
 M. Mahmoudi, K. Shahanaghi / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.386-389

386 | P a g e

A Genetic Algorithm For P-Median Location Problem

M. Mahmoudi and K. Shahanaghi
Department of Industrial Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran.

Abstract
In this paper, we have proposed a new

genetic algorithm for p-median location problem.

In this regard, prior genetic algorithms were

designed for p-median location problem by

proposing several methods that are used in

generation of initial population, crossover and

mutation operators, and new operator so- called

re-allocation has been incorporated into the

algorithm that causes to find the optimal solution

faster. Finally, efficiency of the algorithm has

been shown by a numerical example.

Keywords: Genetic Algorithm, p-Median Location

Problem, Multi Parent Crossover, Re-allocation.

1. Introduction
Genetic Algorithm (GA) is a meta-heuristic

method which is used to obtain a near optimal
solution in cases that numerical and mathematical

methods are not able to solve the problem in

reasonable time. GA generates a new population

from the current population by using several

operators, repeating these methods until a proper

solution is obtained, and termination criteria are

met. Each individual of the population, which is

called a chromosome, is a solution for the

investigated problem. Chromosomes are composed

of genes.

GA has five steps: initial population
generation, parent selection, crossover operation,

mutation operation and new population selection.

Initial population is generated randomly. Parents are

selected randomly or the population is ordered

decreasingly by fitness function value and then,

parents are selected from top of the list. The

crossover operator is performed by separating

chromosome and replacing the separated parts. In

mutation operation, a gene is selected randomly and

changed [1]. To perform selection operator,

generated offspring go to the next stage immediately
or offspring along with their parents are ordered

decreasingly according to fitness function value.

Then the new population is selected from above the

list to fill the population.

In this paper, we apply GA for solving p-median

location problem and we improve it by applying

some methods in each stage.

2. P-median location problem
In p-median location problem, we have several
demand nodes. The aim of the problem is to choose

p nodes to locate facilities in those nodes and

allocate facilities to demand nodes. The objective is

to minimize total transportation (distance is

weighted by demand) between demand nodes and

facilities.

The following assumptions are considered in the

problem:

The capacity of each facility is unbounded. Each

node can be supplied by just one facility, but each

facility can service to several demand nodes. To

formulate this problem, the following notations are

used:

i and j : index of demand nodes;

ih : demand in node i ;

ijd : distance between demand nodes i and j ;

n : number of demand nodes;

p : number of facilities that be located;

Decision variables:

jx : is equal to 1 if facility is located in node j ,

else is equal to 0;

ijy : is equal to 1 if facility j is allocated to

demand node i , else is equal to 0.

Therefore, the p-median location problem is

formulated as integer linear programming (1): [2]

  jiyx

px

jixy

iy

ts

dyhMin

iji

n

j

j

jij

n

j

ij

n

i

n

j

ijiji

,1,0,

,

1

:.

1

1

1 1



















 

 (1)

The first constraint represents that each

demand node can be supplied by one facility. The

second constraint ensures that a node is allocated to

a demand node when a facility is located in that

node. Third constraint indicates the number of

facilities that must be located. The last constraint

shows the type of each decision variable.

3. GA for solving p-median problem
In this section, we introduce the proposed

genetic algorithm that is used to solve the p-median

location problem.

 M. Mahmoudi, K. Shahanaghi / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.

387 | P a g e

3.1. Introducing chromosomes

Number of genes that form chromosomes

of the proposed algorithm is equal to the number of

demand nodes. Each gene is filled by the index of

the node which is selected to locate a facility. These

genes show the facility node to which the demand

node is allocated. For example, consider 7 demand
nodes. Figure 1 shows a chromosome.

Figure 1. A sample chromosome of proposed

algorithm

Genes of this chromosome indicate a

facility location and the demand allocation. This

chromosome shows that facilities are located at

nodes 2, 4 and 7. Facility node 2 is allocated to
nodes 2, 3 and 5, facility node 4 is allocated to

nodes 1,4 and 8, and facility node 7 is allocated to

nodes 6 and 7.

3.2. Initial population

To generate initial population, genes are

usually generated randomly. In the proposed

algorithm, to generate initial population, we

randomly choose p nodes from demand nodes and

locate facilities at those nodes. Then, each demand

node is allocated to the nearest facility node. The

generation code of initial population is as follows:
function ip = Initial Population (nop, nof)

% nop : number of nodes

% nof : number of facilities

% sof : Set of facilities

sof = generate nof random site nodes for facilities

through demand nodes;

for i=1:nop

 if i is in sof

 ip(i) = i;

 else

 ip(i) = nearest facility to node i;
 end

end

Using this method, generated chromosomes

certainly are feasible and so feasible test is required.

3.3. Fitness function

The fitness function is calculated using the

objective function of the mathematical model.

3.4. Parent selection process

In parent selection process, parents are
selected randomly from population.

3.5. Crossover operation

Crossover operator is used to generate

children from parents. Based on parent selection

procedure, we choose two chromosomes (parents).

We can perform crossover operator in two ways:

one point or two points (one of these ways is

selected randomly). In one point crossover, one gene

is selected randomly. To perform crossover

operation, we use this gene and the second part that

is created by it. In two-point crossover, two random

genes are selected in the chromosome. To perform

crossover operation, we use these genes and the
middle part that is created by them. Figure 2 shows

one point crossover and figure 3 shows two points

crossover.

Figure 2. One point crossover

Figure 3. Two points crossover

In the proposed algorithm, to perform

crossover operator, we use one of the above

methods randomly for each pair of parents [3]. In

order to increase the efficiency of the algorithm,
after crossover operator, offspring are renewed.

After crossover operator, the number of located

facilities may not be equal to p. Thus, the crossover

must be repeated. By renewing offspring, the

number of located facilities will be equal to p.

Therefore, generated chromosome is feasible.

Children renewing code is following:

function nc = new child (c, sof, nof, nofs)

% c : child

% sof : set of facilities

% nofs : number of facilities in set
% nof : number of facilities

if nofs > nof

 for k=1:(nofs-nof)

 select randomly two sites and replace one

of them with another;

 end

elseif nofs < nof

 for k=1:(nof-nofs)

 M. Mahmoudi, K. Shahanaghi / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.

388 | P a g e

 select randomly a facility site (fs) and a

non-facility site (nfs). Then, set a facility in

nfs and change allocations from fs to nfs

alternately;

 end

else

 child c is ok;
end

In addition, in order to increase

effectiveness of the crossover operator, in each

performance of crossover, we run it several times

(number of dates) and the best crossover is

introduced as the main crossover operator.

In large scale problems, crossover operator

might not show satisfactory efficiency. Therefore,

we can perform it on several parents instead of two

parents [4, 5]. In this paper, results of the crossover

operator using three parents are six children. Figure
4 shows a two points crossover with three parents.

Figure 4. Two points crossover with three parents

3.6. Mutation operation

In mutation operator, one or more genes of

a chromosome are selected and changed regarding
the mutation rate. In the proposed algorithm, we use

one of these three types of mutation operator,

randomly: one point, two points and three points

mutation which are performed on one, two and three

gene respectively. These genes are replaced with

one, two and three numbers that are points to one

demand node. As an example, consider that 6th gene

must be replaced with a facility which is located at

node number 4. Figure 3 illustrates one point

mutation operator.

Figure 5. One point mutation operation

After performing mutation operator, generated

children are renewed similar to the crossover

operator. Therefore, the generated children are

feasible.

3.7. Re-allocation

re-allocation operator which is performed

on each individual, without changing facility’s sites,

allocations of demand nodes to facilities are
changed. Each demand node is allocated to the

nearest facility. Population resulting from this re-

allocation is added to the current population. This

operator causes a faster moving to the optimal

solution. The last population (population after

crossover and mutation operations and population

after re-allocation operation) enters the next stage

which is the selection of the new population.

3.8. Selection new population process

Old and new population (population after
crossover and mutation operations and population

after re-allocation operation) create a list of

individuals. This list is sorted by fitness function

decreasingly. Then, we choose certain number of

chromosomes from the top of the list. These selected

chromosomes are selected as the new population.

3.9. stopping criteria

To terminate the algorithm, two criteria

must be satisfied:

a) Algorithm reaches the maximum number of
iterations;

b) The best solution is not changed after a pre-

specified number of generations.

Finally, chromosomes with the best fitness value are

selected as optimal solutions. A numerical example

is solved in the next section to show the efficiency

of the algorithm.

4. Numerical example
To show the efficiency of the proposed

algorithm, we use Galvao’s standard data1. In

Galvao’s problem, there are 100 demand nodes. We

want to locate p facilities to minimize total weighted

distance (p-median location problem). We solved

this problem using our proposed algorithm and a

genetic algorithm proposed by Daskin’s Sitation

software2 with p=5, 10, 15, 20, 25, 30, 35 and 40.

Other parameters of this software are set as table 1.

 M. Mahmoudi, K. Shahanaghi / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.

389 | P a g e

Table 1. Parameters of GA in Daskin’s software

Parameter Value

Population Size 50

Number to Improve 0

Initial Population Size 150

Max # of Generation 300

of Generation w/o

Improvement
300

Min Compatibility 0.1

Number of Dates 8

Mutation Probability 0.4

 Solutions of both algorithms are shown in table 2.

Table 2. Solution of both of proposed algorithm and

Daskin’s GA on Galvao’s problem

N P
Galvao

Optimal

Proposed

Algorithm

Daskin's

Sitation

Software

100 5 5703 5703 5703

100 10 4426 4440 4491

100 15 3893 3894 3974

100 20 3565 3565 3608

100 25 3291 3296 3312

100 30 3032 3039 3056

100 35 2784 2790 2815

100 40 2542 2545 2557

As table 1 shows, answers obtained by the proposed

algorithm are closer to the optimal solution. In

addition, proposed algorithm performs better than

Daskin’s Sitation software.

5. Conclusion
In this paper, after reviewing p-median

location problem, we proposed new and efficient

methods to improve GA for p-median location

problem. These methods contain initial population;

crossover operator containing one and two points

crossover randomly, renewing children, and

crossover with three parents. Mutation operator

containing one, two and three points mutation

randomly and renewing children and re-allocation

operator. To show the efficiency of the algorithm,
we solved a numerical example using the proposed

algorithm. The results were compared to those

obtained by genetic algorithm of Daskin’s Sitation

software that shows the superior performance of our

proposed algorithm.

References

[1] D. Beasley, D. R. Bull, R. R. Martin, An

Overview of Genetic Algorithms: Part 1,
Fundamentals, University Computing, Vol.

15, No. 2, 1993, pp. 58-69.

[2] S. H. Owen, M. S. Daskin, Strategic

facility location: A review, European

Journal of Operational Research, Vol. 111,

No. 3, 1998, pp. 423-447.

[3] A. Chipperfield, P. Fleming, H. Pohlheim,

C. Fonseca, Genetic Algorithm Toolbox

User’s Guide, University of Sheffield, .
[4] A. E. Eiben, P. E. Raué, Zs. Ruttkay,

Genetic algorithms with multi-parent

recombination, Proceedings of the 3rd

Conference on Parallel Problem Solving

from Nature, 1994, pp. 78-87.

[5] S. Tsutsui, M. Yamamura, T. Higuchi,

Multi-parent Recombination in Genetic

Algorithms with Search Space Boundary

Extension by Mirroring, Proceedings of the

Fifth International Conference on Parallel

Problem Solving from Nature, 1998, pp.

428-437.

