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ABSTRACT 
In the system-on-chip (SoC) debugging 

and performance analysis/optimization, 

monitoring the on-chip bus signals are necessary. 

But, such signals are difficult to observe since they 

are deeply embedded in a SoC and no sufficient 

I/O pins to access those signals. Therefore, we 

embed a bus tracer in SoC to capture the bus 

signals and store them. The stored trace memory 

can be loaded to the trace analyzer software for 

analysis. In this paper a multiresolution AHB On-

Chip bus tracer is proposed for system-on-chip 

(SoC) debugging and monitoring which is capable 

of capturing the bus trace with different 

resolutions and efficient built-in compression 

mechanisms. In addition, it allows the user to 

switch the trace resolution dynamically so that 

appropriate resolution levels can be applied to 

different segments of the trace. It also supports 

tracing after/before an event triggering, named 

post-triggering trace/pre-triggering trace, 

respectively. The SoC can be verified in field-

programmable gate array. A multiresolution AHB 

on-chip bus tracer is named as SYS_HMRBT 

(AHB Multiresolution Bus Tracer) and is used 

monitoring. By using this SYS_HMRBT, we can 

achieve 79%-96% of compression depending on 

selected resolution mode. 

 Keywords - AHB, on-chip bus, compression, multi-

resolution, tracing  

 

1. Introduction 
In the System-on-a-Chip (SoC) era, it is a 

challenge to verify and debug system chip efficiently 

and rapidly. For design verification and debugging at 

system level and chip level, not only external I/O 

signals observation, but also internal signals tracing 

can help designer to efficiently analyze and verify the 

design such as the software program, hardware 

protocol, and system performance. SoC bus signal 

tracing can be accomplished with either software or 

hardware approaches. The software approach trace 

only program address, and the cost of hardware 

implementation of software approaches would be 
high.On the other hand, the hardware approach can 

trace signals at the target system directly. However,  

 

 

 

the main problem with hardware-based tracing 

techniques is that the cyclebased traces size is usually 
extremely large.  

To address the bus tracing issue, we propose an 

embedded multi-resolution signal tracing for AMBA 

AHB. The bus tracer consists of two major tracing 

approaches: (1)signal monitor/tracing approach, and 

(2) trace reduction approach. In the first approach, it 

provides the trade-off between the trace accuracy and 

the trace depth. Designers can decide to trace AHB 

signals in detail or in rough depend on debugging 

objectives; moreover, the trace granularities can be 

changed while tracing is processed. In other words, 

different trace strategy results can be stored in a single 
trace file. In the second approach, the bus tracer 

compresses the trace data according to AHB signal 

characteristics such as address, data, and control 

signals. The trace data will be decompressed on the 

host, translated into VCD (Value Change Dump) [1] 

format, and displayed on a waveform viewer. The bus 

tracer is integrated into an ARM EASY (Example 

AMBA System) [2] [3] environment with a 3D 

graphic hardware acceleration system to demonstrate.  

 

This paper presents a real-time multiresolution AHB 
on-chip bus tracer, named SYSHMRBT (aHb 

multiresolution bus tracer)[1]. The bus tracer adopts 

three trace compression mechanisms to achieve high 

trace compression ratio. It supports „multiresolution 

tracing‟ by capturing traces at different timing and 

signal abstraction levels. In addition, it provides the 

„dynamic mode change‟ feature to allow users to 

switch the resolution on-the-fly for different portions 

of the trace to match specific debugging/analysis 

needs. Given a trace memory of fixed size, the user 

can trade off between the granularity and trace length 
to make the most use of the trace memory. In 

addition, the bus tracer is capable of tracing signals 

before/after the event triggering, named pre- T/post-T 

tracing, respectively. This feature provides a more 

flexible tracing to focus on the interesting points.  

 

The rest of this documentation is organized as 

follows. Chapter1.1 surveys the related work. 

Chapter2 illustrates the literature survey of abstraction 

level. Chapter3 presents the hardware architecture of 
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our bus tracer. Chapter4 provides simulation results of 

our bus tracer so as to analyze the expected errors 

while processing the signal through bus tracer used in 

SoC. . Finally, Chapter5 concludes this project and 
gives directions for future research. 

 

1.1 Related Work  

Existing on-chip bus tracers mostly adopt lossless 

compression approaches. ARM provides the AMBA 

AHB trace macro-cell (HTM) [3] that is capable of 

tracing AHB bus signals. We characterize the bus 
signals into three categories: program address, data 

address/data and control signals. For program 

addresses, astraight forward way is to discard the 

continuous instruction addresses and retain only the 

discontinuous ones, so called branch/target filtering. 

This approach has been used in some commercial 

tracers, such as theTC1775 trace module in Tri Core 

[5] and ARM’s Embedded Trace Macrocell (ETM) 

[6],[4].For data address/value , the most popular 

method is the differential approach which records the 

difference between consecutive data. Since the 

difference usually could be represented with less 
number of bits than the original value, the information 

size is reduced. For control signals, ARM HTM [3] 

encodes them with the slice compression approach: 

the control signal is recorded only when the value 

changes. The spirit of a hardware tracer is its data 

reduction or compression techniques. For program 

address tracing, an intuitive way is to discard the 

continuous instruction addresses and retain only the 

discontinuous ones, such as the addresses of 

branching and target instructions, with some hardware 

filters. This approach has been used in some 
commercial processors, such as TriCore [4] [5], and 

ARM’s Embedded Trace Macrocell [6]. The hardware 

overhead of these works is small since the filtering 

mechanism is simple to implement in hardware. 

However, the effectiveness of these techniques is 

mainly limited by the average basic block size, which 

is roughly around four or five instructions per basic 

block, as reported in [7] and [8]. For data address and 

value tracing, the most popular method is used the 

differential approach based on subtraction. Some 

researchers have shown that using the differential 

method can reduce the data address and data values 
traces by about 40 percent and 14 percent respectively 

[9] [10]. Besides the address and data bus, there are 

several control signals on system bus that need to be 

traced. Some FPGA boards have built-in signal trace 

tools, such as the Altera Signal Tap [11] and Xilinx 

Chip- Scope [12]. FS2 AMBA Navigator [13] 

supports bus clock mode and bus transfer mode to 

trace bus signals on every clock and bus transfer 

respectively. Trace buffer stores bus cycles or bus 

transfers based on local internal memory size. 

Although these approaches support multiple trace 
modes such as tracing at cycle by-cycle or at signal 

transaction, only one mode can use during a tracing 

process. the transaction level. They point out that the 

traditional hardware and software debugging cannot 

work collaboratively, since the software debugging is 
at the functional level and the hardware debugging is 

at the signal level. As a solution, the transaction-level 

debugging can provide software and hardware 

designers a common abstraction level to diagnose 

bugs collaboratively, and thus, help focus problems 

quickly. Both works indicate that the transaction-level 

debugging is a must in SoC development. 

 

2. Abstraction level 
This paper presents the multi-resolution 

approach that can use different trace modes during a 

bus signal tracing process. The transaction-level 

debugging provides software and hardware designers 

a common abstraction level to diagnose bugs. The 

abstraction level is in two dimensions: timing 

abstraction and signal abstraction. The timing 

dimension has two abstraction levels which are the 

cycle level and transaction level. The cycle level 

captures the signals at every cycle. The transaction 

level records the signals only when their value 
changes. The signal dimension involves grouping of 

AHB bus signals into four categories: program 

address, data address/value, access control signals 

(ACS), and protocol control signals (PCS). Then, we 

define three abstraction levels for those signals. They 

are full signal level, bus state level, and master 

operation level. The full signal level captures all bus 

signals. The bus state level further abstracts the PCS 

by encoding them as states according to the bus-state-

machine (BSM).The states represent bus handshaking 

activities within a bus transaction. The master state 

level further abstracts the bus state level by only 
recording the transfer activities of bus masters and 

ignoring the handshaking activities within 

transactions. This level also ignores the signals when 

the bus state is IDLE, WAIT, and BUSY. The BSM is 

designed based on the AMBA AHB 2.0 protocol to 

represent the key bus handshaking activities within a 

transaction. The transitions between BSM states 

follow the AMBA protocol control signals. 

Combining the abstraction levels in the timing 

dimension and the signal dimension, we provide five 

modes in different granularities They are Mode FC 
(full signal, cycle level), Mode FT (full signal, 

transaction level), Mode BC (bus state, cycle level), 

Mode BT (bus state, transaction level), and Mode MT 

(master state, transaction level). At Mode FC, the 

tracer traces all bus signals cycle-by-cycle so the 

detailed bus activities can be observed. At Mode FT, 

the tracer traces all signals only when their values are 

changed. At Mode BC, the tracer uses the BSM, such 

as NORMAL, IDLE, ERROR, and so on, to represent 

bus transfer activities in cycle accurate level. At Mode 

BT, the tracer uses bus state to represent bus transfer 

activities in transaction level Our bus tracer also 
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supports dynamic mode change (DMC) feature which 

allows designers to change the trace mode 

dynamically in real-time.  

The post-T trace captures signals after a triggering 
event, while the pre-T trace captures signals before 

the triggering event. The post-T trace is usually used 

to observe signals after a known event. The pre-T 

trace is used to diagnose the cause for unexpected 

errors by capturing the signals before the errors. In 

order to overcome the problem, we adopt a periodical 

triggering technique.  

We divide the entire trace into several independent 

small traces. Destroying the initial state of one trace 

does not affect other traces since every trace has its 

own initial state. This technique can be accomplished 
by periodically triggering a new trace. With minor 

modification to their control circuitry it can be easily 

accomplished by the existing trace compression 

engines. 

 

Fig. 1. BSM for encoding bus master behaviors. 
 

TABLE I 

     Signal Abstraction 

AHB 

Signals 

Full 

Signal 

Bus State Master 

Operation 

Program 

Address 

All All Partial 

Data 

Address 

All All Partial 

ACS All All Partial 

PCS All Encoded N/A 

 

3. Hardware architecture of bus tracer 
 
Fig. 2 is the bus tracer overview. It mainly contains 

four parts: Event Generation Module, Abstraction 

Module, Compression Modules, and Packing Module. 

ule. The Event Generation Module controls the 

start/stop time, the trace mode, and the trace depth of 

traces. This information is sent to the following 

modules. Based on the trace mode, the Abstraction 
Module abstracts the signals in both timing dimension 

and signal dimension. The abstracted data are further 

compressed by the Compression Module to reduce the 

data size. Finally, the compressed results are packed 

with proper headers and written to the trace memory 

by the Packing Module. 

 

 
Fig. 2. SoC Tracer Architecture Using AHB Bus 

 

3.1 Event Generation Module: 

The trace and trace mode starting and 
stopping are decided by event generation module. The 

triggering events on the bus controlled by event 

registers. The matching circuit is used to compare bus 

activities with the events specified in the event 

registers. We can connect an AHB bus protocol 

checker (HPChecker) [10] to the Event Generation 

Module, as shown in Fig.2, to capture the bus protocol 

related trace.  

TABLE II  

Event Register 
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The Event Generation Module decides the starting 

and stopping of a trace and its trace mode. The 

module has configurable event registers which specify 

the triggering events on the bus and a corresponding 
matching circuit to compare the bus activity with the 

events specified in the event registers. Optionally, this 

module can also accept events from external modules. 

Table II is the format of an event register. 

 

3.2 Abstraction Module  

This Module monitors the AMBA bus and 

selects/filters signals based on the abstraction mode. 

Depending on the abstraction mode, some signals are 

ignored, and some signals are reduced.  

 

Fig.3 Multiresolution abstraction trace modes 

3.3 Compression Module  

This Module monitors the AMBA bus and 

selects/filters signals based on the abstraction mode. 

Depending on the abstraction mode, some signals are 
ignored, and some signals are reduced.  

The purpose of the Compression Module is to reduce 

the trace size. It accepts the signals from the 

abstraction module. To achieve real-time 

compression, the Compression Module is pipelined to 

increase the performance. Every signal type has an 

appropriate compression method, as shown in the 

Figure-1 the program address is compressed by a 

combination of the branch/target filtering, the 

dictionary-based compression, and the slicing. The 

data address and the data value are compressed by a 

combination of the differential and encoding methods. 
The ACS and PCS signals are compressed by the 

dictionary-based compression. Details will be 

discussed below Compression Mechanism. 

3.3.1 Program Address Compression 

We divide the program address compression 

into three phases for the spatial locality and the 

temporal locality. Figure-1 shows the compression 
flow. There are three approaches: branch/target filter, 

dictionary based compression, and slicing. Here we 

have three parts in address compression: 

 

--Branch/Target Filtering 

--Dictionary based Compression 

--Slicing 

 

3.3.2 Branch/Target Filtering 

 

This technique aims at the spatial locality of the 

program address. Spatial locality exists since the 

program addresses are sequential mostly. Software 
programs (in assembly level) are composed by a 

number of basic blocks and the instructions in each 

basic block are sequential. Because of these 

characteristics, Branch/target filtering can records 

only the first instruction‟s address (Target) and the 

last instruction‟s address (Branch) of a basic block. 

The rest of the instructions are filtered since they are 

sequential and predictable. 

3.3.3 Dictionary-Based Compression 

 

To further reduce the size, we take the advantage of 

the temporal locality. Temporal locality exists since 

the basic blocks repeat frequently (loop structure), 

which implies the branch and target addresses after 

Phase 1 repeat frequently. Therefore, we can use the 

dictionary based compression. 

 
Fig. 4 Block diagram of the dictionary based 

compression circuit 

3.3.4 Slicing 

The miss address can also be compressed 

with the Slicing approach. Because of the spatial 

locality, the basic blocks are often near each other, 

which means the high-order bits of branch/target 

addresses nearly have no change. Therefore, the 

concept of the Slicing is to reduce the data size by 

recording only the different digits of two consecutive 

miss addresses. To implement this concept in 

hardware, the address is partitioned into several slices 

of a equal size. The comparison between two 
consecutive miss addresses is at the slice level. For 

example, there are three address sequences: A 

(0001_0010_0000), B (0001_0010_0110), C 

(0001_0110_0110). At first, we record instruction A‟s 

full address. Next, since the upper two slices of 

address B are the same as that of the address A, only 

the leastsignificant slice is recorded. For address C, 

since the most significant slice is the same to that of 

the address B, only the lower two slices are recorded. 

Figure 5 shows the hardware architecture. It has the 

register REG storing the previous data (dini-1). 
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Fig. 5 Block diagram of slicing circuit 

 

3.3.5 Data Address/Value Compression 

Data address and data value tends to be 

irregular and random. Therefore, there is no effective 

compression approach for data address/value. 

Considering using minimal hardware resources to 

achieve a good compression ratio, we use a 
differential approach based on the subtraction. Figure 

5 shows the hardware compressor. The register REG 

saves the current datum dini and outputs the previous 

datum dini-1. By comparing the current datum with 

the previous data value, the three modules comp, 

differential, and sizeof output the encoded results. The 

comp module computes the sign bit (signed_bit) of 

the difference value. The differential module 

calculates the absolute difference value (value). Since 

the absolute difference between two data value may 

be small, we can neglect the leading zeros and use 
fewer digits to record it. Therefore, the sizeof module 

calculates the nonzero digit number (sizei) of the 

difference. Finally, the encoded datum is sent to the 

packing module along with sizei 

 

 
Fig.6 Block diagram of differential compression 

circuit 

 

3.3.6 Control Signal Compression 

We classify the AHB control signals into two 

groups: access control signals (ACS) and protocol 

control signals (PCS). ACS are signals about the data 

access aspect, such as read/write, transfer size, and 
burst operations[4s]. PCS are signals controlling the 

transfer behavior, such as master request, transfer 

type, arbitration, and transfer response. Control 

signals have two characteristics. First, the same 

combinations of the control signals repeat frequently, 

while other combinations happen rarely or never 

happen. 

 

3.4 Packing Module  

This Module receives the compressed data from the 

compression module. It processes them and writes 

them to the trace memory. Packet management, 

circular buffer management, and mode change control 

are managed by this module. 

 

4. Compression Mechanism  
To reduce the size, the compression 

approaches are necessary. Since the signal 

characteristics of the address value, the data value, 

and the control signals are quite different, we propose 

different compression approaches for them. They are 

Program address compression, Branch/Target 

filtering, Dictionary based compression, Slicing, Data 

address/value compression, Control signal 

compression. Integrating the bus tracer into a SoC is 

done by simply tapping the bus tracer to the AHB 

bus.An on-chip processor or an external debugging 

host controls the bus tracer.  
 

Real-time tracing is achieved when the bus tracer is 

pipelined to meet the on-chip bus frequency. Since the 

trace data processing is stream-based, the bus tracer 

can be easily divided into more pipeline stages to 

meet aggressive performance requirements. 

 

4. Simulation Results 
 
4.1 Checker Result 

 

 
Fig.7. Checker Simulation Result 

 

The output for this module is ERROR register of 44 

bit length, in which each bit represents various 

protocol errors of AHB. For example when reset 

signal is high (HRESETn) then all the control signals 

should be at initial state otherwise they will produce 

an error. The protocol list is given in table. 

 

4.2 Event Generator Result 

This module is responsible for producing the 

control signal for the tracer, which represents the start 
and stop point of the trace. Trace_In_Progreess is the 

output signal for this module. And this module also 
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produces mode of trace on which basis the tracer is 

working.  

 

 
Fig.8 Event Generation Simulation Result 

 

4.3 Abstraction Result 

 

 
Fig.9 Abstraction Simulation Result 

 

Abstraction module takes the inputs from the AHB 

bus and the Event Generation module. If divides the 

AHB signals into ADDRESS signals, DATA signals 
and control signals. It is also responsible for 

producing the output depends on the mode of 

operation. For example if the trace mode is in Full 

cycle signal (FC) then it produces the output for every 

clock cycle. If it is in Bus transaction mode first it 

encodes the PCS control signals and generates the 

output on transactions only. 

 

4.4 Compression Result 

The address, data and control signals from 

the abstraction module are the inputs for the 

compression module. The signals are compressed 
based on different compression techniques. 

 

 
Fig.10 Compression Simulation Result 

 

4.5 Packing Result 

 

 
Fig. 11 Packing Simulation Result 

 

The compressed data is in the form of bits only. If we 

transmit it directly to the memory, then there will be a 

great problem at the decoder to differentiate the data. 
So we have to attach the header for each data. 

According to the header only decoder can find out the 

different packets. Each buffer is of 32bits. Whenever 

the data in one buffer is full, then that buffer gives the 

data to the memory. 

 

5. Conclusion 
We have presented an on-chip bus tracer 

SYS-HMRBT for the development, integration, 
debugging, monitoring, and tuning of AHB based 

SoC‟s. It is attached to the on-chip AHB bus and is 

capable of capturing and compressing in real time the 

bus traces with five modes of resolution. This is the 
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advantage of the Bus Tracer used in SoC.These 

modes could be dynamically switched while tracing. 

The bus tracer also supports both directions of traces: 

pre-T trace (trace before the triggering event) and 
post-T trace (trace after the triggering event). In 

addition, a graphical user interface, running on a host 

PC, has been developed to configure the bus tracer 

and analyze the captured traces. With the 

aforementioned features, SYS-HMRBT supports a 

diverse range of design/debugging/ monitoring 

activities, including module development, chip 

integration, hardware/software integration and 

debugging, system behavior monitoring, system 

performance/power analysis and optimization, etc. 

The users are allowed to tradeoff between trace 
granularity and trace depth in order to make the most 

use of the on-chip trace memory or I/O pins.In the 

future, we would extend this work to more advanced 

buses/connects such as AXI or OCP. In addition, with 

its real time abstraction capability, we would like to 

explore the possibility of bridging our bus tracer with 

ESL design methodology for advanced 

hardware/software co development/debugging/ 

monitoring/analysis, etc. 
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