
K.Shiva Kumar, P.Deepthi / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 3, Issue 1, January -February 2013, pp.1005-1010

1005 | P a g e

Implementation of Complex interface bridge for LOW and HIGH

bandwidth Peripherals Using AXI4-Lite for AMBA

K.SHIVA KUMAR, P.DEEPTHI

BSIT,JNTUH,Chevella

SDGI,JNTUH,IBP

Abstract—The Advanced Microcontroller Bus

Architecture (AMBA) is a widely used

interconnection standard for System on Chip

(SoC) design. In order to support high-speed

pipelined data transfers, AMBA 4.0 supports a

rich set of bus signals, making the analysis of

AMBA-based embedded systems a challenging

Proposition. The goal of this paper is to synthesize

and simulate a complex interface bridge for

Advanced High performance Bus (AHB) as well as

Advanced Peripheral Bus (APB) to support for

both high bandwidth and low bandwidth data

transfer using a single AXI4.0 lite transaction. The

data transition distinction is made by N- bit

comparator which is designed for switching over

between APB and AHB. The Paper also involves

the Back annotation for Synthesized Net list of

Bridge module and to perform Functional and

Timing Simulation using Xilinx.

Keywords-SoC; AMBA; AXI; APB; AHB

I. INTRODUCTION
Integrated circuits has entered the era of

System-on-a-Chip (SoC), which refers to integrating

all components of a computer or other electronic

system into a single chip. It may contain digital,

analog, mixed-signal, and often radio -frequency

functions – all on a single chip substrate. With the

increasing design size, IP is an inevitable choice for

SoC design. And the widespread use of all kinds of

IPs has changed the nature of the design flow,
making On-Chip Buses (OCB) essential to the

design. Of all OCBs existing in the market, the

AMBA bus system is widely used as the de facto

standard SoC bus.

On March 8, 2010, ARM announced

availability of the AMBA 4.0 specifications. As the

de facto standard SoC bus, AMBA bus is widely used

in the high-performance SoC designs. The AMBA

specification defines an on-chip communication

standard for designing high-performance embedded

microcontrollers. The AMBA 4.0 specification
defines five buses/interfaces

 [1]
:

• Advanced extensible Interface (AXI)

• Advanced High-performance Bus (AHB)

• Advanced System Bus (ASB)

• Advanced Peripheral Bus (APB)

• Advanced Trace Bus (ATB)

AXI, the next generation of AMBA interface

defined in the AMBA 4.0 specification, is targeted at

high performance; high clock frequency system

designs and includes features which make it very

suitable for high speed sub-micrometer

interconnections.

 Separate address/control and data phases

 support for unaligned data transfers using

byte strobes

 burst based transactions with only start
address issued

 issuing of multiple outstanding addresses

 easy addition of register stages to provide

timing closure

II.TOP VIEW
2.1Block Diagram

 In this study, we focused mainly on the

implementation aspect of an AXI4-Lite to APB
bridge and also AHB bridge. It is required to bridge

the communication gap between low bandwidth

peripherals on APB with the high bandwidth ARM

Processors and/or other high-speed devices on

AHB. This is

to ensure that there is no data loss between AXI4.0 to

AHB and AXI4.0 to APB or wise versa.

 FIGURE 1. BLOCK DIAGRAM

The APB bridge provides an interface between the

K.Shiva Kumar, P.Deepthi / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 3, Issue 1, January -February 2013, pp.1005-1010

1006 | P a g e

high-performance AXI domain and the low-power

APB domain. It appears as a slave on AXI bus but as

a master on APB that can access up to sixteen slave

peripherals. Read and write transfers on the AXI bus
are converted into corresponding transfers on the

APB. The AHB bridge provides an interface between

the high-performance AXI domain and the low-power

AHB domain. It is very easy to study this paper as

two bridges separately and the results combined with

the n bit comparator will give clear picture of the

paper. First the main diagram is shown as above.

Then the two bridges will be studied separately.

2.2. Block Diagram of axi- 4lite to APB bridge

 The APB bridge provides an interface between the
high-performance AXI domain and the low-power

APB domain. It appears as a slave on AXI bus but as

a master on APB that can access up to sixteen slave

peripherals. Read and write transfers on the AXI bus

are converted into corresponding transfers on the

APB. The AXI4-Lite to APB bridge block diagram is

shown in Figure. 2

FIGURE 2. Block diagram of axi4- lite to APB

Bridge

A. AXI Handshake Mechanism

In AXI 4.0 specification, each channel has a

VALID and READY signal for handshaking [2]. The

source asserts VALID when the control information

or data is available. The destination asserts READY

when it can accept the control information or data.

Transfer occurs only when both the VALID and

READY are asserted. Figure. 3 show all possible

cases of VALID/READ handshaking. Note that when

source asserts VALID, the corresponding control

information or data must also be available at the same
time. The arrows in Figure. 3 indicate when the

transfer occurs. A transfer takes place at the positive

edge of clock. Therefore, the source needs a register

input to sample the READY signal. In the same way,

the destination needs a register input to sample the

VALID signal. Considering the situation of Figure.

3(c), we assume the source and destination use output

registers instead of combination circuit, they need one

cycle to pull low VALID/READY and sample the

VALID/RE ADY again at T4 cycle. When they

sample the VALID/REA DY again at T4, there

should be another transfer which is an error.

Therefore source and destination should use

combinational circuit as output. In short, AXI
protocol is suitable register input and combinational

output circuit.

The APB bridge buffers address, control and data

from AXI4-Lite, drives the APB peripherals and

returns data and response signal to the AXI4-Lite. It

decodes the address using an internal address map to

select the peripheral. The bridge is designed to

operate when the APB and AXI4-Lite have

independent clock frequency and phase. For every

AXI channel, invalid commands are not forwarded

and an error response generated. That is once an
peripheral accessed does not exist, the APB bridge

will generate DE CERR as response through the

response channel (read or write). And if the target

peripheral exists, but asserts PSLVERR, it will give a

SLVERR response.

Figure 3. Handshake mechanism

2.3. Block Diagram of axi- 4lite to AHB Bridge
AHB-Lite Master Interface:

• Supports incrementing burst transfers of length 4, 8,

16, and undefined burst length

• AHB-Lite master does not issue incrementing burst

transfers that cross 1 kB address boundaries

• Supports limited protection control

• Supports narrow transfers (8/16-bit transfers on a

32-bit data bus and 8/16/32-bit transfers on a 64-bit

data

bus)

 The AXI to AHB-Lite Bridge translates AXI4

transactions into AHB-Lite transactions. The bridge

K.Shiva Kumar, P.Deepthi / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 3, Issue 1, January -February 2013, pp.1005-1010

1007 | P a g e

functions as a slave on the AXI4 interface and as a

master on the AHB-Lite interface.

AXI4 Slave Interface

The AXI4 Slave Interface module provides a

bi-directional slave interface to the AXI. The AXI

address width is fixed at 32 bits. AXI data bus width

can be either 32 or 64 bit based on the parameter

C_S_AXI_DATA_WIDTH. AXI to AHB-Lite

Bridge supports the same data width on both AXI4

and AHB-Lite interfaces. When both write and read

transfers are simultaneously requested on AXI4, the
read request is given a higher priority than the write

request.

AXI Write State Machine

 AXI write state machine is part of the AXI4

slave interface module and functions on AXI4 write

channels. This module controls AXI4 write accesses

and generates the write response to AXI. If bridge

time out occurs, this module completes the AXI write

transaction with SLVERR response.

AXI Read State Machine

 AXI read state machine is part of the AXI4 slave

interface module and functions on AXI4 read

channels. This module controls the AXI4 read

accesses and generates the read response to AXI. If

bridge time out occurs, this module completes the

AXI read transaction with SLVERR response.

AHB-Lite Master Interface

 The AHB-Lite master interface module provides

the AHB-Lite master interface on the AHB-Lite. The

AHB-Lite
address width is fixed at 32 bit and data bus width

can be either 32 or 64 bit, based on the parameter

C_M_AHB_DATA_WIDTH.

C_M_AHB_DATA_WIDTH cannot be set by the

user, because it is updated

automatically with C_S_AXI_DATA_WIDTH.

AHB State Machine

 AHB state machine is part of the AHB-Lite

Master interface module.When AXI4 initiates the

write access, the AHB state machine module receives

the control signals and data from AXI4 slave

interface, then transfers the same to the equivalent

AHB-Lite write access. This module also transfers

the AHB-Lite write response to the AXI4 slave

interface.

When AXI4 initiates the read access, the AHB state
machine module receives the control signals from

AXI4 slave

interface, then transfers the same to the equivalent

AHB-Lite read access. This module also transfers

AHB-Lite read

data and read response to the AXI4 slave interface.

Time out Module

 The time out module generates the time out

when the AHB-Lite slave is not responding to the

AHB transaction.

This is parameterized and generates the time out only
when C_DPHASE_TIMEOUT value is nonzero.The

time out module waits for the duration of the

C_DPHASE_TIMEOUT number of AXI clocks for

AHB-Lite slave response, then generates the time out

if the AHB slave is not responding.

2.4. Migration from AXI To AHB

 With modern Systems on Chip including

multi-core clusters, additional DSP, graphics

controllers and other sophisticated peripherals, the

system fabric poses a critical performance bottleneck.
The AHB protocol, even in its multi-layer

configuration cannot keep up with the demands of

today's SoC. The reasons for this include:

1. AHB is transfer-oriented. With each transfer, an

address will be submitted and a single data item will

be written to or read from the selected slave. All

transfers will be initiated by the master. If the slave

cannot respond immediately to a transfer request the

master will be stalled. Each master can have only one

outstanding transaction.

2. Sequential accesses (bursts) consist of consecutive
transfers which indicate their relationship by

asserting HTRANS/HBURST accordingly.

3. Although AHB systems are multiplexed and thus

have independent read and write data buses, they

cannot operate in full-duplex mode.

 An AXI interface consists of up to five

channels which can operate largely independently of

each other. Each channel uses the same trivial

handshaking between source and destination (master

or slave, depending on channel direction), which

K.Shiva Kumar, P.Deepthi / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 3, Issue 1, January -February 2013, pp.1005-1010

1008 | P a g e

simplifies the interface design. Unlike AHB concept

is not an afterthought but is the central focus of the

protocol design. In AXI3 all transactions are bursts of

lengths between 1 and 16. The addition of byte
enable signals for the data bus supports unaligned

memory accesses and store merging.

 The communication between master and

slave is transaction-oriented, where each transaction

consists of address, data, and response transfers on

their corresponding channels. Apart from rather

liberal ordering rules there is no strict protocol-

enforced timing relation between individual phases of

a transaction. Instead every transfer identifies itself as

part of a specific transaction by its transaction ID tag.

Transactions may complete out-of-order and transfers
belonging to different transactions may be

interleaved. Thanks to the ID that every transfer

carries, out-of-order transactions can be sorted out at

the destination.

Figure 6.AXI channel handshake

Figure 7. AXI write burst

This flexibility requires all components in an

AXI system to agree on certain parameters, such as
write acceptance capability, read data reordering

depth and many others. Due to the vast number of

signals that make up a read/write AXI connection,

routing a large AXI fabric could be thought of as

rather challenging. However, the independent

channels in an AXI fabric make it possible to choose

a different routing structure depending on the

expected data volume on that channel. Given a

situation where the majority of transactions will

transfer more than one data item, data channels
should be routed via crossbar so that different streams

can be processed at the same time. Address and

response channels experience rather lower traffic and

could perhaps be multiplexed. Some experts consider

it an advantage to provide AXI only at the interface

level, while a special packetized routing protocol is

used inside the fabric, a so called Network-on-Chip.

 The AHB is a single-channel, shared bus.

The AXI is a multi-channel, read/write optimized

bus. Each bus master, or requesting bus port,

connects to the single-channel shared bus in the
AHB, while each AXI bus master connects to a Read

address channel, Read data channel, Write address

channel, Write data channel, and Write response

channel. The primary throughput channels for the

AXI are the Read/Write data channels, while the

address, response channels are to improve pipelining

of multiple requests. Assume there are four masters

on each bus going to three slaves. The four master

ports might include microprocessor, Direct Memory

Access (DMA), DSP, USB. The three slaves might

include on-chip RAM, off-chip SDRAM, and an APB

bus bridge.
 To approximate the bandwidth of the two

busses, one must count the number of read/write

channels of the AXI Bus – six for three bus slaves.

This suggests that the AHB Bus should support some

multiple of bus width and/or speed to match the data

throughput. The System Model can vary these

combinations with simple parameter changes,

however, the AHB bus speed was assumed to be

double the AXI Bus, and two times the width. This

will make the comparison of the two busses more

realistic.
 To evaluate the efficiency of both busses,

different burst sizes were selected; small, medium,

and large. Small equates to the width of the AHB

Bus, medium equates to two AHB Bus transfers, and

large equates to four AHB bus transfers.

 If the AXI is a 64 bit bus running at 200

MHz, then the AHB will be a 128 bit bus running at

400 MHz. The burst sizes will be: small (16 Bytes),

medium (32 Bytes), and large (64 Bytes).

III. SIMULATION & IMPLEMENTATION

The timing diagrams shown in Figure.8& 9

illustrate the AXI4-Lite to APB bridge operation and

AXI4-Lite to AHB bridge operation for various read

and write transfers. It shows that when both read and

write requests are active, read is given more priority.

K.Shiva Kumar, P.Deepthi / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 3, Issue 1, January -February 2013, pp.1005-1010

1009 | P a g e

Figure 8.APB typical read and write transfer

Figure 9.AHB typical read and write transfer

After synthesis and STA, the summary reports

gererated by the EDA tools (Synopsys Design

CompilerTM and Synopsys

Prime TimeTM) are shown in fallowing Figure.

V.CONCLUSION
In this study, we provide an implementation

of AXI4-Lite

to APB bridge and AXI4-Lite to AHB bridge which

has the following features:

 32-bit AXI slave and APB & AHB

master interfaces.

 PCLK clock domain completely

independent of ACLK clock domain.

 Support up to 16 APB & AHB peripherals.

K.Shiva Kumar, P.Deepthi / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 3, Issue 1, January -February 2013, pp.1005-1010

1010 | P a g e

 support the PREADY signal which

translate to wait

 States on AXI.

 an error on any transfer results in
SLVERR as the AXI read/write response.

VI.REFERENCES
[1] ARM, "AMBA Protocol Specification 4.0",

www.arm.com, 2010.

[2] Ying-Ze Liao, "System Design and

Implementation of AXI Bus",National Chiao

Tung University, October 2007.

[3] Clifford E. Cummings, "Coding And Scripting
Techniques For FSMDesigns With Synthesis-

Optimized, Glitch-Free Outputs," SNUG

(Synopsys Users Group Boston, MA 2000)

Proceedings, September2000.

[4] Clifford E. Cummings, “Synthesis and Scripting

Techniques forDesigning Multi-Asynchronous

Clock Designs,” SNUG 2001

[5] Chris Spear, "SystemVerilog for Verification,

2nd Edition",

Springer,www.springeronline.com, 2008.

[6] Lahir, K., Raghunathan A., Lakshminarayana
G., “LOTTERYBUS: anew high-performance

communication architecture for system-on-chip

deisgns,” in Proceedings of Design Automation

Conference, 2001.

[7] Sanghun Lee, Chanho Lee, Hyuk-Jae Lee, “A

new multi-channel onchip-bus architecture for

system-on-chips,” in Proceedings of IEEE

international SOC Conference, September 2004.

[8] Martino Ruggiero, Rederico Angiolini,

Francesco Poletti, DavideBertozzi, Luca 86

[9] Benini, Roberto Zafalon, “Scalability Analysis
of Evolving SoCInterconnect Protocols,” Int.

Symposium on System-on-Chip, 2004.

Lukai Cai, Daniel Gajski, “Transaction level

modeling: an overview,” inProceedings of the

1st IEEE/ACM/IFIP international conference on

Hardware/software codesign and system

synthesis, October 2003.

[10] Min-Chi Tsai, “Smart Memory Controller

Design for VideoApplications,” Master thesis:

National Chiao Tung University, July 2

