
 Sharmili C, Rexie J. A. M / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.349-353

349 | P a g e

Efficient Keyword Search Methods In Relational Databases

Sharmili C
1
, Rexie J. A. M

2

1Post-Graduate Student, Department Of Computer Science And Engineering, Karunya University, India
2 Assistant Professor, Department Of Computer Science And Engineering, Karunya University, India

Abstract

Now a days the keyword search is a

mechanism used by all type of organizations. In

relational databases the keyword search is used

to find the tuples by giving queries. But most of

the methods that contain low performance and

more storage space for storing the results. So we

must find the efficient method for keyword

search in relational databases. So we go for the

comparative study for the keyword search in

relational databases.

Keywords: relational databases, keyword

search, IR ranking, banks, discover.

I. INTRODUCTION
Data mining is the process that attempts to

discover patterns in large data sets. It utilizes
methods at the intersection of artificial intelligence,

machine learning, statistics, and database

systems. The overall goal of the data mining process

is to extract information from a data set and

transform it into an understandable structure for

further use.

The actual data mining task is the automatic

or semi-automatic analysis of large quantities of data

to extract previously unknown interesting patterns

such as groups of data records (cluster analysis),

unusual records (anomaly detection) and
dependencies (association rule mining). This usually

involves using database techniques such as spatial

indexes. These patterns can then be seen as a kind of

summary of the input data, and may be used in

further analysis or, for example, in machine learning

and predictive analytics. For example, the data

mining step might identify multiple groups in the

data, which can then be used to obtain more accurate

prediction results by a decision support system.

Neither the data collection and data preparation, nor

result interpretation and reporting are part of the data
mining step, but do belong to the overall KDD

process as additional steps.

Keyword search is a proven and widely

accepted mechanism for querying in textual

document systems and the World Wide Web. The

database research community has recently

recognized the benefits of keyword search and has

been introducing keyword-search capabilities into

relational databases, XML databases, graph

databases, and heterogeneous data sources.

Keyword search provides an alternative

means of querying relational databases, which is

simple to people who are familiar with using web

search engines. One important advantage of

keyword search is that it enables users to search for

information without having to know complex

structured query languages (e.g., SQL) or prior

knowledge about the structures of the underlying

data.

Keyword search over relational databases

finds the answers of the tuples in the databases

which are connected through primary/foreign keys
and contain query keywords. Keyword search

provides a simple and user-friendly query interface

to access the data in web and scientific applications.

Keyword search is considered to be an

effective information discovery method for structure

and semi-structured data. It allows users without

prior knowledge of schema and query language to

search. The database research community has

recently recognized the benefits of keyword search

and has been introducing keyword-search

capabilities for effective keyword search.
Keyword search over relational databases

finds the answers of tuples in the databases which

are connected through primary/foreign keys and

contain query keywords. Existing three types of

methods: candidate-network-based methods, Steiner-

tree-based algorithms, and Backward expanding

keyword search approaches. These methods are

explained in the comparative study.

II. KEY CONCEPTS
A. Keyword searching using banks

Relational databases are commonly

searched using structured query languages. The user

needs to know the data schema to be able to ask

suitable queries. Search engines on the Web have

popularized an alternative unstructured querying and

browsing paradigm that is simple and user-friendly.

Users type in keywords and follow hyperlinks to

navigate from one document to the other.

No knowledge of schema is needed. In

relational databases, information needed to answer a
keyword query is often split across the tables/tuples,

due to normalization. The BANKS system enables

data and schema browsing together with keyword-

based search for relational databases.

BANKS enables a user to get information

by typing a few keywords and interacting with,

controls on the results; absolutely no query language

or programming is required. BANKS greatly reduces

http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Database_system
http://en.wikipedia.org/wiki/Database_system
http://en.wikipedia.org/wiki/Database_system
http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/Anomaly_detection
http://en.wikipedia.org/wiki/Association_rule_mining
http://en.wikipedia.org/wiki/Spatial_index
http://en.wikipedia.org/wiki/Spatial_index
http://en.wikipedia.org/wiki/Spatial_index
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Predictive_analytics
http://en.wikipedia.org/wiki/Decision_support_system

 Sharmili C, Rexie J. A. M / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.349-353

350 | P a g e

the effort involved in publishing relational data on

the Web and making it searchable.

B. Discover: keyword search in relational

databases

DISCOVER returns qualified joining

networks of tuples, that is, sets of tuples that are
associated because they join on their primary and

foreign keys and collectively contain all the

keywords of the query. DISCOVER proceeds in two

steps. First the Candidate Network Generator

generates all candidate networks of relations, that is,

join expressions that generate the joining networks

of tuples. Then the Plan Generator builds plans for

the efficient evaluation of the set of candidate

networks, exploiting the opportunities to reuse

common sub expressions of the candidate networks.

DISCOVER provides a simple interface where the

user simply types the keywords as would do on a
search engine.

According to DISCOVER, an association

exists between two keywords if they are contained in

two associated tuples, i.e., two tuples that join

through foreign key to primary key relationships,

which potentially involve more tuples. As the

amount of information stored in databases increases,

so does the need for efficient information discovery.

Keyword search enables information discovery

without requiring from the user to know the schema

of the database.

C. IR Ranking

With the amount of available text data in

relational databases growing rapidly, the need for

ordinary users to search such information is

dramatically increasing. Even though the major

RDBMSs have provided full-text search capabilities,

they still require users to have knowledge of the

database schemas and use a structured query

language to search information.

This search model is complicated for most

ordinary users. Inspired by the big success of
information retrieval (IR) style keyword search on

the web, keyword search in relational databases has

recently emerged as a new research topic.

The differences between text databases and

relational databases result in three new challenges:

(1) Answers needed by users are not limited to

individual tuples, but results assembled from joining

tuples from multiple tables are used to form answers

in the form of tuple trees. (2) A single score for each

answer (i.e. a tuple tree) is needed to estimate its

relevance to a given query. These scores are used to
rank the most relevant answers as high as possible.

(3) Relational databases have much richer structures

than text databases. Existing IR strategies are

inadequate in ranking relational outputs. In this

paper, we propose a novel IR ranking strategy for

effective keyword search.

III. COMPARATIVE STUDY

This section includes a study on some of

the algorithm that searches the tuples from the

database but it not efficient in their performance.

A. Backward expanding search

Backward Expanding Search algorithm

offers a heuristic solution for incremental computing

query results. Assume that the graph fits in memory.

This is not unreasonable, even for moderately large

databases, because the in-memory node

representation need not store any attribute of the

corresponding tuple other than the RID. The only

other in-memory structure is an index to map RIDs

to the graph nodes. Indices to map keywords to RIDs

can be disk resident. As a result the graphs of even

large databases with millions of nodes and edges can
fit in modest amounts of memory. BANKS models

tuples as nodes in a graph, connected by links

induced by foreign key and other relationships.

Answers to a query are modeled as rooted trees

connecting tuples that match individual keywords in

the query. Answers are ranked using a notion of

proximity coupled with a notion of prestige of nodes

based on inlinks, similar to techniques developed for

Web search. It presents an efficient heuristic

algorithm for finding and ranking query results.

B. Candidate Network Generator

The Candidate Network Generator inputs

the set of keywords k1, . . . ,km, the non-empty tuple

sets RKi and the maximum candidate networks’ size

T and outputs a complete and non-redundant set of

candidate networks. The key challenge is to avoid

the generation of redundant joining networks of

tuple sets. The solution to this problem requires an

analysis of the conditions that force a joining

network of tuples to be non-minimal the condition

for the totality of the network is straightforward.
 As the amount of information stored in

databases increases, so does the need for efficient

information discovery. Keyword search enables

information discovery without requiring from the

user to know the schema of the database, SQL or

some QBE-like interface, and the roles of the

various entities and terms used in the query. In

DISCOVER databases that do not require

knowledge of the database schema or of a querying

language, DISCOVER is a system that performs

keyword search in relational databases. It proceeds

in three steps. First it generates the smallest set of
candidate networks. Then the greedy algorithm

creates a near-optimal execution plan to evaluate the

set of candidate networks. Finally, the execution

plan is executed by the DBMS.

C. Steiner-tree-based search

A relational database can be modeled as a

database graph G = (V, E) such that there is a one-to-

one mapping between a tuple in the database and a

 Sharmili C, Rexie J. A. M / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.349-353

351 | P a g e

node in V. G can be considered as a directed graph

with two a edge: a forward edge (u, v) ∈ E iff there

is a foreign key from u to v, and a back edge (v, u)

iff (u, v) is a forward edge in E. An edge (u, v)

indicates a close relationship between tuples u and v

(i.e., they can be directly joined together), and the

introduction of two edge types allows differentiating
the importance of u to v and vice versa. When such

separation is not necessary for some applications, G

becomes an undirected graph.

To support keyword search over relational

data, G is typically modeled as a weighted graph,

with a node weight ω(v) to represent the “prestige”

level of each node v ∈ V and an edge weight ω(u, v)

for each edge in E to represent the strength of the

closeness relationship between the two tuples.

Most of existing methods of keyword
search over relational databases find the Steiner trees

composed of relevant tuples as the answers. They

identify the Steiner trees by discovering the rich

structural relationships between tuples, and neglect

the fact that such structural relationships can be pre-

computed and indexed. Tuple units that are

composed of most relevant tuples are proposed to

address this problem. Tuple units can be

precomputed and indexed. Existing methods identify

a single tuple unit to answer keyword queries. They,

however, may involve false negatives as in many

cases a single tuple unit cannot answer a keyword
query. Instead, multiple tuple units should be

integrated to answer keyword queries.

To address this problem, in this paper, we

study how to integrate multiple related tuple units to

effectively answer keyword queries. It devises novel

indices and incorporates the structural relationships

between different tuple units into the indices. It uses

the indices to efficiently and progressively identify

the top-k relevant answers. It have implemented our

method in real database systems, and the

experimental results show that our approach
achieves high search efficiency and accuracy, and

outperforms state-of-the-art methods significantly.

D. Joined Tuple Tree Algorithm

In this paper, it describes the effectiveness

and the efficiency issues of answering top-k

keyword query in relational database systems. They

propose a new ranking formula by adapting existing

IR techniques based on a natural notion of virtual

document. Compared with previous approaches, our

new ranking method is simple yet effective, and

agrees with human perceptions. It has conducted
extensive experiments on large-scale real databases

using two popular RDBMSs.

It focuses on the problem of supporting

effective and efficient top-k keyword search in

relational databases. While many RDBMSs support

full-text search, they only allow retrieving relevant

tuples from within the same relation.

A unique feature of keyword search over RDBMSs

is that search results are often assembled from

relevant tuples in several relations such that they are

inter-connected and collectively be relevant to the

keyword query [1], [3]. Supporting such feature has

a number of advantages. Firstly, data may have to be

split and stored in different relations due to database
normalization requirement. Such data will not be

returned if keyword search is limited to only single

relations. Secondly, it lowers the barrier for casual

users to search databases, as it does not require users

to have knowledge about

Query languages and database schema.

Thirdly, it helps to reveal interesting or unexpected

relationships among entities [19]. Lastly, for

websites with database back-ends, it provides a more

flexible search method than the existing solution that

uses a fixed set of pre-built template queries.

E. Tastier Approach

In this paper the proposed a novel approach

to keyword search in the relational world, called

Tastier. A Tastier system can bring instant

gratification to users by supporting type-ahead

search, which finds answers “on the fly” as the user

types in query keywords.

A main challenge is how to achieve a high

interactive speed for large amounts of data in

multiple tables, so that a query can be answered

efficiently within milliseconds. It proposes efficient
index structures and algorithms for finding relevant

answers on-the-fly by joining tuples in the database.

It devises a partition-based method to improve query

performance by grouping relevant tuples and

pruning irrelevant tuples efficiently. It also develops

a technique to answer a query efficiently by

predicting highly relevant complete queries for the

user. It has conducted a thorough experimental

evaluation of the proposed techniques on real data

sets to demonstrate the efficiency and practicality of

this new search paradigm.

IV. FUTURE RESEARCH DIRECTIONS
Emphasize on the efficiency and

effectiveness of keyword search over relational

databases by shortening and indexing tuples in the

fundamental relational databases. It proposes the

concept of tuple units to effectively answer keyword

queries. It generates and materializes the tuple units,

which are composed of relevant tuples connected by

primary foreign- key relationships. They identify the
most relevant and meaningful tuple units to answer

keyword queries. Moreover, they examine the

techniques of indexing and ranking to enhance the

search efficiency and search accuracy.

A tuple unit is a set of highly relevant

tuples which contain query keywords. Moreover

tuple units can be precomputed and indexed, and it

can use the indexed tuple units to efficiently answer

a keyword query.

 Sharmili C, Rexie J. A. M / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.349-353

352 | P a g e

Propose a structure-aware index based

method to integrate multiple related tuple units to

effectively answer keyword queries. It discovers the

structural relationships between different tuple units

and stores them into structure-aware indices, and

progressively finds the top-k answers using such

indices. Propose a novel method, namely Saint
(Structure-Aware INdexing for finding and ranking

Tuple units), to answer keyword queries over

relational databases.

Devise two structure-aware indexes, single-

keyword based structure-aware index (SKSA-Index)

and keyword-pair based structure-aware index

(KPSA-Index), to capture structural relationships

between tuple units. We use the indexes to on-the-

fly integrate multiple tuple units to answer a

keyword query.

Keyword query K=(k1; k2; . . . ; kn} and a

relational database, first identify the tuple units with
the top-k highest scores (using the scoring function

SCORE(K,u)). Then, construct the subtrees which

are rooted at each identified tuple unit and contain

the paths from the tuple unit to the corresponding

pivotal tuple units for each keyword.

Finally, take the subtrees as the answers.

Note that the subtree is composed of multiple highly

relevant tuple units. Indexing in keyword search is

used to find the keywords in the tuples in an efficient

manner.

To efficiently retrieve IR scores, propose a
single keyword- based structure-aware index, called

SKSA-Index, which is similar to the traditional

inverted index. The entries of SKSA-Index are also

the keywords that are contained in the underlying

database.

Different from inverted indexes which only

maintain the tuple units that directly contain the

keyword, each entry of SKSA-Index preserves the

tuple units that directly or indirectly contain the

keyword in the form of a triple <TupleUnit, Score,

TupleUnitLists>, where the Score is the assigned

score of the keyword in the tuple unit TupleUnit, and
TupleUnitLists preserves the tuple unit lists from

Unit to the corresponding pivotaltupleunits, which

can be obtained from the pivotal tuple unit matrix.

The tuple units are sorted by the

corresponding scores in descending order. Most

importantly, SKSA-Index captures the rich structural

relationships, as each entry preserves the paths from

a given tuple unit to the corresponding pivotal tuple

unit and also keeps the structure-aware scores of

tuple units indirectly or directly containing

keywords.

V. CONCLUSION
The above comparative study algorithm are

not efficient because of the disadvantages. These

algorithms needed more space for storing the

information and it also complex for finding the

tuples from the relational database.

The problem of effective keyword search over

relational databases is the major issue in the

databases. Here proposes to integrate multiple

relevant tuple units to effectively answer keyword

queries.

It is devised two novel structure-aware

indexes, SKSA-Index and KPSA-Index, which
incorporate the structural relationships between tuple

units and the textual relevancy between input

keywords into the indexes. It is suggested a novel

ranking mechanism by taking into consideration

both the textual relevancy in IR literature and the

structural compactness of tuple units from the DB

viewpoint.

REFERENCES
[1] Jianhua Feng, Guoliang Li, and Jianyong

Wang, “Finding Top-k Answers in

Keyword Search over Relational Databases

Using Tuple Units” IEEE Transactions On

Knowledge And Data Engineering, Vol. 23,

No. 12, December 2011.

[2] Balmin.A., Hristidis.V., and

Papakonstantinou.Y. (2004) “Objectrank:

Authority-Based Keyword Search in

Databases,” Int’l Conf. Very Large Data

Bases (VLDB), 564-575.

[3] Bhalotia.G., Hulgeri.A., Nakhe.C.,
Chakrabarti.S., and Sudarshan.S. (2002)

“Keyword Searching and Browsing in

Databases Using Banks,” Int’l Conf. Data

Eng. (ICDE), 431-440.

[4] Ding.B et al. (2007) “Finding Top-k Min-

Cost Connected Trees in Databases,” IEEE

Int’l Conf. Data Eng. (ICDE).

[5] Feng.J., Li.G., Wang.J, and Zhou.L. (2010)

“Finding and Ranking Compact Connected

Trees for Effective Keyword Proximity

Search in XML Documents,” Information
Systems, vol. 35, no. 2, 186-203.

[6] He.H., Wang.H., Yang.J., and Yu.P. (2007)

“Blinks: Ranked Keyword Searches on

Graphs,” ACM SIGMOD Int’l Conf.

Management of Data.

[7] Hristidis.V., and Papakonstantinou.Y.

(2002a) “Discover: Keyword Search in

Relational Databases,” Int’l Conf. Very

Large Data Bases (VLDB), 670-681.

[8] Li.G., Ji.S., Li.C., and Feng.J. (2009a)

“Efficient Type-Ahead Search on

Relational Data: A Tastier Approach,”
SIGMOD Int’l Conf. Management of Data,

695-706.

[9] Li.G., Ooi B.C., Feng.J., Wang.J., and

Zhou.L. (2008b) “Ease: An Effective 3-in-1

Keyword Search Method for Unstructured,

Semi-Structured and Structured Data,”

ACM SIGMOD Int’l Conf. Management of

Data, 903-914.

 Sharmili C, Rexie J. A. M / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.349-353

353 | P a g e

[10] Li.G., Zhou.X., Feng.J., and Wang.J.

(2009c) “Progressive Keyword Search in

Relational Databases,” IEEE Int’l Conf.

Data Eng. (ICDE),1183-1186.

[11] Liu.F., Yu.C., Meng.W., and

Chowdhury.A. (2006) “Effective Keyword

Search in Relational Databases,” ACM
SIGMOD Int’l Conf. Management of Data,

563-574.

[12] Luo.L., Lin.X., Wang.W., and Zhou.X.

(2007) “Spark: Top-k Keyword Query in

Relational Databases,” ACM SIGMOD

Int’l Conf. Management of Data.

[13] Li.G., Feng.J., and Zhou.L. (2008) “Retune:

Retrieving and Materializing Tuple Units

for Effective Keyword Search over

Relational Databases,” Int’l Conf.

Conceptual Modeling (ER), 469- 483.

[14] Li.G., Feng.J., and Wang.J. (2009a)
“Structure-Aware Indexing for Keyword

Search in Databases,” ACM Conf.

Information and Knowledge Management

(CIKM),1453-1456.

[15] Li.G., Feng.J., Zhou.X., and Wang.J

(2011b) “Providing Built-in Keyword

Search Capabilities in RDBMS,” The

VLDB J., vol. 20, no. 1,1- 19.

[16] Markowetz.A., Yang.Y., and Papadias.D.

(2007) “Keyword Search on Relational

Data Streams,” ACM SIGMOD Int’l Conf.
Management of Data.

[17] Qin.L., Yu.J.X., and Chang.L. (2009)

“Keyword Search in Databases: The Power

of RDBMS,” SIGMOD Int’l Conf.

Management of Data, 681-694.

[18] Sayyadian.M., LeKhac.H., Doan.A., and

Gravano.L. (2007) “Efficient Keyword

Search across Heterogeneous Relational

Databases,” IEEE Int’l Conf. Data Eng.

(ICDE).

[19] Yu.B., Li.G., Sollins.K., and Tung.A.K.H.

(2007) “Effective Keyword- Based
Selection of Relational Databases,” ACM

SIGMOD Int’l Conf. Management of Data,

139-150.

