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Abstract 
The CPU, the brains of the computer is 

being enhanced by another part of the computer 

– the Graphics Processing Unit (GPU), which is 

its soul. GPUs are optimized for taking huge 

batches of data and performing the same 

operation repeatedly and quickly, which is not 

the case with PC microprocessors. A CPU 

combined with GPU, can deliver better system 

performance, price, and power. The version 2 of 

Microsoft’s Accelerator offers an efficient way 

for applications to implement array-processing 

operations. These operations use the parallel 

processing capabilities of multi-processor 

computers. CUDA is a parallel computing 

platform and programming model created by 

NVIDIA. CUDA provides both lower and a 

higher level APIs. 
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I. INTRODUCTION 
Computers have chips that facilitate the 

display of images to monitors. Each chip has 

different functionality. Intel‘s integrated graphics 

controller provides basic graphics that can display 
applications like Microsoft PowerPoint, low-

resolution video and basic games. The GPU is a 

programmable and powerful computational device 

that goes far beyond basic graphics controller 

functions [1]. GPUs are special-purpose processors 

used for the display of three dimensional scenes. The 

capabilities of GPU are being harnessed to 

accelerate computational workloads in areas such as 

financial modelling, cutting-edge scientific research 

and oil and gas exploration. The GPU can now take 

on many multimedia tasks, such as speed up Adobe 
Flash video, translating video to different formats, 

image recognition, virus pattern matching and many 

more. But the challenge is to solve those problems 

that have an inherent parallel nature – video 

processing, image analysis, signal processing. The 

CPU is composed of few cores and a huge cache 

memory that can handle a few software threads at a 

time. Conversely, a GPU is composed of hundreds 

of cores that can handle thousands of threads 

simultaneously [2]. This ability of a GPU can 

accelerate some software by 100x over a CPU alone. 

The GPU achieves this acceleration while being 
more powerful and cost-efficient as compared to a 

CPU. This paper describes 2 different ways of  

 
 

programming a GPU namely Accelerator and 

CUDA.  

 

II. ACCELERATOR 
Accelerator is a high-level data parallel 

library which uses parallel processors such as the 

GPU or multi core CPU to speed up execution. The 

Accelerator application programming interface 

(API) helps in implementing a wide variety of array-
processing operations by supporting a functional 

programming model. All the details of parallelizing 

and running the computation on the selected target 

processor, including GPUs and multi core CPUs are 

handled by the accelerator. The Accelerator API is 

almost processor independent, so the same array-

processing code runs on any supported processor 

with only minor changes [3]. 

 

The basic steps in Accelerator programming are:  

i. Create data arrays.  
ii. Load the data arrays into Accelerator data-

parallel array objects.  

iii. Process the data-parallel array objects using a 

series of Accelerator operations. 

iv. Create a result object.  

v. Evaluate the result object on a target.  

 

A. Data Parallel Array Objects 

Applications do not have direct access to 

the array data and cannot manipulate the array by 

index [3]. Applications implement array processing 
schemes by applying Accelerator operations to data-

parallel array objects—which represent an entire 

array as a unit—rather than working with individual 

array elements.  

 

5 data-parallel array objects supported by 

Accelerator v2 are:  

i. BoolParallelArray 

ii. DoubleParallelArray  

iii. Float4ParallelArray  

iv. FloatParallelArray  

v. IntParallelArray  
 

An example for Float4ParallelArray is as follows:  

typedef struct  

 { float a;  

 float b;  

 float c;  

 float d;  } float4; 
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Float4 is an Accelerator structure that contains a 

quadruplet of float values. It is used primarily in 

graphics programming. float4 xyz (0.7f, 5.0f, 4.2f, 

9.0f). The API includes a large collection of 

operations that applications can use to manipulate 

the contents of arrays and to combine the arrays in 

various ways. Most operations take one or more 
data-parallel array objects as input, and return the 

processed data as a new data-parallel object. 

Accelerator operations work with copies of the input 

objects; they do not modify the original objects. 

Operation inputs are typically data-parallel objects, 

but some operations can also take constant values.   

 

Table 1 Type of Accelerator Operations 

Operation  Explanation 

Creation 

and 

conversion 

Create new data-parallel array objects and 

convert them from one type to another. 

Element-

wise 

Operate on each element of one or more data-

parallel array objects and return a new object 

with the same dimensions as the originals. 

 Add. 

 Abs 

 Subtract 

 Divide , etc 

Reduction Reduce the rank of a data-parallel array object 

by applying a function across 1D or more 
dimensions.  

Transform Transform the organization of the elements in 

a data-parallel array object. These operations 
reorganize the data in the object, but do not 

require computation. For example: 

 Transpose 

 Pad  

Linear 

algebra 

Perform standard matrix operations on data-

parallel array objects, including matrix 

multiplication, scalar product, and outer 

product. 

 

B.   Sample Code 

using System; 

using Microsoft.ParallelArrays; 

using FloatArray = 
Microsoft.ParallelArrays.FloatParallelArray; 

using PArray = 

Microsoft.ParallelArrays.ParallelArrays; 

namespace SubArrays 

{ 

class Calculation 

  { 

staticvoid Main(string[] args) 

    { 

int arraySize = 100; 

Random ranf = newRandom(); 
float[] Array1 = newfloat[arraySize]; 

float[] Array2 = newfloat[arraySize]; 

float[] Array3 = newfloat[arraySize]; 

DX9Target result = newDX9Target();  // (1) 

for (int i = 0; i < arraySize; i++)   // (2) 

      { 

        Array1[i] = (float)(Math.Sin((double)i / 10.0) + 

ranf.NextDouble() / 5.0);  

        Array2[i] = (float)(Math.Sin((double)i / 10.0) + 

ranf.NextDouble() / 5.0); 

      }                                  
FloatArray fpInput1 = new FloatArray (Array1);      

                  // (3) 

FloatArray fpInput2 = new FloatArray (Array2); 

FloatArray fpStacked = PArray.Subtract(fpInput1, 

fpInput2);                // (4) 

FloatArray fpOutput = PArray.Divide(fpStacked, 2); 

 Array3 = result.ToArray1D(fpOutput);     // (5) 

for (int i = 0; i < arrayLength; i++)                // (6) 

{ 

Console.WriteLine(Array3[i].ToString()); //(7) 

} } } } 

 
The above code uses two commonly used types: 

ParallelArrays and FloatParallelArray. 

ParallelArrays represented by PArray, contains the 

Accelerator operation methods [3]. 

FloatParallelArray represented by FloatArray, 

contains floating point arrays in the Accelerator 

environment. 

 

1. Create a target object: Each processor that 

supports Accelerator has one or more target objects. 

Target Objects convert Accelerator operations to 
processor-specific code and run them on the 

processor. StackArrays uses DX9Target, which runs 

Accelerator operations on any DirectX 9-compatible 

GPU, using the DirectX 9 API. 

 

2. Create input data arrays: the input arrays 

for StackArrays are generated by the application, but 

they can also be created from stored data. 

 

3.   Load each input array: Each input array is 

loaded into an   Accelerator data parallel array 

object. 
 

4. Array Processing: Use one or more Accelerator 

 operations to process the arrays. 

  

5. Evaluation: evaluate the results of the series of 

operations  by passing  the result object 

to the target‘s ToArray1D  method.  ToArray1D 

evaluates the 1D arrays and  ToArray2D, 

evaluates 2-D arrays. 

 

6. Process the result: Stack Arrays displays 
the elements of the processed  array in the 

console window. 
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C. Accelerator Architecture 

 

 
 

Figure 1: Accelerator Architecture 

 

1) The Accelerator Library and APIs 

The Accelerator library is used by the 

applications to implement the processor-independent 

aspects of Accelerator programming. The library 

exposes two APIs namely Managed and Native. C++ 

applications use the native API, which is 

implemented as unmanaged C++ classes. Managed 

applications use the managed API.  

 

2) Targets 

Accelerator needs a set of target objects. 
Each target translates Accelerator operations and 

data objects into a suitable form for its associated 

processor and runs the computation on the processor. 

A processor can have multiple targets, each of which 

accesses the processor in a different way. For 

example, most GPUs will probably have DirectX 9 

and DirectX 11 targets, and possibly a vendor-

implemented target to support processor-specific 

technologies. Each target consists of a small API, 

which are called by applications to interact with the 

target. The most commonly used methods 
areToArray1D and ToArray2D. 

 

3) Processor Hardware 

The version 2 of Accelerator can run 

operations on different targets. Currently it includes 

targets for: Multicore x64 CPUs, GPUs, by using 

DirectX 9 

 

 

 

III. CUDA 

CUDA is a high level language which 

stands for Compute Unified Device Architecture. It 

is a parallel computing platform and programming 

model created by NVIDIA. The CUDA platform is 

accessible to software developers through CUDA-

accelerated libraries, compiler directives and 

extensions to industry-standard programming 
languages, including C, C++ and FORTRAN. 

Programmers use ‗C/C++‘ with CUDA extensions to 

express parallelism, data locality, and thread 

cooperation, which is compiled with ―nvcc‖, 

NVIDIA‘s LLVM-based C/C++ compiler, to code 

algorithms for execution on the GPU.CUDA enables 

heterogeneous systems(i.e., CPU+GPU). CPU & 

GPU are separate devices with separate DRAMs 

Scale to 100‘s of cores, 1000‘s of parallel threads. 

CUDA is an Extension to the C Programming 

Language [4]. 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Compilation Procedure of CUDA 

 

CUDA Programming Basics consists of CUDA API 

basics, Programming model and its Memory model 
 

A. CUDA API Basics: 

There are three basic APIs in CUDA 

namely, Function type qualifiers, Variable type 

qualifiers and Built-in variables. Function type 

qualifiers are used to specify execution on host or 

device. Variable type qualifiers are used to specify 
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the memory location on the device. Four built-in 

variables are used to specify the grid and block 

dimensions and the block and thread indices. 

 

1) Function Type Qualifiers 

Table 2 Function type Qualifier 

Function Type 

Qualifier 

Executed on Callable 

from 

__device__ Device Device 

__global__ Device Host 

__host__ Host Host 

 

2) Variable Type Qualifier 

Table 3 Variable Type Qualifier 

Variable 

Type 

Qualifier 

Locatio

n 

Lifetime Accessible 

from 

__device__ Global 

memory 

space 

lifetime of 

an 

applicatio

n 

all the 

threads 

within the 

grid and 

from the 

host 

through the 

runtime 

library 

__constant_
_ 

Constant 
memory 

space 

lifetime of 
an 

applicatio

n 

all the 
threads 

within the 

grid and 

from the 

host 

through the 

runtime 

library 

(optionally 

used 

together 
with 

__device__

) 

__shared__ Shared 

memory 

space 

lifetime of 

an block 

all the 

threads 

within the 

block 

(optionally 

used 

together 

with 

__device__
) 

 

3) Built in Variables 

Table 4 Built in Variables 

Built in 

variables 

Type Explanation 

gridDim dim3 dimensions of the grid 

blockIdx uint3 
block index within the 

grid 

blockDim dim3 dimensions of the block 

threadIdx uint3 
thread index within the 

block 

 

4) Execution Configuration (EC):  

EC must be specified for any call to a 

__global__ function. Defines the dimension of the 

grid and blocks specified by inserting an expression 

between function name and argument list: 

 
Function Declaration: 

__global__ void function_name(float* parameter) 

 

Function Call:  

function_name <<< Dg, Db, Ns >>> (parameter) 

Where Dg, Db, Ns are: Dg is of type dim3, 

dimension and size of the grid Dg.x * Dg.y = 

number of blocks being launched; Db is of type 

dim3, dimension and size of each block Db.x * Db.y 

* Db.z = number of threads per block. 

 

B. Programming Model 
The GPU is seen as a computing device to 

execute a portion of an application that has to be 

executed several times, can be isolated as a function 

and works independently on different data. Such a 

function can be compiled to run on the device. The 

resulting program is called a Kernel. The batch of 

threads that executes a kernel is organized as a grid 

of thread blocks. 

 

Following are steps in CUDA code 

Step 1: Initialize the device (GPU) 
Step 2: Allocate memory on the device 

Step 3: Copy the data from host array to device array 

Step 4: Execute kernel on device 

Step 5: Copy data from device (GPU) to host 

Step 6: Free allocated memories on the device and 

host 

 

Kernel Code (xx_kernel.cu): A kernel is a 

function callable from the host and executed on the 

CUDA device -- simultaneously by many threads in 

parallel. Calling a kernel involves specifying the 

name of the kernel plus an execution configuration. 
 

C. The Memory Model 

Each CUDA device has several memories 

as shown in Figure 3. These memories can be used 

by programmers to achieve high CGMA (Compute 

to Global Memory Access) ratio and thus high 

execution speed in their kernels. CGMA ratio is the 

number of floating-point calculations performed for 

each access to the global memory within a region of 

a CUDA program. Variables that reside in shared 

memories and registers can be accessed at very high 
speed in a parallel manner. Each thread can only 

access registers that are allocated to them. A kernel 

function uses registers to store frequently accessed 

variables. These variables are private to each thread. 
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Shared memories are allocated to thread blocks. All 

threads in a block can access variables in the shared 

memory locations of the block. Threads can share 

their results via Shared memories. The global 

memory can be accessed by all the threads at 

anytime of program execution. The constant 

memory allows faster and more parallel data access 
paths for CUDA kernel execution than the global 

memory. Texture memory is read from kernels using 

device functions called texture fetches. The first 

parameter of a texture fetch specifies an object 

called a texture reference. A texture reference 

defines which part of texture memory is fetched.  

 

 

 
 

 

 
 

Figure 3: CUDA Memory Model 

 

CUDA defines registers, shared memory, and 

constant memory that can be accessed at higher 

speed and in a more parallel manner than the global 

memory. Using these memories effectively will 
likely require re-design of the algorithm. It is 

important for CUDA programmers to be aware of 

the limited sizes of these special memories. Their 

capacities are implementation dependent. Once their 

capacities are exceeded, they become limiting 

factors for the number of threads that can be 

assigned to each SM [5]. 

 

Table 2 Different types of CUDA Memory 

 

Memor

y 

Locatio

n 

Cache

d 
Access Who 

Local 

 

Off-chip 

 

 

No 

 

Read/Writ

e 

One 

Threa

d 

Shared 
On-chip 

 
N/A 

Read/writ

e 

 

All 

thread

s in a 

block 

Global Off-chip No 
Read/writ

e 

All 

thread

s + 

CPU 

Constan

t 
Off-chip Yes Read 

All 

thread

s + 

CPU 

Texture 
Off-chip 

 

Yes 

 
Read 

All 
thread

s + 

CPU 

 

D. An example of a  CUDA program 

The following program calculates and prints the 

square root of first 1000 integers. 

 

#include <stdio.h>   // (1)  

#include <cuda.h> 

#include <conio.h> 

 
__global__ void sq_rt(float*a,int N) // (2) 

{intidx=blockIdx.x*blockDim.x+threadIdx.x; 

 if(idx<N) 

  a[idx]=sqrt(a[idx]);} 

 

 int main(void)     // (3) 

 

{float*arr_host,*arr_dev;      // (4) 

 

 const int C=100;   // (5) 

 size_t length=C*sizeof(float);  
 arr_host= (float*)malloc(length); // (6) 

  

 cudaMalloc((void**)&arr_dev,length);// (7) 

  

 for(int i=0;i<C;i++) 

 arr_host[i]=(float)i; 

  

 cudaMemcpy(arr_dev,arr_host, 

 length,cudaMemcpyHostToDevice);// (8) 
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int blk_size=4;    // (9) 

int n_blk=C/blk_size+(C%blk_size==0); 

sq_rt<<<n_blk,blk_size>>>(arr_dev,C); 

  

cudaMemcpy(arr_host,arr_dev,length,cudaMemcpy

DeviceToHost);    // (10) 

   
 for (int i=0;i<C;i++)  //(11) 

 printf("%d\t%f\n",i,arr_host[i]); 

  

 free (arr_host);   // (12) 

 cudaFree(arr_dev); 

 getch();} 

 

1. Include header files  

2. Kernel function that executes on the CUDA 

device 

3. main ( ) routine, that the CPU must find 

4. Defines pointers to host and device arrays 
5. Defines other variables used in the program, 

size_t is an unsigned integer type of at least 16 

bit 

6. Allocate array on the host 

7. Allocate array on device (DRAM of the GPU)  

8. Copy the data from host array to device array. 

9. Kernel Call, Execution Configuration   

10. Retrieve result from device to host in the host 

memory 

11. Print result   

12. Free allocated memories on the device and host 
 

 
 

Figure 4: Illustration of code 

 

CONCLUSION 
The stagnation of CPU clock speeds has brought 

parallel computing, multi-core architectures, and 

hardware-acceleration techniques back to the 

forefront of computational science and 

engineering.A GPU allows you to run the single 

processor applications in parallel processing 

environment. In this paper, we introduced GPU 

computing, CUDA and Accelerator programming 

environment by explaining, step-by-step, how to 

implement an efficient GPU-enabled application. 

The above mentioned programming models help to 
achieve the goal of Parallel Processing. Due to the 

presence of these programming models and many 

more models, the gaming applications have become 

more lively and creative. 
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