value (value). Since

the absolute difference between two data value may

be small, we can neglect the leading zeros and use
fewer digits to record it. Therefore, the sizeof module

calculates the nonzero digit number (sizei) of the

difference. Finally, the encoded datum is sent to the

packing module along with sizei

Fig.6 Block diagram of differential compression

circuit

3.3.6 Control Signal Compression

We classify the AHB control signals into two

groups: access control signals (ACS) and protocol

control signals (PCS). ACS are signals about the data

access aspect, such as read/write, transfer size, and
burst operations[4s]. PCS are signals controlling the

transfer behavior, such as master request, transfer

type, arbitration, and transfer response. Control

signals have two characteristics. First, the same

combinations of the control signals repeat frequently,

while other combinations happen rarely or never

happen.

3.4 Packing Module

This Module receives the compressed data from the

compression module. It processes them and writes

them to the trace memory. Packet management,

circular buffer management, and mode change control

are managed by this module.

4. Compression Mechanism
To reduce the size, the compression

approaches are necessary. Since the signal

characteristics of the address value, the data value,

and the control signals are quite different, we propose

different compression approaches for them. They are

Program address compression, Branch/Target

filtering, Dictionary based compression, Slicing, Data

address/value compression, Control signal

compression. Integrating the bus tracer into a SoC is

done by simply tapping the bus tracer to the AHB

bus.An on-chip processor or an external debugging

host controls the bus tracer.

Real-time tracing is achieved when the bus tracer is

pipelined to meet the on-chip bus frequency. Since the

trace data processing is stream-based, the bus tracer

can be easily divided into more pipeline stages to

meet aggressive performance requirements.

4. Simulation Results

4.1 Checker Result

Fig.7. Checker Simulation Result

The output for this module is ERROR register of 44

bit length, in which each bit represents various

protocol errors of AHB. For example when reset

signal is high (HRESETn) then all the control signals

should be at initial state otherwise they will produce

an error. The protocol list is given in table.

4.2 Event Generator Result

This module is responsible for producing the

control signal for the tracer, which represents the start
and stop point of the trace. Trace_In_Progreess is the

output signal for this module. And this module also

S.Jagadeesh
 1
, K.Ravinder

 2
, Dr.M.Ashok / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 3, Issue 1, January -February 2013, pp.1054-1060

1059 | P a g e

produces mode of trace on which basis the tracer is

working.

Fig.8 Event Generation Simulation Result

4.3 Abstraction Result

Fig.9 Abstraction Simulation Result

Abstraction module takes the inputs from the AHB

bus and the Event Generation module. If divides the

AHB signals into ADDRESS signals, DATA signals
and control signals. It is also responsible for

producing the output depends on the mode of

operation. For example if the trace mode is in Full

cycle signal (FC) then it produces the output for every

clock cycle. If it is in Bus transaction mode first it

encodes the PCS control signals and generates the

output on transactions only.

4.4 Compression Result

The address, data and control signals from

the abstraction module are the inputs for the

compression module. The signals are compressed
based on different compression techniques.

Fig.10 Compression Simulation Result

4.5 Packing Result

Fig. 11 Packing Simulation Result

The compressed data is in the form of bits only. If we

transmit it directly to the memory, then there will be a

great problem at the decoder to differentiate the data.
So we have to attach the header for each data.

According to the header only decoder can find out the

different packets. Each buffer is of 32bits. Whenever

the data in one buffer is full, then that buffer gives the

data to the memory.

5. Conclusion
We have presented an on-chip bus tracer

SYS-HMRBT for the development, integration,
debugging, monitoring, and tuning of AHB based

SoC‟s. It is attached to the on-chip AHB bus and is

capable of capturing and compressing in real time the

bus traces with five modes of resolution. This is the

S.Jagadeesh
 1
, K.Ravinder

 2
, Dr.M.Ashok / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 3, Issue 1, January -February 2013, pp.1054-1060

1060 | P a g e

advantage of the Bus Tracer used in SoC.These

modes could be dynamically switched while tracing.

The bus tracer also supports both directions of traces:

pre-T trace (trace before the triggering event) and
post-T trace (trace after the triggering event). In

addition, a graphical user interface, running on a host

PC, has been developed to configure the bus tracer

and analyze the captured traces. With the

aforementioned features, SYS-HMRBT supports a

diverse range of design/debugging/ monitoring

activities, including module development, chip

integration, hardware/software integration and

debugging, system behavior monitoring, system

performance/power analysis and optimization, etc.

The users are allowed to tradeoff between trace
granularity and trace depth in order to make the most

use of the on-chip trace memory or I/O pins.In the

future, we would extend this work to more advanced

buses/connects such as AXI or OCP. In addition, with

its real time abstraction capability, we would like to

explore the possibility of bridging our bus tracer with

ESL design methodology for advanced

hardware/software co development/debugging/

monitoring/analysis, etc.

REFERENCES
[1] E. E. Johnson, J. Ha, and M. B. Zaidi,

―Lossless trace compression,‖ IEEE Trans.

Comput., vol. 50, pp. 158–173, Feb. 2001.

[2] CoreSight: V1.0 Architecture Specification,

ARM.

[3] R. Leatherman and N. Stollon, ―An embedded

debugging architecture for SoCs,‖ IEEE

Potentials, vol. 24, no. 1, pp. 12–16, Feb-Mar

2005.

[4] ARM Ltd., San Jose, CA, ―ARM. AMBA
AHB Trace Macrocell (HTM) technical

reference manual ARM DDI 0328D,‖ 2007.

[5] T. A. Welch, ―A technique for high-

performance data compression,‖IEEE Trans.

Comput., pp. 8–19, 1984.

[6] Embedded Trace Macrocell Architecture

Specification, ARM.

[7] C. MacNamee and D. Heffernan, ―Emerging

on-chip debugging techniques for real-time

embedded systems,‖ IEE Comput. Contr. Eng.

J., pp. 295–303, Dec. 2000.
[8] B. Tabara and K. Hashmi, ―Transaction-level

modeling and debug of SoCs,‖ presented at the

IP SoC Conf., France, 2004.

[9] ARM, AMBA Specification (Rev 2.0) ARM

IHI0011A, May 1999.

[10] C.C.Wang, AHB On-Chip Bus Protocol

Checker, 2007

[11] Fu-Ching Yang, Cheng-Lung Chiang and Ing-

Jer Huang, ―A Reverse-Encoding-Based On-

Chip Bus Tracer for Efficient Circular-Buffer

Utilization‖, IEEE Transactions on. Very Large

Scale Integration (VLSI) Systems, vol 18, Issue

: 5, p732 – 741, May 2010.

[12] Y.-T. Lin, W.-C. Shiue, and I.-J. Huang, ―A

multi-resolution AHB bus tracer for read-time
compression of forward/backward traces in a

curcular buffer,‖ in Proc. Des. Autom. Conf.

(DAC), Jul. 2008, pp. 862–865.

[13] AMBA Navigator Spec Sheet, First Silicon

Solutions (FS2) Inc.

