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Abstract.

For dynamic optimization problems, the
aim of an effective optimization algorithm is both
to find the optimal solutions and to track the
optima over time. In this paper, we advanced two
kinds of cellular genetic algorithms inspired by
the density dependence scheme in ecological
system to solving dynamic optimization problems.
Two kinds of improved evolution rules are
proposed to replace the rule in regular cellular
genetic algorithm, in which null cells are
considered to the foods of individuals in
population and the maximum of living individuals
in cellular space is limited by their food.
Moreover, in the second proposed rule, the
competition scheme of the best individuals within
the neighborhoods of one individual is also
introduced. The performance of proposed cellular
genetic algorithms is examined under three
dynamic optimization problems with different
change severities. The computation results
indicate that new algorithms demonstrate their
superiority respectively on both convergence and
diversity.

Keywords: cellular genetic algorithm, dynamic
optimization, density dependence scheme

Introduction

Most of the optimization problems in
real world are dynamic optimization problems
(DOPs).
Evolutionary algorithms (EAs) have been widely and
successfully applied to solve static optimization
problems (SOPs). However, the evaluation function,
design variables, and the constraints are not fixed in
DOPs. Hence, for DOPs the aim of an effective
optimization problem is not only to find the optimal
solution but also to track the optima over time.
In recent years, there is a growing interest in studying
evolutionary algorithms (EAs) for DOPs, and several
approaches have been developed, such as increasing
diversity after a change via hyper mutation [1] or
random immigrants[2], maintaining  diversity
throughout the run [3,4], memory schemes [5,6], and
multi- population approaches [7,8].
Cellular genetic algorithm (CGA) is a subclass of
genetic algorithms (GAs); it is set up through an
organic combination of evolutionary computation and
cellular automata. In CGA, the population is arranged
in a given grid, the evolution of each individual is

restricted in its neighborhood, and each individual is
only allowed to genetic operate with the individuals
in its neighborhood. With the distributed
arrangement, CGA has a good performance on
maintaining genetic diversity which is important to
find and approximate the dynamic optimum for
DOPs. Hence, CGA is considered to be a significant
and meaningful algorithm to solving DOPs.

The research on combining ideas from cellular
automata with genetic algorithms began in
Manderick and Spiessens’s work [9]. Over the past
decade or so, CGAs have been proven to be effective
for solving many kinds of optimization problems
from both classical and real world settings.

Many kinds of improved CGAs were proposed for
optimizations. Kirley [10] introduced a novel
evolutionary algorithm named cellular genetic
algorithm with disturbances inspired by the nature of
spatial interactions in ecological systems. Simoncini
et al. [11] presented an anisotropic selection scheme
for CGA, improved the performance by enhance
diversity and control the selective pressure. Janson
and Alba [12]

proposed a hierarchical CGA, where the population
structure was augmented with a hierarchy according
to the fitness of individuals. Nebro et al [13]
introduced an external archive in CGA to store the
better solutions, the search experience contained in
the archive were feed backed into algorithm though
replacement strategy. Ishibuchi et al. [14] proposed a
new CGA with two neighborhood structures: one for
global elitism, the other for local competition among
neighbors.

Besides, the theoretical research of CGAs is also
active. Giacobini et al. [15] presented a theoretical
study of the selection pressure in asynchronous
CGAs with different evolution rules. Alba et al. [16]
presented a comparative study of several
asynchronous policies for updating the population in
CGAs. Zhang [17] researched the evolution rules of
optimization algorithm with cellular automata from
the ability of life reproduction and the probability of
survival.

In this paper we investigate an improved cellular
genetic algorithm to solving DOPs. Inspired by
density dependence scheme in the nature, we propose
a new evolution rules. The paper is structured as
follows. Section 2 reviews some related work on
CGA. Section 3 introduces the regular CGA with
evolution rules. In Section 4, two density dependence
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schemes are introduced, population control scheme
is also discussed, and a cellular genetic algorithm
with density dependence is proposed. Section 5
introduces the DOPs chosen and presents the
results of proposed algorithm. Section 6 briefly
expressed the conclusion of this paper.

2. Cellular Genetic Algorithm with
Evolution Rules

2.1. Basic concepts
A cellular automaton can be denoted as A= (L4 ,S,N
¢ » ) mathematicall y, in which Ais a cellular
automaton; Lq is the cellular space; S is the set of
states of cell, each cell only has one state such as
“living” or “dead”;
Nd denotes the neighborhood of a cell such
as Von. Neumann-type, Moore-type, EX-
Moore-type; f is the local transfer function which
defines the state of the center cell by the states of
its neighbors, and can be called evolution rule.
Fig.1 shows the Moore-type in grid, in which a cell
in the small black square is the center cell; cells
within two squares are the neighborhood of the
center cell; the grey means living, contrarily, the
white means dead. In this paper, the proposed
algorithm uses this type.
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Fig. 1: Moore-type in regular grid

2.2. Cellular genetic algorithm with evolution
rule

The pseudo-code of cellular genetic algorithm with
evolution rule is shown in Fig.2. In this algorithm,
each living individual only interacts and genetic
operates with individuals in its neighborhood. The
fitness value of offspring individuals will be
calculated, if an offspring is better than the center
cell individual, the old center one will be replaced
during the next generation. After the genetic
operation, state of each individual will be update
by the evolution rule.

hegin
=0

initialize population P(0) and individuals’ states
repeat
foreachliving individual [
denote the neighborhood of; by N
selectthe best individual in Ny, denote by J;
'/normal genetic operation
offspnng= crossover([/; I;lpc)
offspring= mutate(offspring 2w )
[ e@oeay =evaluate(offspring)
i min(7aee; )5 ;) then

cinpang

end for

until ferminated=true
end

replace J; with the best individual in offspring

update the state of each individual bythe evolution rule

Fig. 2:Pseudo-code of cellular genetic algorithm with evolution rule

In CGA, the complex optimization problems can be
solved by some simple rules. In order to simulate
the biological evolution more effectively, it is
important to introduce evolution rule of ‘living’ or
‘dead’ state of cell. In the next loop, the state of a
cell depends on the states of its neighbors. The
game of life evolution rule is a typical evolution
rule. The mathematical formula is shown as follow:

S T '\.s| =
£S5 =lthen §'* = 13

Rule: |1 N, =
[ a3

‘fs; =Othen3"':«= ‘\.S =3

1| =3

|0

3. Proposed Algorithms
Among the existing research, most of evolution
rules in CGAs are directly introduced from cellular
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automaton. For these evolution rules, although
complex system behavior can be obtained by
simple settings, but the interaction between
individuals and the relationship between evolution
scheme and group behavior of individuals had been
ignored.

In nature, the state (“living” or “dead”) of
individual in population depends on the structure of
living space, the mortality rate and survival rate are
dependent by the density of population in living
environment. When the density is lower, the food is
adequate for the population, and the survival rate
increases. When the density is higher, food supplies
are scarce, intraspecific competition becomes
seriously and the mortality rate increases.

Inspired by this actual phenomenon, two kinds of
local density dependence schemes are introduced in
this section and cellular genetic algorithms with
density dependence are also proposed.

3.1. Local density dependence scheme within
neighborhood

The null cells in grid space are considered as the
food of individuals in population, an individual in a
cell

means the food in this cell is occupied by the
individual.

Definition 1: Living density. The ratio between the
number of living individuals and the number of

food in a region is considered to the living density
in this region.

Specially, the living density in the neighborhood of
an individual xi is called the local living density
of the individual which can be denoted as LD(xi ).
Taking Moore-type for instance, the local living
density of the center individual in Fig.1 is 0.667.
Definition 2: Maximum local living density. In
a living space, foods for the population are
limited. Hence, the local density is limited in
the scope of the food supplied, the upper
limit of the scope is considered as maximum
local living density which is denoted as LDMax

In neighborhood of an individual, if the local living
density is more than LDMax , the surplus weakest
individuals will dead or escaped from the region
because of the shortage of food. The density
dependence scheme in neighborhood of an
individual is shown in Fig.3 (LDMax is set to 0.8).
Same as the setting shown in Fig.1, the grey means
living, and the white means dead. The region
within solid line is the current living space; the
black cell in it means the surplus weakest
individual; the region within dashed box is the
escape area of the surplus individuals.
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Fig. 3: Density dependence operation

With the effect of density dependence, if there is
more than one null cell in the escape area as
shown in left figure of Fig.3a, the surplus
individual will escape from the former region;
contrarily, if there is no null cell in the escape
area, the surplus individual will dead as shown in
right figure of Fig.3b. Additionally, if a surplus
individual had been escaped from a region, it is
not permitted escape twice; in other words, it
will dead.

The detail algorithm of local density scheme

within neighborhood can be described in Fig.4.
After the density dependence operation, the
structure of the population and the states of cells
corresponding to the individuals will change. In
the later sections, this operation is named density
dependence I, is denoted as [P'(t),
S'(t)]=Dependence-1 (P(t), S(t)) in which S(t)
means the states of whole cells in grid space.

Besides local density dependence as previously
described, the intraspecific competition also
contains the competition between the best
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individuals within a living space. For genetic operation into the density dependence scheme to
algorithm and some similar algorithms, premature avoid two or more same structure individuals
convergence is one of the main factors restricted appeared in the neighbourhood of an individual.
the optimization performance, and the best The detail setting is also described in Fig.4, and in
individual is replicated many times due to the the later sections, we call this operation by density
effect of select operation. This is the main reason dependence I, and denote it by [P
to this appearance. Hence, we introduced an adding (t),S'(t)]=Dependence-I1 (P(1),S(1)

denote the current population oflivingindividuals by Pr ()
ranking Py (t) by fitness from better to worse: Index=ranking(Py (t))
fori=1:Index
denote the current individual and its neighborhood by J; and N}
foreach living individuals in N; // for density dependence II
calculate the hamming distance to J;, denote as D
ifHD<1
change the state of the cell to ‘dead”
end
denote the number of living individuvals in N} by n;
if (n;+1)Y N3 >LD\py //densitydependence available
for each surplus weakest individual [;'
denotethe escape area of I; "by ;'
change the state of the current cell of /; "to “dead’
if I; "has not been escaped from a region
if there is nullcellin N}’
select a random null cell
change the individual inthe cell by J;'
change the state ofthe cell to ‘living’
end for

end for

Fig 4: Pseudo-code of density dependence I II

3.2. Population control scheme

The density dependence scheme is acting among the individuals in same generation. Due to the separate

effect of density dependence, the number of living individuals after operation is less than or equals to the

number before operation. In this section, the scheme of population control is defined.

In nature, the population growth is relevant to the abundance of food, and cannot grow unlimited. In grid space,
the anticipant number of living individuals in next generation is related to the number of null cells in current
generation. We define a mathematical formula as follow to determine the number of living individuals
in next generation.

N
N =N (- =
S : N-o

) (2)

where Nt and Nt+1 are the number of living individuals in t and t+1 generation, N is the number of cells in
cellular space, o is a rate which control the maximum number of individuals feed, a € [LDmax .1] .

especially whena =1 means the food in one cell can feed one individual. In the later sections, we denote this
operation by |P(t+1)|=population-control (|P'(t)]).

3.3. Cellular genetic algorithm with density dependence

We introduce the local density dependence scheme and population control scheme to the cellular genetic
algorithm and propose a new cellular genetic algorithm. The pseudo-code of the new cellular genetic
algorithm is shown in Fig.5.
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t=0
initialize population P(0) and individuals’ states
repeat ;
//genetic operation
foreachliving individual I}
denote the neighborhood ofI; by N;
selectthe best individual in N;, denote by J; '
offspring= crossover([f; 1;]2c)
offspring= mutate(offspring 2w )
Epemy —evaluate(offspring)
ifmin(f.g.... KA ;) then
replace J; with the best individual in offspring
end for

//for density dependence

[P'(?). S"(O)FDependence-1 (P(1). $(1))

/I for density dependence I

[P'(D), S'(OFEDependence-1 (P(1). S(7))

/fpopulation control
|P(+1)|=population-control{| P'()|)
'/determine P(#+1) and S(7+1)

if |P(z+1)[>|P'(?)| then

else

until terminated=true
end

P(t+1):=placed |P(¢+1)|-|P'(?)| random individuals in null cells
S(t+1):=change the state of corresponding cell to ‘living’

P(t+1):=delete |P'(#)|-|P(t+1)| worst individualsin P'(7)
S(i+1):=change the state of correspondingcell to ‘dead’

Fig. 5: Pseudo-code of cellular GA with density dependence L II

4. Experimental Results

4.1. Test problems

Yang’s DOP generator [18] can construct
random dynamic environments from any binary-
encoded

stationary function by an exclusive OR operator.

For a static optimization problem f (x) , create
intermediate binary template T =[T1 ,T2 ,...TN ]

by a designated method, N is the number of
change. The expression of the DOP in ith
environment is shown as follow:

F(p=f(xeT) (3)

where @ denotes the XOR operator. The severity
of environmental changes is determined by the
percentage of 1 in the template T  which is
denoted as s, the frequency is controlled by the
generation interval between two adjacent changes
which is denoted as 1 , the complexity is affected
by the periodically structure of T .

Three 100-bit binary functions, denoted One-Max,
NK(25, 4) and Deceptive respectively, are selected
as base stationary functions to construct DOPSs.
Construct test DOPs from these stationary
functions by Yang’s DOP generator, where s is

set to 0.1, 0.3, 0.5, and 0.9, t is set to 25, T is set
to random, cyclical and cyclical with noise [6].
The detail describe of there DOPs are shown
respectively as follow.

In static One-Max problem, the fitness value of
individual is assigned by the number of the same
bits between individual and the given template.
The mathematical formula of the dynamic One-
Max is shown as follow:

E@=faen)=1-Y@er)en @)

where B is the given template, L=100 is the length
of binary code string. It has an optimum fitness of
100 in each environment.

Static NK(25,4) problem consist of 25
contiguous 4-bit building blocks {sk },k =1,---,25
, the calculation formula is

[0=3¢8,® ()

&=l

'y xes, ; i
whmrf.t (=] " P55 The dwnamic NK(OS 415 shown as follow
il
i

F(=f08T)=Ye3, (e8]
f

Same to the dynamic One-Max, it has an optimum
fitness of 100 in each environment. Static
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deceptive problem is a fully deceptive problem,
it also consist of 25 contiguous 4-bit building

blocks {sk }, k =1,---,25, the calculation formula is

[= ffi(H(xk .5,.)) (7

where xk is the corresponding sub-string with
Sk in individual x , H (Xxk ,Sk ) denotes the
hamming distance betweenxk andsk , d(*)is a
mapping function, d (*) is 4,0,1,2,3 respectively
when = is 0,1,2,3,4. The dynamic deceptive
problem is shown as follow:

[@=Y dHxST),.5,) (8)

It also has an optimum fitness of 100 in each
environment.

4.2. Results and discussion

Three kinds of the dynamic test
optimization problems are optimized respectively
by four algorithms:
cellular  genetic  algorithm  with  density
dependence | (CGA-DI), cellular genetic
algorithm with density dependence 1l (CGA-DII),
cellular genetic algorithm with evolution rule
(CGA-R) and improved simple genetic algorithm
(ISGA). Experiments were carried out to compare
the performance of algorithms on the dynamic test
environments. For all algorithms, the parameters
are set as follows: population size N=100, max
generations G=500, uniform crossover operator
with crossover rate Pc¢ =0.7, discrete mutation

operator with rate Pm =0.01.

The experimental results of convergence
performances of CGA-DI, CGA-DII, CGA-R and
ISGA are summarized in Tables I, 11, Il with the
form of average + the standard error. The
convergence metric is used to measure the overall
convergence performance of algorithms, which is
defined as

F. =Y—YE& (1)

where n=20 is the total number of runs, K=G/t
is the total number of environmental changes, Fij
is the optimum of jth change in ith run. Table I,
I, Il are the results of random, cyclical and
cyclical with noise DOPS respectively. Fig.6
shows the diversity behavior of algorithms in
random dynamic environment, Fig.6a shows the
results on dynamic One-Max problem, Fig.6b
shows the results on dynamic NK(25,4) problem,
Fig.6¢c shows the results on dynamic deceptive
problem. The diversity metric measures the extent
of diversity achieved among the individuals, which
is defined as

where N is the population size, L is the length of
chromosome, sc¢ is the cardinality of genotypic

alleles, Pk is the rate of kth genotypic allele appear
on Ith location, the maximum of yis In2.

Table I. Experimental results on random DOPs

s CGADI CGA-DII CGAR 1SGA
0.1 99.99+0.02 9935077 97.87+220 83.85%140
OneMax 03 99.72£006 9610035 87.35:037 68.79%3.13
0.5 99.79+0.11 9529+035 8202+150 63.61%3.88
09 99.79+0.09 9526+041 79.88+197 59.97+5.65
0.1 7714330 83.76+2.78 7034%337 43.80+4.07
NK(54) 03 63013200 7188147 4871400 27.561630
0.5 6259+241 7125+130 41024525 2423+627
09 5971+3.77 7021179 4281459 29.19+6.84
0.1 8281219 84.47+0.70 7937182 64.09+163
Deceptive 03 81403108 83113046 7265135 5517%4.14
0.5 8098+068 83.73+0.56 7156+147 53.80+4.07
09 8458+127 86.73+0.77 8267+189 6556174
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Table II. Experimental results on cyclical DOPs

S CGA-DI CGA-DI CGAR ISGA
0.1 99.99+0.02 98.357+0.73 7.77£063 93.32%4.16
OneMax 03 99821010 9571+034 9023103 83.85+531
05 99.82+0.06 9541+x039 8745121 80.42+6.62
09 99.99+0.02 98.78+0.79 9782+122 9357403
0.1 7940x6.11 85.99+3.03 8164x278 6166490
NK(25.4) 03 6898+230 7436x1.60 5950%x324 5155%1155
05 6404x174 71.41%1.42 5486%x434 4843%1450
09 8039+505 86.02+2.19 8495+220 62.25%5.02
0.1 258+0.83 87.51%0.55 78.84+043 7460291
Deceptive 03 8320+086 86.30+0.64 7474%128 69.19%£480
05 8364+039 85.96+0.73 7436x1.12 6885%5.17
09 81.79+0.79 87.92+0.65 8150x0.38 76.07+243
Table III. Experimental results on cyclical with noize DOPs
S CGA-DI CGA-DI CGAR ISGA
0.1 9997+0.05 9849+066 9720x068 92.69%434
OpneMax 03 99.75%0.10 9566031 89.09+099 81.06%498
0.5 99.82+0.07 9525+027 8642%141 7993%5.75
09 9997+0.04 9858x059 9744%£091 9262+418
0.1 7935%5.19 83.95+2.17 79.64%x233 6146%420
NK(25.4) 03 6893+234 73.58+1.42 5788%x386 50.00+£10.22
05 6373245 71.41*1.58 53.12%376 4748+13.17
09 79.10+6.09 85.10+2.93 8283%+221 6198%544
0.1 8173+085 86.07+0.38 7799+065 73921282
Deceptive 03 8225+065 85.16*0.56 7267%123 777574
05 83.11x060 83.90%0.55 7335%X093 68.59%407
09 8163+1.15 87.11+0.51 8021x035 7442%239

1)The convergence performance of algorithms in
dynamic environments

From Tables I, II, Il1, it is interesting to note that
CGA-DI can obtain the best results in dynamic
One- Max problems with different severity and
complexity among four algorithms; CGA-DII
has a good performance in dynamic NK(25,4)
and deceptive problems can obtain the best results
in dynamic One-Max problems with different
severity and complexity; ISGA is the worst one.
Moreover, for all algorithms, they get the best
performance in dynamic One-Max problems, and
get the worst performance in dynamic NK(25,4)

problems. The detail discussions are shown as
follow:

In random dynamic One-Max problem, CGA-DI
has the best convergence performance, the
relative errors of Facc  with global optimal
solution under 4 different change severities all
lower than 0.5%; for CGA- DIl, CGA-R and

ISGA, the Fgacc reduced with the increase of s,
the relative errors of Facc  get minimums of
0.65%, 2.13% and 16.15% respectively when
s=0.1, 0.65%, and get maximums of 4.74%,
20.12% and 40.03% respectively when s=0.9. In
random dynamic NK(25,4) problem, for CGA-DI
and CGA-DII the Facc reduced with the increase
of s, the relative errors of Facc t get minimums of
22.86% and 16.24% when s=0.1, and get
maximums of 40.29% and 19.79% when s=0.9;
for CGA-R and ISGA the Facc  reduced and
then increased with the increase of s, the relative
errors of Facc get minimums of 29.66% and
56.11% when s=0.1, and get maximums of
58.98% and 75.77% when s=0.5. In random
dynamic deceptive problem, for all algorithms
the Facc reduced and then increased with the
increase of s, the relative errors of Facc get
minimums of 15.42%, 13.27%, 17.33% and
34.44% respectively when $=0.9, and get

40|Page



K.K.Swamy, V.Punnarao, J. S.N.Jyothi / International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 5, September- October 2012, pp.034-043

maximums of 9.12%, 16.37%, 28.44% and 46.20%
respectively when s=0.5.

The mutative trends of Fgcc of algorithms for
cyclical and cyclical with noise DOPs are similar,
and Facc is reduced with the introduction of noise.
In cyclical dynamic One-Max problem, for all
algorithms the Facc reduced and then increased
with the increase of s, the relative errors of Facc
get minimums of 0.01%, 1.22%, 2.18% and
6.43% respectively when s=0.9, and get
maximums of 0.18%, 4.59%, 12.55% and
19.58% respectively when s=0.5; with the
introduction of noise, the largest percentage
decrease with 0.07%, 0.20%, 1.26% and 3.33%
respectively. In cyclical dynamic NK(25,4)
problem, for all algorithms the Facc reduced and
then increased with the increase of s, the relative
errors of Facc get minimums of 19.61%,
13.98%, 15.05% and 37.75% respectively when

s=0.9, and get maximums of 35.96%, 18.59%,
45.14% and 51.57% respectively when s=0.5; with
the introduction of noise, the largest percentage
decrease with 1.60%, 2.37%, 3.17% and 3.01%
respectively. In cyclical dynamic deceptive
problem, for CGA-DII, CGA-R and ISGA, the
Facc reduced and then increased with the
increase of s, the relative errors of Facc get
minimums of 12.08%,

18.50% and 23.93% respectively when s=0.9,
and get maximums of 14.04%, 25.64% and
31.15% respectively when s=0.5; for CGA-DI, the
Facc increased and then reduced with the increase
of s, the relative errors of Facc get a minimum of
16.56% when s=0.5, and get a maximum of
18.21% when s=0.9; with the introduction of
noise, the largest percentage decrease with 1.14%,
2.40%, 240% and 2.17%  respectively.
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Fig. 6 Diversity behavior of algorithms in random dynamic environments

2) The diversity performance of algorithms in
dynamic environments

From Fig.6, it is interesting to note that all the
curves of diversity metric change cyclically with
the change of environments; the diversity curve
of CGA-DII is better than that of the other
algorithm; the diversity curve of ISGA is worse
than that of the others. The detail discussions are
shown as follow:

In random dynamic One-max problems, the
variation within two adjacent changes of diversity
curves and the diversity levels of algorithms
increased with the increase of s. For CGA-DI, the
diversity curve is smooth and near 0.3 when
s=0.1, and changes sharply between 0.3 and 0.65
when s=0.9; for CGA-DII, the diversity curve is
smooth and near 0.4 when s=0.1, and changes
sharply between 0.4 and 0.65 when s=0.9; for
CGA-R, the diversity curve is locate between 0.1
and 0.2 when s=0.1, and has a cyclical change
between

0.2 and 0.35 when s=0.9; for ISGA, the diversity
curve is locate below 0.1 in each value of s.

In random dynamic NK(25,4) problems, the
trend of diversity curves is similar to that in
One-Max problems. Differently, the variation
within two adjacent changes of diversity curves
becomes smoother than that in  One-Max
problems and the diversity levels of algorithms
becomes lower than that in One-Max problems,
such as the diversity curve of CGA-DI changes
between 0.3 and 0.5 when s=0.9; for CGA-R, the
diversity curve has a change near 0.2 when s=0.9

In random deceptive problems, the variation of
diversity curves increased and then reduced with
the increase of s. The change of diversity curves
when s=0.1 is similar to that when $=0.9. The
severity of diversity curves get the most violent

when s=0.5.

5. Conclusion

In this study, two kinds of evolution rules
with density dependence for cellular genetic
algorithm are discussed, and the corresponding
cellular  genetic algorithms  with  density
dependence are proposed. Compared with regular
cellular genetic algorithm with evolution rule, new
algorithms can obtain superior convergence and
diversity  performance. According to the
experiments carried on the dynamic test problems
selected, CGA-DI can obtain the best results in
dynamic One-Max problems and CGA-DII has a
good performance in dynamic NK(25,4) and
deceptive problems.
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