
Venkatarao Gandi, M.Kedareswara Rao / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.903-907

903 | P a g e

Design of On Chip Bus Using Core Centric Protocol

Venkatarao Gandi, M.Kedareswara Rao
Electronics and Communications Engineering, Avanthi institute of engineering and technology

Instrumentation and control systems, Avanthi institute of engineering and technology

Abstract
As more and more IP cores are integrated

into an SOC design, the communication flow

between IP cores has increased drastically and

the efficiency of the on-chip bus has become a

dominant factor for the performance of a system.

The on-chip bus design can be divided into two

parts, namely the interface and the internal

architecture of the bus. In this work the well-

defined interface standard is adopted, the Open

Core Protocol (OCP), and focus on the design of

the internal bus architecture. The Open Core

Protocol (OCP) is a core centric protocol which

defines a high- performance, bus-independent

interface between IP cores that reduces design

time, design risk, and manufacturing costs for

SOC designs. Main property of OCP is that it can

be configured with respect to the application

required. The OCP is chosen because of its

advanced supporting features such as

configurable sideband control signaling and test

harness signals, when compared to other core

protocols.

I. Introduction
An SOC chip usually contains a large

number of IP cores that communicate with each other

through on-chip buses. As the VLSI process

technology continuously advances, the frequency and

the amount of the data communication between IP

cores increase substantially. As a result, the ability

of on chip buses to deal with the large amount of

data traffic becomes a dominant factor for the overall

performance. The design of on-chip buses can be
divided into two parts: bus interface and bus

architecture. The bus interface involves a set of

interface signals and their corresponding timing

relationship, while the bus architecture refers to the

internal components of buses and the

interconnections among the IP cores. The widely

accepted on-chip bus, AMBA AHB, defines a set

of bus interface to facilitate basic (single) and burst

read/write transactions. AHB also defines the internal

bus architecture, which is mainly a shared bus

composed of multiplexors. The multiplexer-based
bus architecture works well for a design with a small

number of IP cores. When the number of

integrated IP cores increases, the

communication between IP cores also increase and it

becomes quite frequent that two or more master IPs

would request data from different slaves at the

same time. The shared bus architecture often

cannot provide efficient communication since only

one bus transaction can be supported at a time.

To solve this problem, two bus protocols have been

proposed recently. One is the Advanced
eXtensible Interface protocol (AXI) proposed by the

ARM company. AXI defines five independent

channels (write address, write data, write response,

read address, and read data channels). Each channel

involves a set of signals. AXI does not restrict the

internal bus architecture and leaves it to

designers. Thus designers are allowed to integrate

two IP cores with AXI by either connecting the

wires directly or invoking an in-house bus between

them. The other bus interface protocol is proposed

by a non- profitable organization, the Open Core

Protocol – International Partnership (OCP-IP). OCP
is an interface (or socket) aiming to standardize and

thus simplify the system integration problems. It

facilitates system integration by defining a set of

concrete interface (I/O signals and the

handshaking protocol) which is independent of the

bus architecture. Based on this interface IP core

designers can concentrate on designing the internal

functionality of IP cores, bus designers can

emphasize on the internal bus architecture, and

system integrators can focus on the system issues

such as the requirement of the bandwidth and the
whole system architecture. In this way, system

integration becomes much more efficient. Most of

the bus functionalities defined in AXI and OCP are

quite similar. The most conspicuous difference

between them is that AXI divides the address

channel into independent write address channel

and read address channel such that read and

write transactions can be processed

simultaneously. However, the additional area of the

separated address channels is the penalty. Some

previous work has investigated on-chip buses
from various aspects. The work presented in [3] and

[4] develops high-level AMBA bus models with fast

simulation speed and high timing accuracy. The

authors in [5] propose an automatic approach to

generate high-level bus models from a formal

channel model of OCP. In both of the above work,

the authors concentrate on fast and accurate

simulation models at high level but did not provide

real hardware implementation details. In [6], the

Venkatarao Gandi, M.Kedareswara Rao / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.903-907

904 | P a g e

authors implement the AXI interface on shared

bus architecture. Even though it costs less in area,

the benefit of AXI in the communication efficiency

may be limited by the shared-bus architecture. In

this paper we propose a high-performance on-chip

bus design with OCP as the bus interface. We choose

OCP because it is open to the public and OCP-IP has
provided some free tools to verify this protocol.

Nevertheless, most bus design techniques

developed in this paper can also be applied to the

AXI bus. Our proposed bus architecture features

crossbar/partial-crossbar based interconnect and

realizes most transactions defined in OCP, including

1) single transactions,

 2) burst transactions, 3) lock transactions, 4)

pipelined transactions, and 5) out-of-order

transactions. In addition, the proposed bus is

flexible such that one can adjust the bus

architecture according to the system requirement.
One key issue of advanced buses is how to

manipulate the order of transactions such that

requests from masters and responses from slaves

can be carried out in best efficiency without

violating any ordering constraint. In this work we

have developed a key bus component called the

scheduler to handle the ordering issues of out-of-

order transactions. We will show that the proposed

crossbar/partial-crossbar bus architecture together

with the scheduler can significantly enhance the

communication efficiency of a complex SOC.
Another notable feature of this work is that we

employ both transaction level modeling (TLM) and

register transfer level (RTL) modeling to design the

bus. We start from the TLM for the consideration of

design flexibility and fast simulation speed. We then

refine the TLM design into synthesizable and cycle-

accurate RTL codes which can be synthesized into

gate level hardware to facilitate accurate timing and

functional simulation. The proposed bus has been

employed in a multimedia SOC design and the

results show that not only our TLM model

has better simulation efficiency comparing to a
bus obtained through a commercial ESL tool, but

also our RTL on-chip bus design performs much

more efficient than the multiplexer-based buses or

those without out-of-order feature in real SOC

design. The remainder of this paper is organized

as follows. The various advanced functionalities

of on-chip buses are described in Section 2.

Section 3 details the hardware architecture of the

proposed bus. Section 4 gives the experimental

results which show the efficiency on both

simulation speed and data communication.

B. On-Chip Bus Functionalities

We first describe the various bus functionalities

including

1) Burst, 2) lock, 3) pipelined, and 4) out-of- order

transactions.

1. Burst transactions

The burst transactions allow the grouping of

multiple transactions that have a certain address

relationship, and can be classified into multi-request

burst and single-request burst according to how

many times the addresses are issued. FIGURE 1

shows the two types of burst read transactions. The
multi-request burst as defined in AHB is illustrated

in FIGURE 1(a) where the address information must

be issued for each command of a burst transaction

(e.g., A11, A12, A13 and A14). This may cause some

unnecessary overhead. In the more advanced bus

architecture, the single-request burst transaction is

supported. As shown in FIGURE

1(b), which is the burst type defined in AXI, the

address information is issued only once for each burst

transaction. In our proposed bus design we support

both burst transactions such that IP cores with

various burst types can use the proposed on-chip
bus without changing their original burst

behavior. FIGURE 1. Burst transactions

II. Lock transactions
Lock is a protection mechanism for

masters that have low bus priorities. Without this

mechanism the read/write transactions of masters

with lower priority would be interrupted whenever a

higher-priority master issues a request. Lock

transactions prevent an arbiter from performing
arbitration and assure that the low priority masters

can complete its granted transaction without being

interrupted._ Pipelined transactions (outstanding

transactions)Figure 2(a) and 2(b) show the

difference between non pipelined and pipelined (also

called outstanding in AXI) read transactions. In

FIGURE 2(a), for a non- pipelined transaction

a read data must be returned after its

corresponding address is issued plus a period of

latency. For example, D21 is sent right after A21 is

issued plus t. For a pipelined transaction as shown
in FIGURE 2(b), this hard link is not required. Thus

A21 can be issued right after A11 is issued without

waiting for there turn of data requested by A11 (i.e.,

D11-D14).

Venkatarao Gandi, M.Kedareswara Rao / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.903-907

905 | P a g e

III. Out-of-order transactions
The out-of-order transactions allow the

return order of responses to be different from the

order of their requests. These transactions can

significantly improve the communication efficiency

of an SOC system containing IP cores with various

access latencies as illustrated in FIGURE 3. In

FIGURE 3(a) which does not allow out-of-order

transactions, the corresponding responses of A21 and

A31 must be returned after the response of A11. With

the support of out-of-order transactions as shown in
FIGURE 3(b), the response with shorter access

latency (D21, D22 and D31) can be returned before

those with longer latency (D11-D14) and thus the

transactions can be completed in much less cycles.

C. Hardware Design of the On-Chip Bus

The architecture of the proposed on-chip bus

is illustrated in FIGURE 3, where we show an

example with two masters and two slaves. A crossbar
architecture is employed such that more than one

master can communicate with more than one slave

simultaneously. If not all masters require the

accessing paths to all slaves, partial crossbar

architecture is also allowed. The main blocks of the

proposed bus architecture are described next.

1. Arbiter
In traditional shared bus architecture,
resource contention happens whenever more than

one master requests the bus at the same time. For a

crossbar or partial crossbar architecture, resource

contention occurs when more than one master is to

access the same slave simultaneously. In the

proposed design each slave IP is associated with

an arbiter that determines which master can access

the slave.

2. Decoder

Since more than one slave exists in the
system, the decoder decodes the address and

decides which slave return response to the target

master. In addition, the proposed decoder also

checks whether the transaction address is illegal or

non existent and responses with an error message

if necessary.

3. Fsm-m & Fsm-s

Depending on whether a transaction is a read or a

write operation, the request and response

processes are different. For a write transaction, the
data to be written is sent out together with the address

of the target slave, and the transaction is complete

when the target slave accepts the data and

acknowledges the reception of the data. For a read

operation, the address of the target slave is first sent

out and the target slave will issue an accept signal

when it receives the message. The slave then

generates the required data and sends it to the bus

where the data will be properly directed to the

master requesting the data. The read transaction

finally completes when the master accepts the

response and issues an acknowledge signal. In
the proposed bus architecture, we employ two types

of finite state machines, namely FSM-M and

FSM-S to control the flow of each transaction. FSM-

M acts as a master and generates the OCP signals of a

master, while FSM-S acts as a slave and generates

those of a slave. These finite state machines are

designed in a way that burst, pipelined, and out-

or-order read/write transactions can all be properly

controlled.

4. Scheduler
Out-of-order transactions in either OCP or AXI allow

the order of the returned responses to be different

from the order of the requests. In the OCP protocol,

each out-of order transaction is tagged with a Tag ID

by a master. For those transactions with the same

Tag ID, they must be returned in the same order

as requested, but for those with different Tag ID,

they can be returned in any order. In general, both in

Venkatarao Gandi, M.Kedareswara Rao / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.903-907

906 | P a g e

order and out-of-order transactions are supported in

an out-of order SOC system. Whether to favor

in-order or out-of-order transactions is a design

issue of the bus. It is stated that conventional bus

scheduling algorithms tend to favor the in-order

transactions, while the ordering mechanism

proposed in favors out-of order transactions. In our
proposed scheduler, we reserve the flexibility of

being in-order response first or out-of-order

response first, which means that system integrators

are allowed to select either order based on the

applications. The architecture of the proposed

scheduler is shown in FIGURE 5.

A multiplexer, MUX1, is used to solve the problem

of resource contention when more than one slave

returns the responses to the same master. It selects

the response from the slave that has the highest

priority. The function of MUX2 will be described

shortly. The recorder shown in the figure is used to
keep track of the ID of the target slave and the Tag

ID of every out-of-order transaction. Whenever a

response arrives, the comparator determines whether

the ordering restriction is violated or not by

comparing the ID of the target slave and Tag ID. If

no ordering restriction is violated, the response is

sent forward to the priority setter. If the restriction is

violated, the response is sent backward to one of the

inputs of MUX2, which is always a preferred input

over the input from MUX1.The responses sent

forward are given a priority, which is different
from the slave priority, according to the Tag ID and

are stored in the priority queue. For the

transactions without Tag ID, which are regarded as

in-order transactions, the priority setter sets the

priority to 0 or the largest value to reflect whether in-

order first or out-of-order first policy is used.

Finally, the responses stored in the priority queue

are returned to the masters from the first priority to

the last priority such that the objective of

“transactions with the same Tag ID are returned in-

order, and transactions with different Tag ID can

be returned out-of-order” can be achieved. To
further improve the efficiency of the scheduler, the

response can be forwarded to the master directly

without going through the priority queue when

the priority queue is empty.

D. Simulation result for simple write and read

The above developed FSM for the OCP

Master and Slave which supports the simple write

and read operation is designed using VHDL and

is simulated. The designed OCP master and slave

are integrated as a single design and is simulated

waveform represents the complete transaction of

simple write and read operation from master to slave

and vice-versa which is shown in Figure 6

Figure 6. Waveform for OCP master and slave

simple write and read

E. Simulation results for burst operation

The basic working of OCP master and salve is

discussed based on their FSMs and in the design

totally four OCP master and slave are present. OCP
supports burst size of only 4, 8 and 16.

1. Burst operation of size_16

The simulation result for the OCP master and

slave of burst size 16 is shown in the Figure 7.

The size is given as “010” which represents the burst

size 16 and hence four continuous write or read

operation happens. Here the count is introduced

in order to generate the address with respect the given

initial address and the count increment. The operation

remains the same as simple read and write but the
only change is that after each operation, count will

check for the burst size. When the count is not equal

to the burst size given, the count will get incremented

and the next address is get generated based on which

Venkatarao Gandi, M.Kedareswara Rao / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.903-907

907 | P a g e

the read or write operation that currently performed

is carried out. When the count is equal to burst

length, that represents the burst operation over and

count resets to zero. Hence master and slave go

IDLE state.

IV. Conclusions
This project work presents the OCP

(Open Core Protocol) design which acts as an

interface between two different IP cores. In this

work, initially the investigation on the OCP is

carried out and the basic commands and its

working are identified based on which the signal flow

diagram and the specifications are developed for

designing the OCP using VHDL. This OCP will

include two types of operation such as Simple

Write and Read and Burst Operation.

REFERENCES
[1] Advanced Microcontroller Bus Architecture

(AMBA) Specification Rev 2.0 & 3.0,

http://www.arm.com.

[2] Open Core Protocol (OCP) Specification,

http://www.ocpip.org/home.

[3] Y.-T. Kim, T. Kim, Y. Kim, C. Shin, E.-Y.

Chung, K.-M. Choi, J.-T. Kong, S.-K. EO,

“Fast and Accurate Transaction Level

Modeling of an Extended AMBA2.0 Bus
Architecture,” Design, Automation, and Test

in Europe, pages 138-139, 2005.

[4] G. Schirner and R. Domer, “Quantitative

Analysis of Transaction Level Models for the

AMBA Bus,” Design, Automation, and Test

in Europe, 6 pages, 2006.

[5] C.-K. Lo and R.-S. Tsay, “Automatic

Generation of Cycle Accurate and Cycle

Count Accurate Transaction Level Bus Models

from a Formal Model,” Asia and South Pacific

Design Automation Conference, pages 558-

563, 2009. [6] N.Y.-C. Chang, Y.-Z. Liao and

T.-S. Chang, “Analysis of Shared-link AXI,”

IET Computers & Digital Techniques, Volume

3, Issue 4, pages 373-383, 2009.

[7] IBM Corporation, “Prioritization of Out-of-

Order Data Transfers on Shared Data Bus,”

US Patent No. 7,392,353, 2008.
[8] David C.-W. Chang, I.-T. Liao, J.-K. Lee, W.-

F. Chen, S.-Y. Tseng and C.-W. Jen, “PAC

DSP Core and Application Processors,”

International Conference on Multimedia and

Expo, pages 289-292, 2006.

[9] CoWare website, http://www.coware.com

