
B.Srinivasa Rao

, Manoj Kumar Yadav, V. Krishna Pratap, P.Narasimha Rao / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue6, November- December 2012, pp.1184-1189

1184 | P a g e

Combinational Approach for Object Clipping Using GLIP and

Protection Against Sql Injection Attacks

B.SRINIVASA RAO

 #
1, MANOJ KUMAR YADAV

#
2’

,
V. KRISHNA

PRATAP
#
3,P.NARASIMHA RAO

*
4

#1Department of Computer Science & Information Technology, Sri Sarathi Institute of Engineering and

Technology, Nuzvid, Jntuk, A.P, INDIA

#2Department of Computer Science & Engineering, Drona Charya Group Of Institutions,Greator Noida,

M.T.U,U.P,

*3Department of Computer Science & Engineering, venkateswra Institute of science and Information

Technology, Tadepalligudem, Jntuk, A.P,

*4Department of Computer Science & Engineering, Sri Sarathi Institute of Engineering and Technology,

Nuzvid, Jntuk, A.P,

Abstract—

Multidimensional databases are being

used in a wide range of applications. To meet

this fast-growing demand,R+ trees were used

that exhibit outstanding search performance.

In order to support efficient concurrent access

in multiuser environments, concurrency

control mechanisms for multidimensional

indexing have been proposed. However, these

mechanisms cannot be directly applied to the

R+-tree because an object in the R+-tree may

be indexed in multiple leaves. This paper

proposes a concurrency control protocol for R-

tree variants(ZR+ trees) with object clipping,

namely, Granular Locking for clIPping

indexing (GLIP). GLIP is the first concurrency

control approach specifically designed for the

R+-tree and its variants, and it supports

efficient concurrent operations with

serializable isolation, consistency, and

deadlock-free. A HTTP Analyzer tool is used in

order to check whether the HTTP request

packets sent by the client web application to the

web server were according to the RFC

specifications or not. SQL injection is a

technique that can give attackers unrestricted

access to the databases that underlie Web

applications and has become increasingly

frequent and serious. This paper presents a

new highly automated approach for protecting

Web applications against Data base

vulnerabilities.

I. INTRODUCTION
In recent years, multidimensional

databases have begun to be used for a wide range

of applications, including geographical information

systems (GIS), computer-aided design (CAD), and

computer-aided medical diagnosis applications. As

a result of this fast-growing demand for these

emerging applications, the development of efficient

access methods for multidimensional data has

become a crucial aspect of database research. Many

indexing structures have been proposed to support

fast access to multidimensional data in relational

databases. Among these indexing structures, the

R+-trees has attracted significant attention as the

tree structure is regarded as one of the most

prominent indexing structures for relational

databases. The R+-tree exhibits better search
performance, making it suitable for applications

where search is the predominant operation.

However, the R+-tree is not suitable for use with

current concurrency control methods because a

single object in the R+-tree may be indexed in

different leaf nodes. Special considerations are

needed to support concurrent queries on R+-trees,

while as far as we know, there is no concurrency

control approach that specifically supports R+-

trees. Furthermore, there are some limitations in the

design of the R+-tree, such as its failure to insert

and split nodes in some complex overlap or
intersection cases. This paper proposes a

concurrency control protocol for R-trees with

object clipping, Granular Locking for clIPping

indexing (GLIP). We also introduce the

Zerooverlap R+-tree (ZR+-tree), which resolves

the limitations of the original R+-tree by

eliminating the overlaps of leaf nodes. GLIP,

together with the ZR+-tree, constitutes an efficient

and sound concurrent access model for

multidimensional databases.

We are using a HTTP protocol analyzer
tool which is responsible for analyzing the Data

base access request packets sent by the client web

application, whether they were according to the

RFC 2616 specifications or not. If not, they were

treated as abnormal requests and were not

transferred to the Web server. Only well formed

HTTP packets that were according to the

specifications were sent to the server in order to be

processed.

B.Srinivasa Rao

, Manoj Kumar Yadav, V. Krishna Pratap, P.Narasimha Rao / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue6, November- December 2012, pp.1184-1189

1185 | P a g e

 Before granting access to the underlying

database resource, the request queries were

throughly inspected, inorder to ensure that they

were attack free and may not leave the database in

an inconsistent state. The access to the database for

the users is provided by the GLIP system which

provides serializable isolation, consistency, and
deadlock-free operations.

II. HTTP PROTOCOL ANALYZER TOOL
 The proposed is trained before being

placed in the operation.

Training phase:

During training phase, the tool is trained with

a valid set of HTTPmessages. These HTTP

messages are those that will receive a positive
response from the Web Server and were according

to HTTP RFC 2616 specifications. They were

captured by the tool and stored in a database. The

Read header function obtains the header of the

HTTP message. The Generate digest function

obtains digest by comparing the header with 116

predefined set of HTTP headers. If there is a match,

the corresponding bit is set to 1 in digest.

Otherwise, the bit is set to 0. Thus a 116 bit

message digest is obtained for each valid HTTP

message and is stored in the database. Once it is
trained, it ready for its operation.

During its operation, all the HTTP messages

directed to the Server were captured by the tool

were stored in the database. It removes the header of

the HTTP message and then generates digest using

the mechanism explained earlier. It then compares

the digest generated for each message with the

digest of the valid case messages that were already

stored during the training phase. If no match is

found it is treated as an abnormal packet. All such

abnormal packet requests were blocked and were
not sent to the Server. Only valid case HTTP

messages/requests were forwarded to the Server for

further processing.

III. SQL INJECTION DETECTION

SYSTEM
Web applications interface with databases

that contain information such as customer names,

preferences, credit card numbers, purchase orders,

and so on. Web applications build SQL queries to

access these databases based, in part, on user-

provided input. The intent is that Web applications

will limit the kinds of queries that can be generated

to a safe subset of all possible queries, regardless of

what input users provide. However, inadequate

input validation can enable attackers to gain

complete access to such databases. One way in

which this happens is that attackers can submit

input strings that contain specially encoded
database commands. When the Web application

builds a query by using these strings and submits

the query to its underlying database, the attacker’s

embedded commands are executed by the database

and the attack succeeds. The results of these attacks

are often disastrous and can range from leaking of

sensitive data to the destruction of database

contents.

The detection system perfomes 2 operations:
1. Character-level tainting

2. Syntax aware evaluation

Character-level tainting: We track taint

information at the character level rather than at the

string level. We do this because, for building SQL

queries, strings are constantly broken into

substrings, manipulated, and combined. By

associating taint information to single characters,

our approach can precisely model the effect of

these string operations.

Syntax aware evalution: The key feature of

syntax aware evaluation is that it considers the
context in which trusted and untrusted data is used

to make sure that all partsof a query other than

string or numeric literals (for example, SQL

keywords and operators) consist only of trusted

characters. As long as untrusted data is confined to

literals, we are guaranteed that no Injection attack

can be performed. Conversely, if this property is

not satisfied (for example, if a SQL operator

contains characters that are not marked as

trusted),we can assume that the operator has been

injected by an attacker and identify the query as an
attack.

Our Detection system performs syntax-

aware evaluation of a query string immediately

before the string is sent to the database to be

executed. To evaluate the query string, the

technique first breaks the string into a sequence of

tokens that correspond to SQL keywords,

operators, and literals. The technique then iterates

through the tokens and checks whether tokens (that

is, substrings) other than literals contain only

trusted data. If all such tokens pass this check, the

query is considered safe and is allowed to execute.
If an attack is detected, it is not executed.

IV. ZR+ TREES
The R+-tree uses a clipping approach to

avoid overlap between regions at the same level.

As a result of this policy, a point query in the R+-

tree corresponds to a single path tree traversal from

the root to a single leaf. For search windows that

are completely covered by the MBR of a leaf node,
the R+-tree guarantees that only a single search

path will be traversed. Examples of the R-tree and

R+-tree are given in Fig. 1, where A and B are leaf

nodes, and C, D, E, and F are MBRs of objects.

Because objects D and E overlap with each other in

the dataspace, leaf nodes A and B have to overlap

in the R-tree in order to contain the objects. In

contrast, in the R+-tree, leaf nodes do not have to

cover an entire object, so object D can be included

B.Srinivasa Rao

, Manoj Kumar Yadav, V. Krishna Pratap, P.Narasimha Rao / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue6, November- December 2012, pp.1184-1189

1186 | P a g e

in both leaf nodes A and B. As a result, the R+-tree

clearly has a better search performance compared

to the R-tree.

The essential idea behind the ZR+-tree is

to logically clip the data objects to fit them into the

exclusive leaf nodes. There are two fundamental

differences between the clipping techniques applied
in the ZR+-tree and the R+-tree:

1. From the definition of the ZR+-tree, object

clipping in the ZR+-tree must differentiate the

MBRs of the segmented objects in leaf nodes

,while the clipping in the R+-tree retains the

original MBRs.

2. In the ZR+-tree, each entry in a leaf node is a

list of segmented objects that share the same

MBR, while each leaf node entry in the R+-

tree contains exactly one object.

Fig. 1. Examples of R-tree and R+-tree. (a) An R-

tree example. (b) An R+-tree example.

For example, in Fig. 2, the first entry in

the leaf node A contains segmented objects O, P1,
Q1, and R1, with the same MBR, and the second

entry in the leaf node A contains segmented objects

P2, Q2, and R2, with the same MBR. These

segmented objects with the same MBR are

combined into a single entry. These two features in

the ZR+-tree can help to resolve the unable-to-split

problem, as well as to reduce the number of leaf

nodes after clipping objects. As the proposed object

clipping ensures zero overlap in the entire search

tree, the structure and the operations become more

orthogonal. Furthermore, this zero-overlap design

avoids the limitations associated with duplicating
the links between objects. An example of the ZR+-

tree that can be compared to the R-tree and the R+-

tree in Fig. 1 is given in Fig. 3, where the object D

is clipped into D1 and D2 to achieve zero overlap

and avoid the construction limitations of the R+-

tree.The definition of the ZR+-tree is given in the

form of a revised version of the earlier definition of

the R+-tree by modifying property 1 and 2 as

follows:

1. A leaf node has one or more entries of the form

(objectlist, RECT) where objectlist gives the
identifiers for each object that completely encloses

or covers RECT. Note that a single bounding

rectangle with multiple object ids is still counted as

a single entry, even though it requires extra space

in the node. An alternative is to use a pointer as

objectlist to the entry in a table that stores the

corresponding object ids.

2. An internal node has one or more entries of the

form (p, RECT) where p points to a ZR+-tree leaf

or internal node R such that RECT is the MBR of

all (pi, RECTi) in R. Thus, the definition of the
ZR+-tree is more orthogonal as a result of

eliminating the difference in rules for the MBRs of

leaf nodes and internal nodes. However, the MBR

of an object may be fragmented, such that the

union of all the fragments equals the MBR of the

object, and each of the fragments may be inserted

into the same or different leaf nodes.

Fig.2. Object clipping in ZR+-tree

Fig. 3. An example of ZR+-tree for the data in Fig.

1.

V. CONCURRENCY CONTROL USING

GLIP

The presence of a standard lock manager

is presumed to support conditional and

unconditional lock requests, as well as instant,

manual, and commit lock durations in GLIP. A

conditional lock request means that the requester

will not wait if the lock cannot be granted

immediately; an unconditional lock request means
that the requester is willing to wait until the lock

becomes grantable. Instant duration locks merely

test whether a lock is grantable, and no lock is

actually placed. Manual duration locks can be

explicitly released before the transaction is

completed. If they are not released explicitly, they

are automatically released at the time of commit or

rollback. Commit duration locks are automatically

released when the transaction ends.

Conventionally, five types of locks,

namely, S (shared locks), X (exclusive locks), IX

(Intention to set X locks), IS (Intention to set S
locks), and SIX (Union of S and IX locks) are

used. In the proposed protocol, only S and X locks

are used to support concurrent operations with

relatively simple maintenance processes. The lock

manager in GLIP is presumed to support the

acquisition of multiple locks as an atomic

operation. If this is not the case, such a procedure

can be conveniently implemented by acquiring the

first lock in a list unconditionally and all

B.Srinivasa Rao

, Manoj Kumar Yadav, V. Krishna Pratap, P.Narasimha Rao / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue6, November- December 2012, pp.1184-1189

1187 | P a g e

subsequent locks conditionally, with the procedure

releasing all the acquired locks and restarting if any

of the conditional locks cannot be acquired.

Furthermore, a transaction can place any number of

locks on the same granule as long as they are

compatible. The lock manager will place separate

locks for each granule, and each lock will be
distinct even if the lock modes are the same. When

releasing manual duration locks, both the lock

granule and lock mode must be specified.

Each leaf node in the ZR+-tree is defined

as a lockable granule(ext(T)). In order to reduce the

overhead associated with lock maintenance, objects

are not individually lockable. The clip array

introduced as an auxiliary structure to store the

object clipping information does not need to be

locked because the locking strategies on leaf nodes

ensure the serializability of access for the same

object, and updating one object will not affect the
other objects.

Selection Operation:

The select operation returns all object ids

given a search window W. It is necessary to place

locks on all granules that overlap with the search

window in order to prevent writers from inserting

into or deleting from these granules until the

transaction is completed.

Selection starts by checking whether the

search window overlaps with ext(T). If so, a shared

lock is placed on ext(T), thus preventing a writer
from inserting data into this space. A breadth-first

traversal is then performed starting from the root

node and traversing each node whose MBR

overlaps with the search window. For each internal

node that overlaps with W, an S lock is placed on

its external area. This lock is released when all of

its child nodes and its external granular have been

inspected and locked if necessary. For each internal

node, if the MBRs of its children do not fully cover

the search window W, an S lock will be kept on the

external granule for the node in order to prevent

writers from modifying this region. This ensures
consistency within the tree, as it prevents writers

from modifying the internal node until all the child

nodes have been properly inspected and protected.

As discussed earlier, in order to reduce the

number of locks that must be placed and released,

we neither perform object-level locking, nor lock

the corresponding objects in the clip array for the

select operation. Instead, shared locks are placed on

the leaf nodes that overlap withW. Since the same

object id may recur in the same leaf node or across

different leaf nodes, a set of object ids is
maintained to avoid returning the same object id

more than once. This is consistent with the

expected result from a select statement. Finally, all

the locks on the granules that overlap with W are

released once the search is complete.

Example:

 Fig.4. Example operations

 In Fig. 4, assuming A and B are leaf

nodes, the search window WS requires shared

locks to be placed on the lockable granules A,

whereas the update window WU requires exclusive

locks to be placed on B.

Fig. 5 illustrates the lock management for

the window query in Fig. 4. For a search window

WS that overlaps with C, E, and D, initially, an S

lock will be placed on the root. An S lock is then
placed on the leaf node A and the lock on the root

is released. This prevents any other transactions

from modifying the root (by placing an X lock on

it) until all its children have been inspected. After

the lock on the root has been released, the entry for

node B in the root can be modified as long as the

modification does not result in overlap with A.

Thus, manual duration S locks are used tomaintain

consistency while at the same time maximizing the

degree of concurrency

Fig.5. Locking sequence for WS in Fig. 4.

VI. PROPOSED SYSTEM SCHEME OF

OPERATION
The architecture of the proposed scheme is

as shown in Fig. 6. The operation of the system is

explained in terms of the following steps:

1. The web requests for database access from
multiple users directed to the web server were

taken by the HTTP Protocol Analyzer tool.

2. The tool then checks whether the HTTP

request packets sent by the clients were

according to the RFC specfications or not. If

not they were simply discarded. If valid, they

were forwarded to the web server.

3. The data base access query sent by the client

web application is carefully examined by the

Data base Vulnerability Detection System.

4. The DB Vulnerability Dection System extracts
each individual character, groups them into

tokens and compares them with the

metasymbol library(i.e valid SQL keywords,

literals etc). This technique then iterates

through the tokens and checks whether tokens

B.Srinivasa Rao

, Manoj Kumar Yadav, V. Krishna Pratap, P.Narasimha Rao / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue6, November- December 2012, pp.1184-1189

1188 | P a g e

(that is, substrings) other than literals contain

only trusted data. If all such tokens pass this

check, the query is considered safe and is

allowed to execute.

5. The Database server consisting of

multidimensional databases uses Granular

Locking for clIpping Protocol. The locking
mechanism provided by the GLIP ensures

consistency. It supports efficient concurrent

operations with serializable isolation,

consistency, andndeadlock-free

Deadlock free in GLIP:

Fig .6. Architecture of the proposed system

VII. ANALYSIS
Based on the proposed GLIP protocol,

ZR+-tree operations meet the requirements of
serializable isolation, consistency, and no

additional deadlocks. Specifically, serializable

isolation is guaranteed by the strategy of requesting

Shared locks on reading and Exclusive locks at the

same time on updating. These locks are granted on

the affected granules before the actual actions and

provide protection until the process is complete.

Therefore, the intermediate status of one operation

cannot be exposed to any other operations. The

consistency requirement is ensured by

implementing version checking and restarting the

insertion or deletion when the version does not
match. This version checking prevents the update

operations from modifying a version of the ZR+-

tree that differs from the one investigated.

VIII. CONCLUSION
This paper proposes a new concurrency

control protocol, GLIP, with an improved spatial

indexing approach, the ZR+-tree. GLIP is the first

concurrency control mechanism designed
specifically for the R+-tree and its variants. It

assures serializable isolation, consistency, and

deadlock free for indexing trees with object

clipping. The ZR+-tree segments the objects to

ensure every fragment is fully covered by a leaf

node. This clipping-object design provides better

indexing structures. Several structural limitations

of the R+-tree are overcome in the ZR+-tree by the

use of a nonoverlap clipping. Furthermore, the

usage of Database Vulnerability Detection System

ensures the protection of underlying databases from

vulnerable attacks that may otherwise leave the

database in an inconsistent state, leaking of

sensitive data and sometimes to the destruction of

database contents.
Extending GLIP and the ZR+-tree to

perform spatial joins, KNN-queries, and range

aggregation offer further attractive possibilities.

REFERENCES
[1]. N. Beckmann, H.P. Kriegel, R. Schneider, and

B. Seeger, “The R_-Tree: An Efficient and

Robust Access Method for Points and

Rectangles,” Proc. ACM SIGMOD ’90, pp.
322-331, 1990.

[2]. A. Biliris, “Operation Specific Locking in B-

trees,” Proc. Sixth Int’l Conf. Principles of

Database Systems (PODS ’87), pp. 159-169,

1987.

[3]. J.K. Chen, Y.F. Huang, and Y.H. Chin, “A

Study of Concurrent Operations on R-Trees,”

Information Sciences, vol. 98, nos. 1-4, pp.

263-300, May 1997.

[4]. V. Gaede and O. Gunther, “Multidimensional

Access Methods,” ACM Computing Surveys,
vol. 30, no. 2, pp. 170-231, June 1998.

[5]. C. Anley, “Advanced SQL Injection In SQL

Server Applications,” white paper, Next

Generation Security Software, 2002.

[6]. S.W. Boyd and A.D. Keromytis, “SQLrand:

Preventing SQL Injection Attacks,” Proc.

B.Srinivasa Rao

, Manoj Kumar Yadav, V. Krishna Pratap, P.Narasimha Rao / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue6, November- December 2012, pp.1184-1189

1189 | P a g e

Second Int’l Conf. Applied Cryptography and

Network Security, pp. 292-302, June 2004.

B.Srinivasa Rao received his B.Tech
degree in Computer Science and

Information Technology from
Dr.Paul Raj Engineering College,

Jawaharlal Technological University,
A.P India.The M.E. degree in

Computer science and engineering from Anna
University, Tamilnadu, and India. He was worked as

an assistant professor in the department of computer

science and engineering in various engineering
colleges. At present he is working as an assistant

professor in the department of computer science and
information technology in sri sarathi institute of

engineering and technology ,Jawaharlal technological
university kakinada,A.P India. His research interests

include information security, networking techniques,
formal languages and automata theory, cloud

computing.

MANOJ KUMAR YADAV

received his M.C.A degree from
BSA college of Engineering

&Technology, Uthtar Pradesh
Technical University, U.P, India.

The M.Tech. Degree in Computer science and
Engineering from Jawaharlal technological university,

Hyderabad, A.P India. He was worked as an assistant
professor in the department of computer science and

engineering in sri sarathi institute of engineering and
technology ,Jawaharlal technological university,

kakinada,A.P India . At present he is working as an
assistant professor in the department of computer

science and Engineering, Dronacharya Group of
Institution,U.P, India. His research interests include

information security, networking techniques, formal
languages and automata theory.

Mr. V. Krishna Pratap received his
M.Tech , in CSE from JNTU

KAKINADA University , AP and
India in the year of 2011. He studied

B.Tech in the Specialization of
INFORMATION TECHNOLOGY from JNTU

KAKINADA University, AP and India. He was

worked as Asst. Professor in the Computer Science
and Engineering in Sri Sarathi Institute of Engineering

and Technology; Nuzvid, AP and India At present he
is working as a asst.prof in the dept of CSE in

venkateswra institute of science and information
technology ,Tadepalligudem,A.P,India. His research

interests include information security, networking
techniques, formal languages and automata theory,

cloud computing.

