
 M. Mahmoudi, K. Shahanaghi / International Journal of Engineering Research and 

Applications (IJERA) ISSN: 2248-9622   www.ijera.com 

Vol. 3, Issue 1, January -February 2013, pp.386-389 

386 | P a g e  

A Genetic Algorithm For P-Median Location Problem 
 

M. Mahmoudi and K. Shahanaghi 
Department of Industrial Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran. 

 

 

Abstract 
In this paper, we have proposed a new 

genetic algorithm for p-median location problem. 

In this regard, prior genetic algorithms were 

designed for p-median location problem by 

proposing several methods that are used in 

generation of initial population, crossover and 

mutation operators, and new operator so- called 

re-allocation has been incorporated into the 

algorithm that causes to find the optimal solution 

faster. Finally, efficiency of the algorithm has 

been shown by a numerical example. 
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1. Introduction 
Genetic Algorithm (GA) is a meta-heuristic 

method which is used to obtain a near optimal 
solution in cases that numerical and mathematical 

methods are not able to solve the problem in 

reasonable time. GA generates a new population 

from the current population by using several 

operators, repeating these methods until a proper 

solution is obtained, and termination criteria are 

met. Each individual of the population, which is 

called a chromosome, is a solution for the 

investigated problem. Chromosomes are composed 

of genes. 

GA has five steps: initial population 
generation, parent selection, crossover operation, 

mutation operation and new population selection. 

Initial population is generated randomly. Parents are 

selected randomly or the population is ordered 

decreasingly by fitness function value and then, 

parents are selected from top of the list. The 

crossover operator is performed by separating 

chromosome and replacing the separated parts. In 

mutation operation, a gene is selected randomly and 

changed [1]. To perform selection operator, 

generated offspring go to the next stage immediately 
or offspring along with their parents are ordered 

decreasingly according to fitness function value. 

Then the new population is selected from above the 

list to fill the population. 

In this paper, we apply GA for solving p-median 

location problem and we improve it by applying 

some methods in each stage. 

 

2. P-median location problem 
In p-median location problem, we have several 
demand nodes. The aim of the problem is to choose 

p nodes to locate facilities in those nodes and  

 

allocate facilities to demand nodes. The objective is 

to minimize total transportation (distance is 

weighted by demand) between demand nodes and 

facilities. 

The following assumptions are considered in the 

problem: 

The capacity of each facility is unbounded. Each 

node can be supplied by just one facility, but each 

facility can service to several demand nodes. To 

formulate this problem, the following notations are 

used: 

i  and j : index of demand nodes; 

ih : demand in node i ; 

ijd : distance between demand nodes i  and j ; 

n : number of demand nodes; 

p : number of facilities that be located; 

Decision variables: 

jx : is equal to 1 if facility is located in node j , 

else is equal to 0; 

ijy : is equal to 1 if facility j  is allocated to 

demand node i , else is equal to 0. 

Therefore, the p-median location problem is 

formulated as integer linear programming (1): [2] 
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The first constraint represents that each 

demand node can be supplied by one facility. The 

second constraint ensures that a node is allocated to 

a demand node when a facility is located in that 

node. Third constraint indicates the number of 

facilities that must be located. The last constraint 

shows the type of each decision variable. 
 

3. GA for solving p-median problem 
In this section, we introduce the proposed 

genetic algorithm that is used to solve the p-median 

location problem. 
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3.1. Introducing chromosomes 

Number of genes that form chromosomes 

of the proposed algorithm is equal to the number of 

demand nodes. Each gene is filled by the index of 

the node which is selected to locate a facility. These 

genes show the facility node to which the demand 

node is allocated. For example, consider 7 demand 
nodes. Figure 1 shows a chromosome. 

 

 
Figure 1. A sample chromosome of proposed 

algorithm 

Genes of this chromosome indicate a 

facility location and the demand allocation. This 

chromosome shows that facilities are located at 

nodes 2, 4 and 7. Facility node 2 is allocated to 
nodes 2, 3 and 5, facility node 4 is allocated to 

nodes 1,4 and 8, and facility node 7 is allocated to 

nodes 6 and 7. 

 

3.2. Initial population 

To generate initial population, genes are 

usually generated randomly. In the proposed 

algorithm, to generate initial population, we 

randomly choose p nodes from demand nodes and 

locate facilities at those nodes. Then, each demand 

node is allocated to the nearest facility node. The 

generation code of initial population is as follows: 
function ip = Initial Population (nop, nof) 

% nop : number of nodes 

% nof : number of facilities 

% sof : Set of facilities 

sof = generate nof random site nodes for facilities 

through demand nodes; 

for i=1:nop 

 if i is in sof 

 ip(i) = i; 

 else 

 ip(i) = nearest facility to node i; 
 end 

end 

 

Using this method, generated chromosomes 

certainly are feasible and so feasible test is required. 

 

3.3. Fitness function 

The fitness function is calculated using the 

objective function of the mathematical model. 

 

3.4. Parent selection process 

In parent selection process, parents are 
selected randomly from population. 

 

3.5. Crossover operation 

Crossover operator is used to generate 

children from parents. Based on parent selection 

procedure, we choose two chromosomes (parents). 

We can perform crossover operator in two ways: 

one point or two points (one of these ways is 

selected randomly). In one point crossover, one gene 

is selected randomly. To perform crossover 

operation, we use this gene and the second part that 

is created by it. In two-point crossover, two random 

genes are selected in the chromosome. To perform 

crossover operation, we use these genes and the 
middle part that is created by them. Figure 2 shows 

one point crossover and figure 3 shows two points 

crossover. 

 

 
Figure 2. One point crossover 

 

 
Figure 3. Two points crossover 

 

In the proposed algorithm, to perform 

crossover operator, we use one of the above 

methods randomly for each pair of parents [3]. In 

order to increase the efficiency of the algorithm, 
after crossover operator, offspring are renewed. 

After crossover operator, the number of located 

facilities may not be equal to p. Thus, the crossover 

must be repeated. By renewing offspring, the 

number of located facilities will be equal to p. 

Therefore, generated chromosome is feasible. 

Children renewing code is following: 

function nc = new child (c, sof, nof, nofs) 

% c : child 

% sof : set of facilities 

% nofs : number of facilities in set 
% nof : number of facilities 

if nofs > nof 

 for k=1:(nofs-nof) 

 select randomly two sites and replace one 

of them with another; 

 end 

elseif nofs < nof 

 for k=1:(nof-nofs) 
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 select randomly a facility site (fs) and a 

non-facility site (nfs). Then, set a facility in 

nfs and change allocations from fs to nfs 

alternately; 

 end 

else 

 child c is ok; 
end 

 

In addition, in order to increase 

effectiveness of the crossover operator, in each 

performance of crossover, we run it several times 

(number of dates) and the best crossover is 

introduced as the main crossover operator. 

In large scale problems, crossover operator 

might not show satisfactory efficiency. Therefore, 

we can perform it on several parents instead of two 

parents [4, 5]. In this paper, results of the crossover 

operator using three parents are six children. Figure 
4 shows a two points crossover with three parents. 

 

 
Figure 4. Two points crossover with three parents 

 

3.6. Mutation operation 

In mutation operator, one or more genes of 

a chromosome are selected and changed regarding 
the mutation rate. In the proposed algorithm, we use 

one of  these three types of mutation operator, 

randomly: one point, two points and three points 

mutation which are performed on one, two and three 

gene respectively. These genes are replaced with 

one, two and three numbers that are points to one 

demand node. As an example, consider that 6th gene 

must be replaced with a facility which is located at 

node number 4. Figure 3 illustrates one point 

mutation operator. 

 

 
Figure 5. One point mutation operation 

 

After performing mutation operator, generated 

children are renewed similar to the crossover 

operator. Therefore, the generated children are 

feasible. 

 

3.7. Re-allocation 

re-allocation operator which is performed 

on each individual, without changing facility’s sites, 

allocations of demand nodes to facilities are 
changed. Each demand node is allocated to the 

nearest facility. Population resulting from this re-

allocation is added to the current population. This 

operator causes a faster moving to the optimal 

solution. The last population (population after 

crossover and mutation operations and population 

after re-allocation operation) enters the next stage 

which is the selection of the new population.  

 

3.8. Selection new population process 

Old and new population (population after 
crossover and mutation operations and population 

after re-allocation operation) create a list of 

individuals. This list is sorted by fitness function 

decreasingly. Then, we choose certain number of 

chromosomes from the top of the list. These selected 

chromosomes are selected as the new population. 

 

3.9. stopping criteria 

To terminate the algorithm, two criteria 

must be satisfied: 

a) Algorithm reaches the maximum number of 
iterations; 

b) The best solution is not changed after a pre-

specified number of generations. 

Finally, chromosomes with the best fitness value are 

selected as optimal solutions. A numerical example 

is solved in the next section to show the efficiency 

of the algorithm. 

 

4. Numerical example 
To show the efficiency of the proposed 

algorithm, we use Galvao’s standard data1. In 

Galvao’s problem, there are 100 demand nodes. We 

want to locate p facilities to minimize total weighted 

distance (p-median location problem). We solved 

this problem using our proposed algorithm and a 

genetic algorithm proposed by Daskin’s Sitation 

software2 with p=5, 10, 15, 20, 25, 30, 35 and 40. 

Other parameters of this software are set as table 1. 

                                                             
 

 



 M. Mahmoudi, K. Shahanaghi / International Journal of Engineering Research and 

Applications (IJERA) ISSN: 2248-9622   www.ijera.com 

Vol. 3, Issue 1, January -February 2013, pp. 

389 | P a g e  

Table 1. Parameters of GA in Daskin’s software 

Parameter Value 

Population Size 50 

Number to Improve 0 

Initial Population Size 150 

Max # of Generation 300 

# of Generation w/o 

Improvement 
300 

Min Compatibility 0.1 

Number of Dates 8 

Mutation Probability 0.4 

 

 Solutions of both algorithms are shown in table 2. 

Table 2. Solution of both of proposed algorithm and 

Daskin’s GA on Galvao’s problem 

N P 
Galvao 

Optimal 

Proposed 

Algorithm 

Daskin's 

Sitation 

Software 

100 5 5703 5703 5703 

100 10 4426 4440 4491 

100 15 3893 3894 3974 

100 20 3565 3565 3608 

100 25 3291 3296 3312 

100 30 3032 3039 3056 

100 35 2784 2790 2815 

100 40 2542 2545 2557 

 

As table 1 shows, answers obtained by the proposed 

algorithm are closer to the optimal solution. In 

addition, proposed algorithm performs better than 

Daskin’s Sitation software. 

 

5. Conclusion 
In this paper, after reviewing p-median 

location problem, we proposed new and efficient 

methods to improve GA for p-median location 

problem. These methods contain initial population; 

crossover operator containing one and two points 

crossover randomly, renewing children, and 

crossover with three parents. Mutation operator 

containing one, two and three points mutation 

randomly and renewing children and re-allocation 

operator. To show the efficiency of the algorithm, 
we solved a numerical example using the proposed 

algorithm. The results were compared to those 

obtained by genetic algorithm of Daskin’s Sitation 

software that shows the superior performance of our 

proposed algorithm. 
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