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Figure 1. Development of cutter-marks because of the cycloid track of 

cutting edge when peripheral milling of wood. 
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ABSTARCT 
Peripheral milling is a very important 

procedure in terms of work piece shaping by 

cutting in wood industry. Because of the 

kinematic principle of this procedure a more or 

less wavy structure on the cutting area of the 

work piece appears, the so called cutter marks. 

That is why in many cases after cutting, 

expensive extra finishing procedures like sanding 

must be applied to smoothen the work piece 

surface. An approach to improve this situation is 

given by an actuator controlled motion of the tool 

spindle position to realize a linear cutting motion 

during the edge approach to the work piece. A 

control strategy was created and first 

experiments with a test setup using magnetic 

bearings have been done successfully. 

Keywords - active magnetic bearing, cutter-

marks, flatness based control, peripheral milling 

I.  INTRODUCTION 

Wood cutting procedures with differences 

between the cutting and the feeding direction 

generate specific, regular kinematic patterns on the 

work piece surface. Generally this happens during 
peripheral milling (Fig. 1). The obtained wavy 

structure of the cutting area on the work piece is 

called cutter-marks and belongs to the kinematical 

roughness and waviness. The periodical shape of the 

surface cannot be avoided completely without 

actuator controlled motion and is given by the 

kinematical principle of the peripheral milling 

operation [1, 2]. The only way to minimise these 

cutter-marks is to work with very precise adjusted 

tool edges and optimal kinematic cutting conditions 

(high tool revolution frequency, moderate feed 

speed, big number of tool edges). 

     After peripheral milling some finishing 

procedures like smoothing or sanding are necessary 

to obtain a flat surface without strong topographical 

differences on the work piece surface finally. 

Therefore, there is an extra economical effort 

necessary. 

Basically the topography of the cutter-marks on 

the work piece results due to the relationship 

between the tool and work piece motion and can be  

described as part of a regular periodic trajectory 

of a prolonged cycloid (Fig. 1). Additionally there 

are displacements because of adjustment and wear 

failures at the cutting edges as well as disturbance 

vibrations inside the machine caused by specific 

machine construction, process forces and 

imbalances. Finally the surface topography of the 
machined area on a wooden work piece results from 

all influences mentioned before. 

II.  IDEA 

To improve this limited situation the 

kinematical relation must be influenced 

dynamically. Based on an idea of the Institute of 
Wood and Paper Technology and experiences of the 

Laboratory of Control Theory, both of the 

Technische Universität Dresden, a new positioning 

mechanism on the tool bearings will be developed to 

reduce the cutter-marks and improve the quality of 

the milling process on wood. The approach uses a 

correction of the trajectory of the tool edge by an 

actuator controlled displacement of the complete 

tool in the micron-range. Small, periodic 

displacements applied perpendicular to the feed 

direction cause the trajectory to be changed to a 
short linear phase within the quality important sector 

of tool rotation (Fig. 2). This can be realized by 

active magnetic bearings or piezo-electric-actuators. 
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Figure 3. Visualisation of the periodic vertical cutting edge motion 

depending on the rotation angle  of the tool to generate the linear 

movement with length L. 

 
Figure 2. Avoiding of cutter-marks because of the corrected 

cycloid track of cutting edge when peripheral milling of wood 

The actuators set the tool to periodic oscillation in 

the y-direction. The oscillations have to be 

synchronised to the rotational position of the cutting 

edge (Fig. 3). The angle of rotation of the rotor 

during which the cutting-edge is in contact with the 

work piece is called the rotation sector angle and is 

denoted by l . The period of tool axis oscillation is 

given by 2l, which is the double of the 

linearized/flattened rotation sector. The amplitude  
can be calculated by (1) depending on the tool 

radius R and the linearized rotation sector angle l. 
The frequency of oscillation must be an integer 

multiple of the tool rotation number. 
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Furthermore, one has η as the displacement of the 

spindle axis in y-direction. Thus, (2) and (3) 

describe the two half periods of actuation in y-
direction functionally depending on rotation angle 

, linearized rotation sector angle l and tool 
diameter R. 
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The trajectory, along with the desired velocity 

and acceleration, is shown in Fig. 4. It should be 

noted that the velocity and acceleration plots have 

been rescaled.  It can be seen that even though the 

desired velocity is continuous, the desired 

acceleration is not. 

 

 
Figure 4: Desired trajectory of the spindle shown with (scaled) 

velocity and acceleration 

 

A similar mechanism with a few piezo-electric 

actuators on a spindle ball bearing of a wood milling 

machine setup was already used and applied 

successfully for quality improvements some years 

ago by Hynek et al. [3, 4] and Jackson et al. [5]. In 

their case the front bearing was moved both in x- 

and y-direction for control of the cutting motion and 

reduction of the cutter-mark height. 

The introduced solution approach and the 

following innovation shall improve the work piece 

quality and reduce the necessary finishing activities 
after milling. The changed process and the 

possibility to reduce the cutter-marks ought to lead 

to the chance to lower the very high rotational 

speeds of wood milling tools. Also, reduced rotation 

numbers and cutting speeds positively influence the 

cutting noise as well as tool wear. 
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III.  PRELIMINARY EXPERIMENTS 

3.1  Design Considerations 

The periodic displacement of the tool is based on a 

tool diameter of 125 𝑚𝑚 resulting in a tool radius 

𝑅 = 62.5 𝑚𝑚. We use the ratio 𝑁 = 50 between 

the oscillation frequency in the y-direction and the 

revolution frequency. This yields a linearized 
rotation sector 

 

𝜑𝑙 =
360°

2 ∙ 𝑁
=

180°

𝑁
= 3.6°. 

 

The length 𝐿 of the linear movement is given by 

 

𝐿 = 2 ∙ 𝑅 ∙ sin 
𝜑𝑙
2
 ≈ 3.93 𝑚𝑚. 

 

The amplitude ∆ can be calculated by (1) as follows: 

 

∆≈ 30.84 𝜇𝑚. 
 

Since the tool axis oscillation is symmetric for both 

half periods as described by (2) and (3), actuators 

and measurement tools must be selected for a 

minimum range of 2∆≈ 62 𝜇𝑚. 
 

 
Figure 5: Radial bearing consisting of three horseshoe magnets 

 

 

3.2 Experimental Setup  

The spindle consists of a rotor of length 0.6 

m and mass of 10 kg which is levitated by two 

three-phase electromagnetic radial bearings. Each of 

these radial bearings consists of three horseshoe 

magnets, arranged around the rotor at an effective 

angle of 120° to each other (see Fig. 5). Axial 

motion is controlled by a standard axial disc 
bearing. A laboratory spindle is shown in Fig. 6.  

The power amplifiers used in the laboratory 

spindle are switched transistor bridges. The duty 

ratios of these transistor bridges can be used as the 

eight independent controls needed, namely, three for 

each radial bearing and two for the axial bearing. In 

industrial applications, current controlled amplifiers 

are widely used but in our setup current control is 

done by a cascaded controller, which is discussed in 

the next section. In our test-bench, the computer 

hardware used is dSpace 1103. 

 

3.3 Mathematical Modeling   

Modeling and controller design is 

described in [6, 7]. The cartesian coordinate system 

is set up as follows: x, y, z are the coordinates of the 
centre of mass of the rotor. The axis of symmetry of 

the rotor is also the axis of rotation and it coincides 

with the z-axis.  The y-axis represents vertical 

displacement and the x-axis represents horizontal 

displacement. Since the rotor rotates about the z-

axis with a constant angular velocity, both the 

rotation about the z-axis and displacement in the z-

axis do not have to be considered. The angles ψ and 

𝜃 describe the angular position of the rotor and 𝜙 is 

the angle of rotation, see Fig. 7. 
 

 
Figure 6: Laboratory spindle 

 
Out of the six degrees of freedom of the rigid 

body, only four are considered. With these 

assumptions, the model can be written as [6] 

 

𝑚𝑥 = 𝐹𝑥,𝑓 + 𝐹𝑥,𝑟 +𝑚𝑔𝑥 

𝑚𝑦 = 𝐹𝑦,𝑓 + 𝐹𝑦,𝑟 +𝑚𝑔𝑦  

𝐽2𝜓 = − 𝑙𝑓 − 𝑧 𝐹𝑥,𝑓 +  𝑙𝑟 − 𝑧 𝐹𝑥,𝑟 − 𝐽1𝜙 𝜃  

𝐽2𝜃 =  𝑙𝑓 − 𝑧 𝐹𝑦,𝑓 −  𝑙𝑟 − 𝑧 𝐹𝑦,𝑟 − 𝐽1𝜙 𝜓,  
 

where 𝑙𝑓  and 𝑙𝑟  are the distances from the centre of 

mass of the rotor to the front and rear bearing, 

respectively. The mass of the rotor is denoted by m 

and 𝐽1,  𝐽2   are the principal moments of inertia. The 

forces in the x- and y-direction are denoted by 𝐹𝑥  

and 𝐹𝑦 , and the indices r and f represent rear and 

front, respectively. The components of the 

gravitational acceleration are denoted by 𝑔𝑥 , 𝑔𝑦 and 

𝑔𝑧 . In case of appropriate adjustment we have 

𝑔𝑥 = 𝑔𝑧 = 0 and 𝑔𝑦 = −𝑔 = −9.81 𝑚𝑠−2. Since 

the axial displacement is small and the gyroscopic 
forces can be neglected, the model can be re-written 

as 

                 

 

𝑥 
𝑦 

𝜓 

𝜃 

 = 𝑀 ∙

 

 

𝐹𝑥,𝑓

𝐹𝑦,𝑓

𝐹𝑥,𝑟

𝐹𝑦,𝑟 

 + 

0
−𝑔
0
0

       (4) 

with  
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𝑀 =

 

   

  1/𝑚     0
0     1/𝑚

1/𝑚 0
0 1/𝑚

−𝑙𝑓/𝐽2 0

0 𝑙𝑓/𝐽2

𝑙𝑟/𝐽2 0
0 −𝑙𝑟/𝐽2 

 . 

 

 

 
Figure 7: Magnetically levitated spindle  

 

 

As can be seen in Fig. 5, the resulting force in 

each bearing is the sum of three independent forces 

created due to three currents in the horseshoe 

magnets. The forces in the front bearing can be 
represented by 

 

 
𝐹𝑥,𝑓

𝐹𝑦,𝑓
 =  

sin⁡(𝛼1) sin⁡(𝛼2) sin⁡(𝛼3)
cos⁡(𝛼1) cos⁡(𝛼2) cos⁡(𝛼3)

  

𝐹1,𝑓

𝐹2,𝑓

𝐹3,𝑓

 ,  

(5) 

 

where 𝛼1 = 0°, 𝛼2 = 120° and 𝛼3 = 240° and 𝐹1,𝑓 , 

𝐹2,𝑓   and 𝐹3,𝑓  are the forces generated by the 

horseshoe magnets. The forces in the rear bearing 
can be represented similarly. 

The relationship between the current and the 

force is given by [6] 

𝐹𝑖,𝑗 = 𝜇𝑖,𝑗
𝑖𝑖,𝑗

2

 𝑠𝑗 −  sin𝛼𝑖 cos 𝛼𝑖  
𝑥𝑗
𝑦𝑗
  

2          (6)     

            = 𝜇𝑖,𝑗
𝑖𝑖 ,𝑗

2

 𝑠𝑗 − 𝑥𝑗 sin𝛼𝑖 − 𝑦𝑗 cos𝛼𝑖 
2  , 

 

where 𝑖 ∊ {1,2,3} and 𝑗 ∊ {𝑓, 𝑟}, i is the current, s is 

the air gap and 𝜇 is a constant which depends on the 

bearing geometry and material. This simplified 

model neglects the interaction of the currents in 

different coils, saturation, and other nonlinear 

effects. The relationship given by (6) can be used to 

calculate the force inputs which serve as the controls 

of a flatness-based position tracking controller.  

The current coils for each of the independent 
horseshoe magnets may be modeled as [6] 

 
𝑑

𝑑𝑡
 𝐿𝑖 = 𝑢 − 𝑅𝑖, 

 

where R is the resistance of the coil, i is the current, 

u is the input voltage and L is the inductance which 

depends on position of the rotor.  

Rotor angular position about the z-axis is 

measured with a contact-free incremental sensor. 

Rotor position and orientation is measured with two 
pairs of eddy current sensors in two planes 

perpendicular to the axis of symmetry and another 

one for the axial rotor position. The angular position 

is needed to synchronize the tool path with rotor 

rotation and the rotor position and orientation is 

needed for trajectory control. 

 

3.4 Controller Design 

The rigid body model (4) is used for the 

controller design [8]. The controller itself is 

flatness-based and has a cascade structure. The inner 

controller is used to follow the reference currents 

which are calculated by the outer loop, the position 

or tracking controller, which is shown in Fig. 8.  

 

  

Figure 8. Signal flow diagram of the feedback control system. 

The concept of flatness extends the concept of 

controllability from a linear system to a nonlinear 

system [9, 10].  Flatness based control requires the 

declaration of flat outputs, such that all states and 

inputs can be defined as a function of the flat 

outputs and their time derivatives. If such outputs 

can be found, then the system is said to be flat and 

these outputs can be used to determine the inputs 

needed to control the system. A major advantage of 

flatness based control is that integration is not 

required. For the purposes of the current problem, 
the position and orientation of the rotor can be 

selected as the flat outputs.  

Defining 𝑎𝑥 , 𝑎𝑦 , 𝑎𝜓 , 𝑎𝜃  as auxiliary variables, we 

have 

 

 

𝑎𝑥
𝑎𝑦
𝑎𝜓
𝑎𝜃

 =  

𝑥 
𝑦 

𝜓 

𝜃 

 . 

 

For each of the four uncoupled systems a stable 

controller can be designed. The desired or reference 

trajectory coordinates are denoted by 𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓 , 
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𝜓𝑟𝑒𝑓 , 𝜃𝑟𝑒𝑓 . For example, for the displacement in the 

x direction we get 

 

𝑎𝑥 = 𝑥 𝑟𝑒𝑓 +  𝜆𝑥,1 + 𝜆𝑥,2)  𝑥 − 𝑥 
𝑟𝑒𝑓  

− 𝜆𝑥,1𝜆𝑥,1 𝑥 − 𝑥
𝑟𝑒𝑓  . 

 

Choosing the eigenvalues of the dynamics of the 

tracking error 𝜆𝑥,1 and 𝜆𝑥,2  so that they are 

symmetric about the real axis and in the open left 

side of the complex plane, a stable system is 

attained. Defining 𝑒𝑥 ∶= 𝑥 − 𝑥𝑟𝑒𝑓 , the following 
equation is obtained: 

 

𝑒 𝑥 =  𝜆𝑥,1 + 𝜆𝑥,2) 𝑒 𝑥 − 𝜆𝑥,1𝜆𝑥,1𝑒𝑥 . 
 

Similarly, the tracking error may be defined as  
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where x and y are the position coordinates of the 

rotor and ψ and 𝜃 are the orientation angles of the 

rotor. The error dynamics are chosen so that they are 

decoupled linear oscillators: 
 

001  eKeKe  ,                   (8) 

 

where K0 and K1 are diagonal matrices with real 

positive entries. We get 

 

 

𝑎𝑥
𝑎𝑦
𝑎𝜓
𝑎𝜃

 =  

𝑥 
𝑦 

𝜓 

𝜃 

 =

 

 

𝑥 𝑟𝑒𝑓

𝑦 𝑟𝑒𝑓

𝜓 𝑟𝑒𝑓

𝜃 𝑟𝑒𝑓  

 +𝐾1𝑒 + 𝐾0𝑒. 

 

Then the corresponding forces can be obtained from 

the rigid body model (4): 
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A crucial point of the experimental setup was the 

implementation of a nonlinear controller. A flatness-

based controller design methodology was used. In 

general, nonlinear controller design can result in 

complicated symbolic expressions. As an alternative 

to symbolic computation, one can employ 

algorithmic or automatic differentiation [11, 12]. As 

reported in [13], this approach has been successfully 

applied in nonlinear controller design for magnetic 

bearings.  
 

3.5 Calculating the Control Current  

Once the forces in (9) are obtained, the 
required currents in each horseshoe magnet must be 

calculated. For each bearing, there is no unique 

combination of currents which can be used to 

achieve the desired force. Therefore, one force must 

be chosen arbitrarily. Taking  

 

𝐹1,𝑗 =

 
 
 

 
 𝐹0,𝑗                                           𝑖𝑓 𝐹𝑦,𝑗 ≤ −

 𝐹𝑥,𝑗  

 3
 

𝐹0,𝑗 + 𝐹𝑦,𝑗 +
 𝐹𝑥,𝑗  

 3
              otherwise,             

  

 

where 𝐹0,𝑗  is some arbitrary non-negative value and 

𝑗 ∊ {𝑓, 𝑟}. The other forces can be obtained using 

the following: 

𝐹2,𝑗 = 𝐹1,𝑗 − 𝐹𝑦,𝑗 −
𝐹𝑥,𝑗

 3
 

𝐹3,𝑗 = 𝐹1,𝑗 − 𝐹𝑦,𝑗 +
𝐹𝑥,𝑗

 3
. 

 

3.6 Experimental Results 

Initial experiments were performed with 

the rotor turning at 110 rpm. Since  𝜑𝑙 = 3.6°, the 
rotor makes one complete vertical oscillation for 

every 7.2° change in rotational angle. This leads to a 

frequency of the vertical oscillation of 91.67 Hz.   

For a cutter-head with only two cutting edges the 

vertical trajectory of the spindle needs to be adjusted 

twice for each revolution of the rotor. If the cutting 

edge starts cutting at 𝜑𝑙 = 0 then the cutting takes 

place for 0 ≤ 𝜑 ≤ 𝜑𝑙  and 180° ≤ 𝜑 ≤ 180° + 𝜑𝑙. 
Therefore, it makes sense to reduce the amplitude of 

the vertical oscillations when the cutter edges are 
not in contact with the wood. The damping function 

is chosen to be  

𝐷 𝜑 =  
𝜑−

180° + 𝜑𝑙
2

180° − 𝜑𝑙
2

 

8

 

 

for 𝜑𝑙 ≤ 𝜑 ≤ 180°. 

Fig. 9 shows the desired vertical displacement 
required along with the actual vertical displacement 

achieved. An over-shoot is clearly observed along 

with a delay/phase-angle. It should be clarified once 

again that the cutting only takes place when there is 

no damping, that is, when the angle is between 0° 

and 3.6°. 

Fig. 10 shows the desired trajectory of the 

cutting-edge. Without any vertical movement the 

cutting edge would follow the circle. With vertical 

movement, ideally the cutting-edge should follow 
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the horizontal dashed line. It can be clearly seen that 

the overshoot from Fig. 9 leads to the cutting edge 

following a slightly higher trajectory than required. 

Nevertheless, the reduction in the groove formed is 

significant. 

 
Figure 9: Plot of the desired and actual vertical displacement of 

the rotor 

 
Figure 10: Trajectory of the cutting-edge (scaled) 

IV. CONCLUSIONS 

Wood milling procedures produce specific 

quality related surface patterns on the work piece 

called cutter-marks. This is because of the 

kinematical relations when milling and appears 

more or less depending on different cutting 
parameters. To improve this situation the cutting 

motion of the tool edge could be corrected by an 

periodic actuator controlled displacement of the 

complete tool in a micron-range to a linear motion. 

The results show that significant improvement is 

achieved but there is room for further improvement. 

Specifically, the overshoot and the delay can be 

eliminated with a different controller design. Also, 

the reference trajectory may be changed to reduce or 

eliminate the vertical oscillations during the non-

cutting phase. In addition, a reference trajectory can 

be chosen so that the required acceleration is not 
discontinuous. The results will be presented in 

upcoming publications. 
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