
 Stevina Dias, Sherrin Benjamin, Mitchell D’silva, Lynette Lopes / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.225-230

225 | P a g e

GPU Programming Models

Stevina Dias* Sherrin Benjamin* Mitchell D’silva* Lynette Lopes*
*Assistant Professor

Dwarkadas J Sanghavi College of Engineering, Vile Parle

Abstract
The CPU, the brains of the computer is

being enhanced by another part of the computer

– the Graphics Processing Unit (GPU), which is

its soul. GPUs are optimized for taking huge

batches of data and performing the same

operation repeatedly and quickly, which is not

the case with PC microprocessors. A CPU

combined with GPU, can deliver better system

performance, price, and power. The version 2 of

Microsoft’s Accelerator offers an efficient way

for applications to implement array-processing

operations. These operations use the parallel

processing capabilities of multi-processor

computers. CUDA is a parallel computing

platform and programming model created by

NVIDIA. CUDA provides both lower and a

higher level APIs.

Keywords– GPU, GPU Programming CUDA,
CUDA API, CGMA ratio, CUDA Memory Model,

Accelerator, Data Parallel Arrays

I. INTRODUCTION
Computers have chips that facilitate the

display of images to monitors. Each chip has

different functionality. Intel‘s integrated graphics

controller provides basic graphics that can display
applications like Microsoft PowerPoint, low-

resolution video and basic games. The GPU is a

programmable and powerful computational device

that goes far beyond basic graphics controller

functions [1]. GPUs are special-purpose processors

used for the display of three dimensional scenes. The

capabilities of GPU are being harnessed to

accelerate computational workloads in areas such as

financial modelling, cutting-edge scientific research

and oil and gas exploration. The GPU can now take

on many multimedia tasks, such as speed up Adobe
Flash video, translating video to different formats,

image recognition, virus pattern matching and many

more. But the challenge is to solve those problems

that have an inherent parallel nature – video

processing, image analysis, signal processing. The

CPU is composed of few cores and a huge cache

memory that can handle a few software threads at a

time. Conversely, a GPU is composed of hundreds

of cores that can handle thousands of threads

simultaneously [2]. This ability of a GPU can

accelerate some software by 100x over a CPU alone.

The GPU achieves this acceleration while being
more powerful and cost-efficient as compared to a

CPU. This paper describes 2 different ways of

programming a GPU namely Accelerator and

CUDA.

II. ACCELERATOR
Accelerator is a high-level data parallel

library which uses parallel processors such as the

GPU or multi core CPU to speed up execution. The

Accelerator application programming interface

(API) helps in implementing a wide variety of array-
processing operations by supporting a functional

programming model. All the details of parallelizing

and running the computation on the selected target

processor, including GPUs and multi core CPUs are

handled by the accelerator. The Accelerator API is

almost processor independent, so the same array-

processing code runs on any supported processor

with only minor changes [3].

The basic steps in Accelerator programming are:

i. Create data arrays.
ii. Load the data arrays into Accelerator data-

parallel array objects.

iii. Process the data-parallel array objects using a

series of Accelerator operations.

iv. Create a result object.

v. Evaluate the result object on a target.

A. Data Parallel Array Objects

Applications do not have direct access to

the array data and cannot manipulate the array by

index [3]. Applications implement array processing
schemes by applying Accelerator operations to data-

parallel array objects—which represent an entire

array as a unit—rather than working with individual

array elements.

5 data-parallel array objects supported by

Accelerator v2 are:

i. BoolParallelArray

ii. DoubleParallelArray

iii. Float4ParallelArray

iv. FloatParallelArray

v. IntParallelArray

An example for Float4ParallelArray is as follows:

typedef struct

 { float a;

 float b;

 float c;

 float d; } float4;

 Stevina Dias, Sherrin Benjamin, Mitchell D’silva, Lynette Lopes / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.225-230

226 | P a g e

Float4 is an Accelerator structure that contains a

quadruplet of float values. It is used primarily in

graphics programming. float4 xyz (0.7f, 5.0f, 4.2f,

9.0f). The API includes a large collection of

operations that applications can use to manipulate

the contents of arrays and to combine the arrays in

various ways. Most operations take one or more
data-parallel array objects as input, and return the

processed data as a new data-parallel object.

Accelerator operations work with copies of the input

objects; they do not modify the original objects.

Operation inputs are typically data-parallel objects,

but some operations can also take constant values.

Table 1 Type of Accelerator Operations

Operation Explanation

Creation

and

conversion

Create new data-parallel array objects and

convert them from one type to another.

Element-

wise

Operate on each element of one or more data-

parallel array objects and return a new object

with the same dimensions as the originals.

 Add.

 Abs

 Subtract

 Divide , etc

Reduction Reduce the rank of a data-parallel array object

by applying a function across 1D or more
dimensions.

Transform Transform the organization of the elements in

a data-parallel array object. These operations
reorganize the data in the object, but do not

require computation. For example:

 Transpose

 Pad

Linear

algebra

Perform standard matrix operations on data-

parallel array objects, including matrix

multiplication, scalar product, and outer

product.

B. Sample Code

using System;

using Microsoft.ParallelArrays;

using FloatArray =
Microsoft.ParallelArrays.FloatParallelArray;

using PArray =

Microsoft.ParallelArrays.ParallelArrays;

namespace SubArrays

{

class Calculation

 {

staticvoid Main(string[] args)

 {

int arraySize = 100;

Random ranf = newRandom();
float[] Array1 = newfloat[arraySize];

float[] Array2 = newfloat[arraySize];

float[] Array3 = newfloat[arraySize];

DX9Target result = newDX9Target(); // (1)

for (int i = 0; i < arraySize; i++) // (2)

 {

 Array1[i] = (float)(Math.Sin((double)i / 10.0) +

ranf.NextDouble() / 5.0);

 Array2[i] = (float)(Math.Sin((double)i / 10.0) +

ranf.NextDouble() / 5.0);

 }
FloatArray fpInput1 = new FloatArray (Array1);

 // (3)

FloatArray fpInput2 = new FloatArray (Array2);

FloatArray fpStacked = PArray.Subtract(fpInput1,

fpInput2); // (4)

FloatArray fpOutput = PArray.Divide(fpStacked, 2);

 Array3 = result.ToArray1D(fpOutput); // (5)

for (int i = 0; i < arrayLength; i++) // (6)

{

Console.WriteLine(Array3[i].ToString()); //(7)

} } } }

The above code uses two commonly used types:

ParallelArrays and FloatParallelArray.

ParallelArrays represented by PArray, contains the

Accelerator operation methods [3].

FloatParallelArray represented by FloatArray,

contains floating point arrays in the Accelerator

environment.

1. Create a target object: Each processor that

supports Accelerator has one or more target objects.

Target Objects convert Accelerator operations to
processor-specific code and run them on the

processor. StackArrays uses DX9Target, which runs

Accelerator operations on any DirectX 9-compatible

GPU, using the DirectX 9 API.

2. Create input data arrays: the input arrays

for StackArrays are generated by the application, but

they can also be created from stored data.

3. Load each input array: Each input array is

loaded into an Accelerator data parallel array

object.

4. Array Processing: Use one or more Accelerator

 operations to process the arrays.

5. Evaluation: evaluate the results of the series of

operations by passing the result object

to the target‘s ToArray1D method. ToArray1D

evaluates the 1D arrays and ToArray2D,

evaluates 2-D arrays.

6. Process the result: Stack Arrays displays
the elements of the processed array in the

console window.

 Stevina Dias, Sherrin Benjamin, Mitchell D’silva, Lynette Lopes / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.225-230

227 | P a g e

C. Accelerator Architecture

Figure 1: Accelerator Architecture

1) The Accelerator Library and APIs

The Accelerator library is used by the

applications to implement the processor-independent

aspects of Accelerator programming. The library

exposes two APIs namely Managed and Native. C++

applications use the native API, which is

implemented as unmanaged C++ classes. Managed

applications use the managed API.

2) Targets

Accelerator needs a set of target objects.
Each target translates Accelerator operations and

data objects into a suitable form for its associated

processor and runs the computation on the processor.

A processor can have multiple targets, each of which

accesses the processor in a different way. For

example, most GPUs will probably have DirectX 9

and DirectX 11 targets, and possibly a vendor-

implemented target to support processor-specific

technologies. Each target consists of a small API,

which are called by applications to interact with the

target. The most commonly used methods
areToArray1D and ToArray2D.

3) Processor Hardware

The version 2 of Accelerator can run

operations on different targets. Currently it includes

targets for: Multicore x64 CPUs, GPUs, by using

DirectX 9

III. CUDA

CUDA is a high level language which

stands for Compute Unified Device Architecture. It

is a parallel computing platform and programming

model created by NVIDIA. The CUDA platform is

accessible to software developers through CUDA-

accelerated libraries, compiler directives and

extensions to industry-standard programming
languages, including C, C++ and FORTRAN.

Programmers use ‗C/C++‘ with CUDA extensions to

express parallelism, data locality, and thread

cooperation, which is compiled with ―nvcc‖,

NVIDIA‘s LLVM-based C/C++ compiler, to code

algorithms for execution on the GPU.CUDA enables

heterogeneous systems(i.e., CPU+GPU). CPU &

GPU are separate devices with separate DRAMs

Scale to 100‘s of cores, 1000‘s of parallel threads.

CUDA is an Extension to the C Programming

Language [4].

Figure 2: Compilation Procedure of CUDA

CUDA Programming Basics consists of CUDA API

basics, Programming model and its Memory model

A. CUDA API Basics:

There are three basic APIs in CUDA

namely, Function type qualifiers, Variable type

qualifiers and Built-in variables. Function type

qualifiers are used to specify execution on host or

device. Variable type qualifiers are used to specify

DirectX
Other

Processors

Multi-Core CPU

Accelerator

Resource

Manager

Other

Resource

Managers

GPUs Multi-core CPU

Managed API Native APIAccelerator

Library

Target

Runtimes

Processors

Applications Unmanaged Applications Managed Applications

GPU-

Specific

C/C++ CUDA

Application

NVCC CPU Code

PTX Code

PTX to Target

Compiler

G80 …. GPU

GENERIC

SPECIALIZED

 Stevina Dias, Sherrin Benjamin, Mitchell D’silva, Lynette Lopes / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.225-230

228 | P a g e

the memory location on the device. Four built-in

variables are used to specify the grid and block

dimensions and the block and thread indices.

1) Function Type Qualifiers

Table 2 Function type Qualifier

Function Type

Qualifier

Executed on Callable

from

__device__ Device Device

__global__ Device Host

__host__ Host Host

2) Variable Type Qualifier

Table 3 Variable Type Qualifier

Variable

Type

Qualifier

Locatio

n

Lifetime Accessible

from

__device__ Global

memory

space

lifetime of

an

applicatio

n

all the

threads

within the

grid and

from the

host

through the

runtime

library

__constant_
_

Constant
memory

space

lifetime of
an

applicatio

n

all the
threads

within the

grid and

from the

host

through the

runtime

library

(optionally

used

together
with

__device__

)

__shared__ Shared

memory

space

lifetime of

an block

all the

threads

within the

block

(optionally

used

together

with

__device__
)

3) Built in Variables

Table 4 Built in Variables

Built in

variables

Type Explanation

gridDim dim3 dimensions of the grid

blockIdx uint3
block index within the

grid

blockDim dim3 dimensions of the block

threadIdx uint3
thread index within the

block

4) Execution Configuration (EC):

EC must be specified for any call to a

__global__ function. Defines the dimension of the

grid and blocks specified by inserting an expression

between function name and argument list:

Function Declaration:

__global__ void function_name(float* parameter)

Function Call:

function_name <<< Dg, Db, Ns >>> (parameter)

Where Dg, Db, Ns are: Dg is of type dim3,

dimension and size of the grid Dg.x * Dg.y =

number of blocks being launched; Db is of type

dim3, dimension and size of each block Db.x * Db.y

* Db.z = number of threads per block.

B. Programming Model
The GPU is seen as a computing device to

execute a portion of an application that has to be

executed several times, can be isolated as a function

and works independently on different data. Such a

function can be compiled to run on the device. The

resulting program is called a Kernel. The batch of

threads that executes a kernel is organized as a grid

of thread blocks.

Following are steps in CUDA code

Step 1: Initialize the device (GPU)
Step 2: Allocate memory on the device

Step 3: Copy the data from host array to device array

Step 4: Execute kernel on device

Step 5: Copy data from device (GPU) to host

Step 6: Free allocated memories on the device and

host

Kernel Code (xx_kernel.cu): A kernel is a

function callable from the host and executed on the

CUDA device -- simultaneously by many threads in

parallel. Calling a kernel involves specifying the

name of the kernel plus an execution configuration.

C. The Memory Model

Each CUDA device has several memories

as shown in Figure 3. These memories can be used

by programmers to achieve high CGMA (Compute

to Global Memory Access) ratio and thus high

execution speed in their kernels. CGMA ratio is the

number of floating-point calculations performed for

each access to the global memory within a region of

a CUDA program. Variables that reside in shared

memories and registers can be accessed at very high
speed in a parallel manner. Each thread can only

access registers that are allocated to them. A kernel

function uses registers to store frequently accessed

variables. These variables are private to each thread.

 Stevina Dias, Sherrin Benjamin, Mitchell D’silva, Lynette Lopes / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.225-230

229 | P a g e

Shared memories are allocated to thread blocks. All

threads in a block can access variables in the shared

memory locations of the block. Threads can share

their results via Shared memories. The global

memory can be accessed by all the threads at

anytime of program execution. The constant

memory allows faster and more parallel data access
paths for CUDA kernel execution than the global

memory. Texture memory is read from kernels using

device functions called texture fetches. The first

parameter of a texture fetch specifies an object

called a texture reference. A texture reference

defines which part of texture memory is fetched.

Figure 3: CUDA Memory Model

CUDA defines registers, shared memory, and

constant memory that can be accessed at higher

speed and in a more parallel manner than the global

memory. Using these memories effectively will
likely require re-design of the algorithm. It is

important for CUDA programmers to be aware of

the limited sizes of these special memories. Their

capacities are implementation dependent. Once their

capacities are exceeded, they become limiting

factors for the number of threads that can be

assigned to each SM [5].

Table 2 Different types of CUDA Memory

Memor

y

Locatio

n

Cache

d
Access Who

Local

Off-chip

No

Read/Writ

e

One

Threa

d

Shared
On-chip

N/A

Read/writ

e

All

thread

s in a

block

Global Off-chip No
Read/writ

e

All

thread

s +

CPU

Constan

t
Off-chip Yes Read

All

thread

s +

CPU

Texture
Off-chip

Yes

Read

All
thread

s +

CPU

D. An example of a CUDA program

The following program calculates and prints the

square root of first 1000 integers.

#include <stdio.h> // (1)

#include <cuda.h>

#include <conio.h>

__global__ void sq_rt(float*a,int N) // (2)

{intidx=blockIdx.x*blockDim.x+threadIdx.x;

 if(idx<N)

 a[idx]=sqrt(a[idx]);}

 int main(void) // (3)

{float*arr_host,*arr_dev; // (4)

 const int C=100; // (5)

 size_t length=C*sizeof(float);
 arr_host= (float*)malloc(length); // (6)

 cudaMalloc((void**)&arr_dev,length);// (7)

 for(int i=0;i<C;i++)

 arr_host[i]=(float)i;

 cudaMemcpy(arr_dev,arr_host,

 length,cudaMemcpyHostToDevice);// (8)

 Stevina Dias, Sherrin Benjamin, Mitchell D’silva, Lynette Lopes / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.225-230

230 | P a g e

int blk_size=4; // (9)

int n_blk=C/blk_size+(C%blk_size==0);

sq_rt<<<n_blk,blk_size>>>(arr_dev,C);

cudaMemcpy(arr_host,arr_dev,length,cudaMemcpy

DeviceToHost); // (10)

 for (int i=0;i<C;i++) //(11)

 printf("%d\t%f\n",i,arr_host[i]);

 free (arr_host); // (12)

 cudaFree(arr_dev);

 getch();}

1. Include header files

2. Kernel function that executes on the CUDA

device

3. main () routine, that the CPU must find

4. Defines pointers to host and device arrays
5. Defines other variables used in the program,

size_t is an unsigned integer type of at least 16

bit

6. Allocate array on the host

7. Allocate array on device (DRAM of the GPU)

8. Copy the data from host array to device array.

9. Kernel Call, Execution Configuration

10. Retrieve result from device to host in the host

memory

11. Print result

12. Free allocated memories on the device and host

Figure 4: Illustration of code

CONCLUSION
The stagnation of CPU clock speeds has brought

parallel computing, multi-core architectures, and

hardware-acceleration techniques back to the

forefront of computational science and

engineering.A GPU allows you to run the single

processor applications in parallel processing

environment. In this paper, we introduced GPU

computing, CUDA and Accelerator programming

environment by explaining, step-by-step, how to

implement an efficient GPU-enabled application.

The above mentioned programming models help to
achieve the goal of Parallel Processing. Due to the

presence of these programming models and many

more models, the gaming applications have become

more lively and creative.

REFERENCES
[1] http://blogs.nvidia.com/2009/12/whats-the-

difference-between-a-cpu-and-a-gpu/

[2]

http://barbagroup.bu.edu/gpuatbu/Program_
files/Cruz _gpuComputing09.pdf

[3]

research.microsoft.com/en.../accelerator/acc

elerator_i ntro.docx 11/12/2012

4:06 PM

[4] http://en.wikipedia.org/wiki/CUDA

11/12/2012 3:52 PM

[5]

www.cs.duke.edu/courses/fall09/cps296.3/c

uda_docs/NVIDIA_CUDA_ProgrammingG

uide_2.3.pdf
 [6] De Donno, D.; Esposito, A.; Tarricone, L.;

Catarinucci, L. Antennas and Propagation

Magazine, IEEE Volume: 52, Issue:

3, ―Introduction to GPU Computing and

CUDA Programming: A Case Study on

FDTD [EM Programmer's Notebook]‖

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=74
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=74
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=74

