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Absiraci— The tolerable uncertainty bound of a syvstem with
constant uncertainty may be improved by means of dvnamic state
feedback controller compared to that achievable by using static
state feedback one. However, for all the systems with constant
uncertainty in input marrix, the uncertainty bound may not be
improved by dynamic state feedback controller. Seo, a
categorization of systems is needed for which a dynamic state
feedback controller can improve the tolerable uncertainty bound.
In this paper. a categorization of second order systems with input
mairix uncertainty is made in order to invesrigate whether
possibilites of improvement in robustness margin exist or not by
using dyvnamic state feedback controller. The categorization is
further used to provide some new examples for which possibility
ofimproving tolerable uncertainty exists.
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L INTRODUCTION

Robust control design for uncertam system has been
extenstvely studied for past few years. In many literatures, a lot
of attention has been gven to robust stabihzation. A popular
approach to deal with uncertam systens 15 the so called
“guadratic stability” [11]. A relationship between the quadratic
stability and the control has been established [8, 11] for

contmuons tume domam case, and attempt has been made for

discrete time system A robust H, performance problem has
been addressed for a class of system with norm bounded
parametric uncertamty i some of the system matrices [9, 10]
A dynanuc state feedback controller 15 used for performance
mprovement [1] and may numic a Pltype controller which 1s

a subset of the PID state-feedback one [6]. It 15 well known that,

for systems with time-invariant uncertamties, the robust margin
m terms of the tolerable unceriamty bound may be mmproved
by using a dynamic state feedback controller compared to the
static feedback one [1. 5] So far, some example cases have
been studied for the mprovement of tolerable uncertamty
bounds usmg the dynammc state-feedback controllers [1]
However, it is not clear from existing literature whether there
exst some more examples of such systens or a class of
systens for which the mprovement m tolerable uncertamty
bound holds. In this paper. we attempt to classify a class of
second order systens for which such improvement s possible
by usmg suttable dynanuc state feedback controller compared
to that achievable by usmg static feedback controller.

For the pumpose. one fisily requires fo obtam an
approximate tolerable uncertamty bound achievable by static
state feedback controllers. This has been computed bv using a

method of contradiction [1]. In this paper, we attempt to
characterize the class of second order systems for which this
nmethod of contradiction apphes. Subsequently, we have
developed an algomthm to test and venfy whether there s
possibility that dynamic feedback controllers may improve the
tolerable uncertamty bound or not. Usmg this proposed
alconthm we have generated some new examples and venfied
that there exists a dynanmc feedback controller, which mdeed
improves the uncertamty bound for these cases.

I. STABILIZATION OF SYSTEM S WITHINPUT

MATRIX UNCERTIANTY
A class of systems with time-mvariant uncertam mput
matrix may be descnbed as

(t) = Ax(£) + (B + ABG))u(r) M)

where x(f) = R"is the state.u(f) = R™ is the control input, r is

the uncertam parameter m the control mput matrix

The static state feedback controller of the form

u(t) = Kx(t) 2
which can stabilize the system with an appropnate value of

controller gam. Or altematwely by usmg dynammc state
feedback controller of the form

z(t) = A z(r) + B, x(f) 3)
u(f) =C.z(r)+ D.x(r)
= n,
where ) =R 15 the state of the controller. 4, . Bf. C. . D,
are constant matrices m approprate dimensions.

Ifa systemis controllable. all the poles of the closed loop
system can be placed anywhere m the left half s-plane,
obviously there 1s nothmg more to attam by usmg dynanmuc
state feedback controller [2]. If the uncertamty parameter is

time varying then the stability bound of the system cannot be
enhanced by dynammc state feedback controller [4]. If the

uncertamty parameter i1s time mvariant then the stability bound
of the system can be enhanced by dynamic state feedback
controller rather than static state feedback controller. which has
been shown m the paper [1].

A. A Characterization

To categonze those systens whose stability bound can be
enhanced by usmg a dynanuc state feedback controller, we
consider a general second order uncertam system with constant
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uncertainty of the form where x(f) = R” is the state vector and

by=b+r and r is the
parametric uncertamty m the control mput matrix that may take
arbitrary value within a range, 1e.,

u(f) =R is the control mput

() = {z; :i jx(a‘)—i i ]u(r} (€]

|r'| <7 where »
For this system consider a static state feedback controller
ofthe form

u(t)=[k k] (3
The closed loop equation 1s then grven by
- a +gl.ic a +b_1k,
n=|"1 172 2 lx(n (®
x{j |:(I3 +b2k1 dy +bgk2:|r() ( )

Equation (6) 15 m the form of ¥(f)=Ax(f) . The
charactenstic equation can be represented by ‘.S‘I—H|=D .
which yields
sT—s {Elkl +bydy +(ay —04)} +

‘::(045_1 —ayby)k + @by —ashy)k, +(aa; —a; ﬁs]} =0
To guarantee the stability of the system each of the
coefficients should be positive which can be mterpreted as:

(7

Pl & 1 <0, (8
Ok &k 1 >0.09
P=[b b (a+ay)]
0=[(@h -ah) (@b -ah) (@a,-aa)].

where and

Note that, both the mequakhiies will contradict each other
when P becones equal to Q. Assuming that the nomunal
system (for '"20) is stabilizable. since P and €
continuous on the vncertamn parameter 7|

are
there exists a ¥

satisfying |r| =" such that P at ¥ becomes equal fo 9 a
=7 _ It is clear from the above that, (8) and (9) will contradict

each other and solution of k and ky will not exst. 1e.. the
system s not stabithzable anymore. It can be easily derved that
such a contradictory mequality appears when

b +7 =B —r)ay —ayb,

(10)
b, =ayb, —ay (b —7) (1D
al‘l‘ﬂ_‘ = apdy —d)dy (12)

Note that, the last condition can be mierpreted as

trace(d) = dﬂ(ﬂ). From the above conditions, we develop an
algonthm uwsing which one can obtam analytical tolerable
ranges of 7" fora given system It 1s presented next.

B. When This Proaf of Contradiction Applies?

The following algorithm presents a method usmg which
one can deteqmine the tolerable uncertamty bound using static
feedback controllers.

Algorthm 1:
1: Trace{4) = Det(A)

2 gy =+1. (This is not that restrictive as it appears since
one can always mierchange the state defmttions,. 1e.. can
mterchange g and a,)

3 iy T —
day _l_as ((14 +l)

ay +02(1’3

2(1351

(a) —May +D—aya;

4: Finally. if g = and b, =

ay —

Usmg the above equations, one may check whether the
contradiction applies to a gven system (4) and subsequently
can determine the analytical range of the tolerable uncertamty
by using static state feedback controllers. As a converse, usmg
the same, one may test a given system (4) for which dynanmc
controller may enhance the tolerable uncertamty bound.

Femark 1: If the system satisfies the above condition then
one may obtam the tolerable uncertamty bounds for any static
state feedback controller by followmg the method of
contradiction as

|},| - Blay —1)—ab
l+(14

Next, we present a lemma that will be used to detenmme the
tolerable uncertamty bounds for a given controller case, which
will be used to detemmune the tolerable uncertamty bound for a
gven dynamnc feedback controller.

Lemma 1 [3]: For two appropnate dimensional matrices

M, and M, with M, 15 Hurwitz, any matrix belonging to the
set of the matrices

M= {A{rr = 4”0 + rJM’l s [?

min - T 1

(13)
remams stable forany 7 = Foin o | . where
Tin = ! = (14)
A (—(M & M) (M & M)
1
Pmax = (13)

o (—(My & M) (M, © M)

A (X) denotes the maxinmm positive real eigenvalue of
X (af X has no posttrve eigenvalue then i (X)= 0%) and
Apin (X)denotes the mmimmm real eigenvalue of X if X has

no negative eigenvahe then A, (X)=07).

. NUMERICAL EXAMPLES

In this section. we demonsirate two new examples for
which the method of contradiction apphes and there exsts
dynanuc state feedback controller that improves the tolerable
uncertamnty bound.

Example I: Consuidermg a second order system with
constant uncertamnty with mput control matnix
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1 -1
x(1) = ) (16)

2

-1+r
x(f) +|: 1:{&)

Applng a static state feedback controller of the form

u=kyx () +kx, (1) . the closed loop equation can be

1+(-1+1k -1+ (-1+ M)k,
x(£) = x(F)
1-2k 2-2k, an
The charactenstic equation 15
5T s {k -1+ 2k, -3} - 18)
{R(4-21+k(1+r)-3}=0
For stability of the system,
{h-r+2k-3}>0019)
1k (@=21)+k (1+7)=3} <0

20
At7=-1_ fromEqn. (19)
{2k +2ky =3} >0
@D
From Eqn. (20)
{6k -3} <0
22
Atr =1 fromEqn. (19)
{2k -3}>0
23)
From Eqn. (20)
{2k +2k, -3} <0
@9

Equations (21) and (24) are contradicting each other so the
system can be stabilized by a static feedback controller when

|r'| <1
Considenng a dynamic feedback controller,

2(1) =—122.5501x (r) +12.06766x, () —2.3592=(r) 25)
u(t) =—40.8416x (1) +51.1517x, () + 0.8173=(1)
The parameters of the dynanuc controller have been
searched by fmmsearch program of MATLABE.

The closed loop equation is

) 418416 521517 -0.8173][n
| % [=| 826832 -100.3033 -1.6346 || x, |+
[ 2] [-122.5501 12.0676

-2.3592 z (')6]
-40.8416 51.1517 0.8173] N

r 0 0 0 llx
0 0 0 |l =
Now, the range of the tolerable uncertamty
Fe(lpn e )

may be determmed usmg Lemma 1. For the
puipose, we express the above closed loop systemas

.'\-.']_ :\'1
Ny | =M x
z z

where Af 15 a set of perturbed matrices

M =M, +1M,

My ang M g nxn

stable The maximal range of 7 for M
using Lemma 1 1s obtamed as

mmtnices with M, strctly
to be strnctly stable

7. =-1.1700 and

ouin

T = 1.2635

Here the dynamic controller enhances the stability bound.

Example 2: We have considered another example to ustify
more appropnately that by referrmg the above algonthm one
can develop new examples.

{1 —1} {1“]
() = x(f) + u(t)
1 3 2
(27)

The above system obeys the method of contradiction for

<1 » .
. Hence, the system cannot be stabilized by a static state

I

>
feedback controller for |}"| N 1_ However, considering a dynamic
state feedback controller

() = —0.2957x; (£) + 11.6418x, () - 5.10512(¢)
u(f) =1.0538x (1) —3.8586x, (1) — 0.19062(7)

(28)
the tolerable uncertamty bound usmng Lemma 1 1s obtamned as:

Fpm =—1.1910 and 7, =11952

Clearly this controller improves the tolerable uncertamty
bound compared to that tolerable by using any static feedback
one.

Note that, the tolerable uncertamty bounds obtamed usmg
dynanuc feedback controller are not the optmmal one smce one
may design a different controller which may vield larger
bounds than the present one.

IV. DISCUSSION

The above approach with the developed simple Algonthm
15 an easy way to check the category of systens with constant
uncertamty for robust stability improve ment. With this. one can
check whether any dynanuc controller of the form (3) can
inprove the uncertamty bound or not. Considermg two
numerical examples (16) and (27), the vncertamty bound 15
inproved by dynamuc controller (23) and (28). respectively,
which gives the validation for the algonthm 1. This developed
algortthm can be used for mmproved robust stabilization m
many applications, such as any second order approximated
model of DC Motor, Inverted pendulumetc.

V. CONCLUSION

Categonization of second order uncertam systems with
time-mvanant uncertamty m the mput matrix m order to
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improve the tolerable uncertamty bound using suitable
dynanuc feedback controller has been presented m this paper.
Two new examples have been demonstrated for which it has
been seen that dynamic feedback controller mdeed enhances
the tolerable uncertamty bound compared to the static one for
several systems. The developed algomthm for category of
system with constant uncertamty nmy be mwotrvation for
developing an algonthm for systens with constant uncertanty
m all the terms of the system matrices and also m control of
mput mairices. There 15 no proper procedure for designmg the
dynamuc controller for this robust mprovement. So, one nay
wortk to develop a proper procedure for designing the controller.
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