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Abstract—The Advanced Microcontroller Bus 

Architecture (AMBA) is a widely used 

interconnection standard for System on Chip 

(SoC) design. In order to support high-speed 

pipelined  data transfers, AMBA 4.0 supports a 

rich set of bus signals, making the analysis of 

AMBA-based embedded systems a challenging 

Proposition. The goal of this paper is to synthesize 

and simulate a complex interface bridge for 

Advanced High performance Bus (AHB) as well as 

Advanced Peripheral Bus (APB) to support for 

both high bandwidth and low bandwidth data 

transfer using a single AXI4.0 lite transaction. The 

data transition distinction is made by N- bit 

comparator which is designed for switching over 

between APB and AHB. The Paper also involves 

the Back annotation for Synthesized Net list of 

Bridge module and to perform Functional and 

Timing Simulation using Xilinx. 
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I. INTRODUCTION 
Integrated circuits has entered the era of 

System-on-a-Chip (SoC), which refers to integrating 

all components of a computer or other electronic 

system into a single chip. It may contain digital, 

analog, mixed-signal, and often radio -frequency 

functions – all on a single chip substrate. With the 

increasing design size, IP is an inevitable choice for 

SoC design. And the widespread use of all kinds of 

IPs has changed the nature of the design flow, 
making On-Chip Buses (OCB) essential to the 

design. Of all OCBs existing in the market, the 

AMBA bus system is widely used as the de facto 

standard SoC bus. 

On March 8, 2010, ARM announced 

availability of the AMBA 4.0 specifications. As the 

de facto standard SoC bus, AMBA bus is widely used 

in the high-performance SoC designs. The AMBA 

specification defines an on-chip communication 

standard for designing high-performance embedded 

microcontrollers. The AMBA 4.0 specification 
defines five buses/interfaces

 [1]
: 

 

• Advanced extensible Interface (AXI)  

• Advanced High-performance Bus (AHB)  

• Advanced System Bus (ASB)  

 

 

• Advanced Peripheral Bus (APB)  

• Advanced Trace Bus (ATB)  
 

AXI, the next generation of AMBA interface 

defined in the AMBA 4.0 specification, is targeted at 

high performance; high clock frequency system 

designs and includes features which make it very 

suitable for high speed sub-micrometer 

interconnections. 

 Separate address/control and data phases  

 support for unaligned data transfers using 

byte strobes  

 burst based transactions with only start 
address issued  

 issuing of multiple outstanding addresses  

 easy addition of register stages to provide 

timing closure  

 

II.TOP VIEW 
2.1Block Diagram  

     In this study, we focused mainly on the 

implementation aspect of an AXI4-Lite to APB 
bridge and also AHB  bridge. It is required to bridge 

the communication gap between low bandwidth 

peripherals on APB with the high bandwidth ARM 

Processors and/or other high-speed devices on 

AHB. This is                                                                                                                                                                     

to ensure that there is no data loss between AXI4.0 to 

AHB and AXI4.0 to APB or wise versa. 

                                                  

             FIGURE 1.    BLOCK DIAGRAM 

 

The APB bridge provides an interface between the 
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high-performance AXI domain and the low-power 

APB domain. It appears as a slave on AXI bus but as 

a master on APB that can access up to sixteen slave 

peripherals. Read and write transfers on the AXI bus 
are converted into corresponding transfers on the 

APB. The AHB bridge provides an interface between 

the high-performance AXI domain and the low-power 

AHB domain. It is very easy to study this paper as 

two bridges separately and the results combined with 

the n bit comparator will give clear picture of the 

paper. First the main diagram is shown as above. 

Then the two bridges will be studied separately. 

 

2.2. Block Diagram of axi- 4lite to APB  bridge 

 The APB bridge provides an interface between the 
high-performance AXI domain and the low-power 

APB domain. It appears as a slave on AXI bus but as 

a master on APB that can access up to sixteen slave 

peripherals. Read and write transfers on the AXI bus 

are converted into corresponding transfers on the 

APB. The AXI4-Lite to APB bridge block diagram is 

shown in Figure. 2 

 

 

 

 

 

 

 

FIGURE 2.   Block diagram of axi4- lite to APB 

Bridge 

A.  AXI Handshake Mechanism 

In AXI 4.0 specification, each channel has a 

VALID and READY signal for handshaking [2]. The 

source asserts VALID when the control information 

or data is available. The destination asserts READY 

when it can accept the control information or data. 

Transfer occurs only when both the VALID and 

READY are asserted. Figure. 3 show all possible 

cases of VALID/READ handshaking. Note that when 

source asserts VALID, the corresponding control 

information or data must also be available at the same 
time. The arrows in Figure. 3 indicate when the 

transfer occurs. A transfer takes place at the positive 

edge of clock. Therefore, the source needs a register 

input to sample the READY signal. In the same way, 

the destination needs a register input to sample the 

VALID signal. Considering the situation of Figure. 

3(c), we assume the source and destination use output 

registers instead of combination circuit, they need one 

cycle to pull low VALID/READY and sample the 

VALID/RE ADY again at T4 cycle. When they 

sample the VALID/REA DY again at T4, there 

should be another transfer which is an error. 

Therefore source and destination should use 

combinational circuit as output. In short, AXI 
protocol is suitable register input and combinational 

output circuit. 

The APB bridge buffers address, control and data 

from AXI4-Lite, drives the APB peripherals and 

returns data and response signal to the AXI4-Lite. It 

decodes the address using an internal address map to 

select the peripheral. The bridge is designed to 

operate when the APB and AXI4-Lite have 

independent clock frequency and phase. For every 

AXI channel, invalid commands are not forwarded 

and an error response generated. That is once an 
peripheral accessed does not exist, the APB bridge 

will generate DE CERR as response through the 

response channel (read or write). And if the target 

peripheral exists, but asserts PSLVERR, it will give a 

SLVERR response.  

                                                                                                              

 
Figure 3. Handshake mechanism 

 

2.3. Block Diagram of axi- 4lite to AHB Bridge 
AHB-Lite Master Interface: 

• Supports incrementing burst transfers of length 4, 8, 

16, and undefined burst length 

• AHB-Lite master does not issue incrementing burst 

transfers that cross 1 kB address boundaries 

• Supports limited protection control 

• Supports narrow transfers (8/16-bit transfers on a 

32-bit data bus and 8/16/32-bit transfers on a 64-bit 

data 

bus) 

           The AXI to AHB-Lite Bridge translates AXI4 

transactions into AHB-Lite transactions. The bridge 
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functions as a  slave on the AXI4 interface and as a 

master on the AHB-Lite interface.  

 

 
 

AXI4 Slave Interface 

The AXI4 Slave Interface module provides a 

bi-directional slave interface to the AXI. The AXI 

address width is fixed at 32 bits. AXI data bus width 

can be either 32 or 64 bit based on the parameter 

C_S_AXI_DATA_WIDTH. AXI to AHB-Lite 

Bridge supports the same data width on both AXI4 

and AHB-Lite interfaces. When both write and read 

transfers are simultaneously requested on AXI4, the 
read request is given a higher priority than the write 

request. 

 

AXI Write State Machine 

           AXI write state machine is part of the AXI4 

slave interface module and functions on AXI4 write 

channels. This module controls AXI4 write accesses 

and generates the write response to AXI. If bridge 

time out occurs, this module completes the AXI write 

transaction with SLVERR response. 

 

AXI Read State Machine 

        AXI read state machine is part of the AXI4 slave 

interface module and functions on AXI4 read 

channels. This module controls the AXI4 read 

accesses and generates the read response to AXI. If 

bridge time out occurs, this module completes the 

AXI read transaction with SLVERR response. 

 

AHB-Lite Master Interface 

      The AHB-Lite master interface module provides 

the AHB-Lite master interface on the AHB-Lite. The 

AHB-Lite 
address width is fixed at 32 bit and data bus width 

can be either 32 or 64 bit, based on the parameter 

C_M_AHB_DATA_WIDTH. 

C_M_AHB_DATA_WIDTH cannot be set by the 

user, because it is updated                                                                                                                                                                                                                                                                                          

automatically with C_S_AXI_DATA_WIDTH. 
 

AHB State Machine 

          AHB state machine is part of the AHB-Lite 

Master interface module.When AXI4 initiates the 

write access, the AHB state machine module receives 

the control signals and data from  AXI4 slave 

interface, then transfers the same to the equivalent 

AHB-Lite write access. This module also transfers 

the AHB-Lite write response to the AXI4 slave 

interface. 

When AXI4 initiates the read access, the AHB state 
machine module receives the control signals from 

AXI4 slave 

interface, then transfers the same to the equivalent 

AHB-Lite read access. This module also transfers 

AHB-Lite read 

data and read response to the AXI4 slave interface. 

 

Time out Module 

          The time out module generates the time out 

when the AHB-Lite slave is not responding to the 

AHB transaction. 

This is parameterized and generates the time out only 
when C_DPHASE_TIMEOUT value is nonzero.The 

time out module waits for the duration of the 

C_DPHASE_TIMEOUT number of AXI clocks for 

AHB-Lite slave response, then generates the time out 

if the AHB slave is not responding.  

 

2.4. Migration from AXI To AHB  

             With modern Systems on Chip including 

multi-core clusters, additional DSP, graphics 

controllers and other sophisticated peripherals, the 

system fabric poses a critical performance bottleneck. 
The AHB protocol, even in its multi-layer 

configuration cannot keep up with the demands of 

today's SoC. The reasons for this include:  

1. AHB is transfer-oriented. With each transfer, an 

address will be submitted and a single data item will 

be written to or read from the selected slave. All 

transfers will be initiated by the master. If the slave 

cannot respond immediately to a transfer request the 

master will be stalled. Each master can have only one 

outstanding transaction.  

2. Sequential accesses (bursts) consist of consecutive 
transfers which indicate their relationship by 

asserting HTRANS/HBURST accordingly.  

3. Although AHB systems are multiplexed and thus 

have independent read and write data buses, they 

cannot operate in full-duplex mode.  

                 An AXI interface consists of up to five 

channels which can operate largely independently of 

each other. Each channel uses the same trivial 

handshaking between source and destination (master 

or slave, depending on channel direction), which 
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simplifies the interface design. Unlike AHB concept 

is not an afterthought but is the central focus of the 

protocol design. In AXI3 all transactions are bursts of 

lengths between 1 and 16. The addition of byte 
enable signals for the data bus supports unaligned 

memory accesses and store merging.  

               The communication between master and 

slave is transaction-oriented, where each transaction 

consists of address, data, and response transfers on 

their corresponding channels. Apart from rather 

liberal ordering rules there is no strict protocol-

enforced timing relation between individual phases of 

a transaction. Instead every transfer identifies itself as 

part of a specific transaction by its transaction ID tag. 

Transactions may complete out-of-order and transfers 
belonging to different transactions may be 

interleaved. Thanks to the ID that every transfer 

carries, out-of-order transactions can be sorted out at 

the destination. 

 

 
Figure 6.AXI channel handshake 

 

 
Figure 7. AXI write burst 

 

This flexibility requires all components in an 

AXI system to agree on certain parameters, such as 
write acceptance capability, read data reordering 

depth and many others. Due to the vast number of 

signals that make up a read/write AXI connection, 

routing a large AXI fabric could be thought of as 

rather challenging. However, the independent 

channels in an AXI fabric make it possible to choose 

a different routing structure depending on the 

expected data volume on that channel. Given a 

situation where the majority of transactions will 

transfer more than one data item, data channels 
should be routed via crossbar so that different streams 

can be processed at the same time. Address and 

response channels experience rather lower traffic and 

could perhaps be multiplexed. Some experts consider 

it an advantage to provide AXI only at the interface 

level, while a special packetized routing protocol is 

used inside the fabric, a so called Network-on-Chip. 

              The AHB is a single-channel, shared bus. 

The AXI is a multi-channel, read/write optimized 

bus. Each bus master, or requesting bus port, 

connects to the single-channel shared bus in the 
AHB, while each AXI bus master connects to a Read 

address channel, Read data channel, Write address 

channel, Write data channel, and Write response 

channel. The primary throughput channels for the 

AXI are the Read/Write data channels, while the 

address, response channels are to improve pipelining 

of multiple requests. Assume there are four masters 

on each bus going to three slaves. The four master 

ports might include microprocessor, Direct Memory 

Access (DMA), DSP, USB. The three slaves might 

include on-chip RAM, off-chip SDRAM, and an APB 

bus bridge.  
        To approximate the bandwidth of the two 

busses, one must count the number of read/write 

channels of the AXI Bus – six for three bus slaves. 

This suggests that the AHB Bus should support some 

multiple of bus width and/or speed to match the data 

throughput. The System Model can vary these 

combinations with simple parameter changes, 

however, the AHB bus speed was assumed to be 

double the AXI Bus, and two times the width. This 

will make the comparison of the two busses more 

realistic.  
          To evaluate the efficiency of both busses, 

different burst sizes were selected; small, medium, 

and large. Small equates to the width of the AHB 

Bus, medium equates to two AHB Bus transfers, and 

large equates to four AHB bus transfers.  

             If the AXI is a 64 bit bus running at 200 

MHz, then the AHB will be a 128 bit bus running at 

400 MHz. The burst sizes will be: small (16 Bytes), 

medium (32 Bytes), and large (64 Bytes). 

 

III.   SIMULATION & IMPLEMENTATION 

The timing diagrams shown in Figure.8& 9 

illustrate the AXI4-Lite to APB bridge operation and 

AXI4-Lite to AHB  bridge  operation for various read 

and write transfers. It shows that when both read and 

write requests are active, read is given more priority. 
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Figure 8.APB typical read and write transfer 

 

 
 

Figure 9.AHB typical read and write transfer 

 

After synthesis and STA, the summary reports 

gererated by the EDA tools (Synopsys Design 

CompilerTM and Synopsys 

Prime TimeTM) are shown in fallowing Figure. 

 

 

 
 

V.CONCLUSION 
In this study, we provide an implementation 

of AXI4-Lite 

to APB bridge and AXI4-Lite to AHB bridge which 

has the following features: 

 32-bit AXI slave and APB   & AHB 

master interfaces. 

 PCLK clock domain completely 

independent of ACLK clock domain. 

 Support up to 16 APB & AHB peripherals. 
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 support the PREADY signal which 

translate to wait 

                 States on AXI. 

 an error on any transfer results in 
SLVERR as the AXI read/write response. 
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