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Abstract 
The present paper prescribes upper 

bounds for oscillatory motions of neutral or 

growing amplitude in thermohaline 

configurations of G. Veronis [1] and M. E. Stern 

[2] types in porous medium in such a way that it 

also results in sufficient conditions of stability for 

an initially top heavy as well as initially bottom 

heavy configuration. 
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Introduction 
The Thermohaline convection problem has 

been extensively studied in the recent past on 

account of its interesting complexities as a double 

diffusive phenomenon as well as its direct relevance 

in many problems of practical interest in the fields 

of oceanography, astrophysics, limnology and 

chemical engineering etc.[3] Two fundamental 

configurations have been studied in the context of 

thermohaline convection problem, one by Veronis 
[1], wherein the temperature gradient is 

destabilizing and the concentration gradient is 

stabilizing and another by Stern [2] wherein the 

temperature gradient is stabilizing and the 

concentration gradient is destabilizing. The main 

findings of Veronis and Stern for their respective 

configuration are that both allow the occurrence of a 

steady motion or an oscillatory motion of growing 

amplitude, provided the destabilizing temperature 

gradient or the concentration gradient is sufficiently 

large. In case of Veronis' configuration, oscillatory 
motions of growing amplitude are preferred mode of 

onset of instability whereas in case of Sterns' 

configuration, steady motion (stationary convection) 

is the preferred mode of onset of instability and 

these results are independent of the initially 

gravitationally stable or unstable character of the 

two configurations. Thus thermohaline 

configurations of Veronis and Stern type can further 

be classified into the following two classes:     

(i)   the first class, in which thermohaline instability 

manifests itself when the total density field is 

initially bottom heavy, and     
(ii)   the second class, in which thermohaline 

instability manifests itself when the total density 

field is initially top heavy. 

 

 

 

In recent years, many researchers have shown their 

keen interest in analyzing the onset of convection in 

a fluid layer subjected to a vertical temperature 

gradient in a porous medium because of its 

importance in the prediction of ground water 

movement in aquifers, in the energy extraction 
process from the geothermal reservoirs, in assessing 

the effectiveness of fibrous insulations and in 

nuclear engineering [4,5].The stability of flow of a 

fluid through porous medium was studied by 

Lapwood [6], Wooding [7].Tountan and Lightfoot 

[8] characterized salt fingers in thermohaline 

convection in porous medium. The problem of 

double diffusive convection in porous medium has 

been extensibly investigated and the growing 

volume of work in this area is well documented by 

Ingham and Pop [9], Nield and Bejan [4] and K. 
Vafai [10]. Recently Jyoti Prakash and Vinod 

Kumar [11,12] derived characterization theorems 

for the nonexistence of oscillatory motions of 

growing amplitude in an initially bottom heavy 

configuration of Veronis type and Stern type. 

The above researchers have studied double 

diffusive convection in porous medium by 

considering the Darcy flow model which is relevant 

to densely packed, low permeability porous 

medium. However, experiments conducted with 

several combinations of solids and fluids covering 

wide ranges of governing parameters indicate that 
most of the experimental data do not agree with the 

theoretical predictions based on the Darcy flow 

model. Hence, non-Darcy effects on double 

diffusive convection in porous media have received 

a great deal of attention in recent years. Poulikakos 

[13] has used the Brinkman extended Darcy flow 

model for the problem to investigate the linear 

stability analysis. Recently, Givler and Altobelli 

[14] have demonstrated that for high permeability 

porous media the effective viscosity is about ten 

times the fluid viscosity. Therefore, the effect of 
viscosities on the stability analysis is of practical 

interest. Thus in the present paper the Brinkman 

extended Darcy model has been used to investigate 

the thermohaline convection in porous medium and 

upper bounds for the oscillatory motions of neutral 

or growing amplitude in thermohaline configuration 

of Veronis and Stern types in porous medium are 

obtained in such a manner that it also results in 

sufficient conditions for stability for an initially 
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bottom heavy or an initially top heavy 

configurations.  

 

Mathematical formulation and analysis: 
An infinite horizontal porous layer filled 

with a viscous fluid is statically confined between 

two horizontal boundaries z = 0 and z = d 

maintained at constant temperatures T₀ and T₁ and 

solute concentrations S₀ and S₁ at the lower and 

upper boundaries respectively, where          T₁ < T₀ 
and S₁ < S₀. It is further assumed that the saturating 

fluid and the porous layer are incompressible and 
that the porous medium is a constant porosity 

medium. Let the origin be taken on the lower 

boundary z = 0 with z-axis perpendicular to it. 

The basic hydrodynamic equations that 

govern the problem are given by: 

 

The continuity equation for an incompressible fluid 

is 
∂u

∂x
+  

∂v

∂y
+ 

∂w

∂z
= 0   

   (1) 

Equations of Motion is 
1

ϵ

∂u

∂t
+

1

ϵ2
 u

∂u

∂x
+ v

∂u

∂y
+  w

∂u

∂z
 =  − 

𝜕

𝜕𝑥
  

p

ρ0

  − 
ν

k1
 u +

μe

ρ0  

 ∇2u , 

                                                          (2) 
1

ϵ

∂v

∂t
+

1

ϵ2
 u

∂v

∂x
+ v

∂v

∂y
+  w

∂v

∂z
  =  − 

𝜕

𝜕𝑦
  

p

ρ0

  − 
ν

k1
 v +

μe

ρ0  

 ∇2v , 

                                                           (3) 
1

ϵ

∂w

∂t
+

1

ϵ2
 u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
 =  − 

𝜕

𝜕𝑧
  

p

ρ0

  − 
ν

k1
 w +

μe

ρ0  

 ∇2w −
ρ

ρ0  

g ,                                                (4) 

Equation of Heat Conduction 

  E
∂T

∂t
+ u

∂T

∂x
+  v

∂T

∂y
+ w

∂T

∂z
 = κT ∇

2T , 

     (5) 

Equation of Mass Diffusion 

E′ ∂S

∂t
+ u

∂S

∂x
+  v

∂S

∂y
+ w

∂S

∂z
=  κS ∇

2S , (6)  

 

Equation of State 

ρ =  ρ
0

[1 +  α (T0 − T) −  γ (S0 − S)], (7) 

 

where u, v, w are the components of velocity in the 

x, y, z-directions respectively and 
p

ρ0

 is the modified 

hydrodynamic pressure. Further, t, ρ, T, S, ϵ, k₁, μ
e
, 

ν, κT and κS are, respectively, the time, the density, 

the temperature, the concentration, the porosity of 

the porous medium, the permeability of the porous 
medium, the effective viscosity, the kinematic 

viscosity, the thermal diffusivity and the mass 

diffusivity; and α and γ are respectively the 

coefficients of volume expansion due to temperature 

and concentration variation. Here E =  ϵ +

 1 − ϵ 
ρs Cs

ρ0 Cf
 is a constant and E′ is also a constant 

analogous to E but corresponding to concentration 

rather than heat, where ρ
s
, Cs  and ρ

0
, Cf stand for 

density and heat capacity of the solid (porous 

matrix) material and fluid respectively. The suffix 

‘0’ denotes the values of the various parameters at 

some suitably chosen reference temperature T₀ and 

concentration S₀. 
    The basic state is assumed to be quiescent state 
and is given by 

 

(u, v, w) ≡ (0, 0, 0)
p         ≡   p(z)
T        ≡  T(z)
S         ≡  S(z)
ρ         ≡  ρ(z)  

 
 

 
 

   

     (8) 

 
Thus the initial stationary state solutions are given 

by: 

 

(u, v, w) = (0, 0, 0)

                          
p

ρ0  

   =   P = P0 −  gρ
0  

(z +
αβz2

2
−

γδz2

2
)

         T =  T0 − βz
         S  =  S0 − δz

                                                      ρ =  ρ
0
 1 +  α  T0 − T –  γ S0 − S  

                                   ρ =  ρ
0
 1 +  α βz −  γδz  

 
 
 

 
 
 

   (9) 

 Here P₀ represents the pressure at the lower 

boundary z = 0, β =
T0−T1

d
 and δ =

S0−S1

d
, are the 

respective maintained temperature and 

concentration gradients. 

    The initial stationary state is now slightly 
perturbed so that the perturbed state is given by: 

         

 u, v, w PS =  0 + u′, 0 + v′, 0 + w ′ 

 p PS =  P + P

         T PS =  T0 − βz + θ
′ = T + θ

′

          S PS =  S0 − δz + ϕ
′ = S + ϕ

′

                     ρ PS =  ρ
0
 1 +  α  T0 − T − θ

′ –  γ S0 − S − ϕ
′   

 
 

 
 

 

 

                    (10)   

 
where u′, v′, w′, P′, θ′, ϕ′ denote, respectively, the 

perturbations in three components of velocity, 

pressure, temperature and concentration and are 

assumed to be small around the basic state. Then the 

linearized perturbation equations are given by 
∂u ′

∂x
+  

∂v ′

∂y
+  

∂w ′

∂z
= 0,   

              (11) 
1

ϵ

∂u ′

∂t
 =  − 

∂P′

∂x
  −  

ν

k1
u′ +

μe

ρ0

∇2u′ ,  (12) 

 
1

ϵ

∂v ′

∂t
 =  − 

∂P′

∂y
  − 

ν

k1
v′ +

μe

ρ0

∇2v′ ,  (13) 

   
1

ϵ

∂w ′

∂t
 =  − 

∂P′

∂z
  −  

ν

k1
w ′ +

μe

ρ0

∇2w′ + gαθ
′ − gγϕ

′
,   (14) 

  E
∂θ′

∂t
−  βw ′  =  κT ∇

2θ
′
  ,  

              (15) 

E′ ∂ϕ′

∂t
−  δw ′ = κS ∇

2ϕ
′
  ,  (16) 
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 For the system of equations (11) – (16) the analysis 

can be made in terms of two dimensional periodic 

waves of assigned wave numbers. Thus we ascribe 

to all quantities describing the perturbations a 

dependence on x, y and t of the form 

 

[i (kx x + ky y) + nt]   
   (17) 

where k =   kx
2 + ky

2 . Here kx and ky are the wave 

numbers along the x- and y- directions, respectively, 

and k is the resultant wave number. The above 

consideration allows us to suppose that the 

perturbations u′, v′, w′, P′, θ′ and ϕ′ have the form 

         F ′(x, y, z, t )  =  F ′′(z)exp[i(kx  x + ky  y) +  nt],

              (18) 

   For functions with these dependencies on x, y and 
t we have 
∂

∂t
= n,   

∂2

∂x2 +
∂2

∂y2 = −k2,       and    ∇2=

d2

dz2 − k2              (19) 

    

Following the normal mode analysis, equations (11) 

– (16), thus, becomes 

ikx u′′ +  iky v′′  +  
dw ′′

dz
 =  0 ,   

              (20)  
1

ϵ
nu′′ = −ikx P′′ − 

ν

k1
 u′′ +

μe

ρ0

 
𝑑2

𝑑𝑧2 − 𝑘2 u′′ ,  

              (21) 
1

ϵ
nv ′′ = −ikyP′′ − 

ν

k1
 v′′ +

μe

ρ0

 
𝑑2

𝑑𝑧2 − 𝑘2 v′′,    

   (22) 
1

ϵ
nw ′′ = −

dP′′

dz
− 

ν

k1
 w ′′ +

μe

ρ0

 
𝑑2

𝑑𝑧2 − 𝑘2 w ′′ + gαθ
′′ −

gγϕ
′′
,   (23) 

Enθ
′′ −  β w ′′  =  κT  

d2

dz2  − k2  θ′′
 ,      

              (24)  

E′nϕ
′′
−  δ w ′′  =  κS  

d2

dz2  − k2  ϕ′′
 .  

              (25) 

    

Multiplying equations (21) and (22) by ikx 

and iky  respectively; adding the resulting equations 

and using equations (17) and (20), we obtain 

− 
n

ϵ

dw ′′

dz
= k2P′′ +  

ν

k1
 

dw ′′

dz
−

μe

ρ0

 
𝑑2

𝑑𝑧2 − 𝑘2 
dw ′′

dz
 . 

              (26) 

    

 Now eliminating P′′ between equations (23) and 

(26), we get the resulting equation in the form 
μe

ρ0

 
d2

dz2 − k2 
2

w ′′ −  
n

ϵ
+

ν

k1
  

d2

dz2 − k2 w ′′ =

 k2 gαθ
′′ − gγϕ

′′              (27) 

Also equations (24) and (25) can be written as 

 
d2

dz2  − k2 −
En

κT 
 θ

′′ = − 
β w ′′ 

κT 
   

              (28)  

  
d2

dz2  − k2 −
E ′n

κS 
 ϕ

′′ =  − 
δw ′′ 

κS 
    

              (29)  

 
Now using the following non-dimensional parameters 

𝑎∗ = kd, 𝑧∗ =
z

d
  , 𝜏∗ =  

κS

κT
 ,  p1 =  

ν

κT
 , p𝑙 =  

k1

d2  , 

D∗ =  d
d

dz
 , σ∗ =  

nd2

ν
 , w∗ =  

d

ν
 w′′ , 

R∗ =  
g α β d4

κT ν
 , RS∗

=  
g γ δ d4

κT ν
 ,  θ∗ =  

κT 

βνd
θ′′ , ϕ

∗
=

 
κT 

δνd
 ϕ′′, 𝛬 =

μe

μ
 .  

we can write equations (27 – (29) in the following 

non-dimensional form (dropping the asterisks for 

simplicity) 

𝛬 D2 − a2 2w −  
σ

ϵ
+

1

P𝑙
  D2 − a2 w =  R a2θ −

RSa2ϕ ,                           (30) 
 D2 − a2 − E σp1 θ = −w ,   
               (31) 

 D2 − a2 −
E ′σ p1

τ
 ϕ =  − 

w

τ
  ,   

              (32) 

    Equations (30) – (32) are to be solved using the 

following boundary conditions: 
w = θ = ϕ = Dw = 0 at z = 0 and at z = 1,  (when 

both the boundaries are rigid)   

     (33)   

w = θ = ϕ = D2w = 0 at z = 0 and at z = 1,  (when 

both the boundaries are free) 

(34) 

where z is the vertical co-ordinate such that 

0 ≤ z ≤ 1, D is the differentiation w.r.t. z, a² is 

square of the wave number, p1 > 0 the Prandtl 

number, τ > 0 is the Lewis number, R > 0 is the 

Rayleigh number, RS  > 0 is the thermohaline 

Rayleigh number, σ =  σr  +  iσi is the complex 

growth rate which is complex constant in general 

and as a consequence the dependent variables w(z) 

= wr(z) + iwi(z), θ(z) = θr(z) + iθi(z) and ϕ(z) = ϕr(z) 

+ iϕi(z) are complex valued functions of the real 

variable z such that wr(z), wi(z), θr(z), θi(z), ϕr(z) 

and ϕi(z) are real valued functions of the real 

variable z.     

    The system of equations (30) – (34) describes an 

eigen value problem for σ, for a given values of 

other parameters, namely a², p1, R, RS , P𝑙 , E, E′, ϵ 

and τ and govern thermohaline instability in a 

porous medium with constant porosity. It is also 

assumed that the saturating fluid and the porous 

layer are incompressible and a given state of the 

system is stable, neutral or unstable depending on 

whether σr is negative, zero or positive. 

Furthermore,        

(a) σr   ≥ 0 and σi   ≠ 0 describe 
oscillatory motions of neutral or growing amplitude; 

 (b) R > 0 and RS  > 0 describe Veronis 

thermohaline configuration; 

 (c) R < 0 and RS  < 0 describe Stern’s 

thermohaline configuration; 
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     (d)    λ =
R

RS
≤ 1 describes an initially 

bottom heavy configuration;  

and   (e)    λ ≥ 1 describes an initially top 

heavy configuration. 

    we prove the following theorem: 

    Theorem 1. If (w, θ, ϕ, σ), σr ≥ 0 and σi ≠ 0  is 

a nontrivial solution of equations (30) – (32) 

together with the boundary condition (33) or (34) 

and R > 0, 𝑅𝑆 > 0 then, 

|σ| <
λ RS

Ep1  4π²  Λ +
τ

ϵE′p₁
  +  

1
P𝑙

 
 Ω² − 1 

where 

Ω =
λ RS

4π2

P𝑙
+

27

4
π4 Λ+

τ

ϵE ′p₁
 
  and λ =

R

RS
 . 

   Proof: Multiplying equation (30) by 
w∗

RS
 

throughout, integrating the resulting equation over 

the vertical range of z, and using equations (31) and 

(32), we get 

𝛬

RS

 w∗

1

0

 D2 − a2 2w dz −
1

RS

 
σ

ϵ
+

1

P𝑙

  w∗

1

0

 D2 − a2 w dz 

 = −λ a2  𝜃
1

0
 D2 − a2 − Eσ∗p1 θ

∗ dz + τa2  ϕ
1

0
 D2 − a2 −

E′σ∗ p1τϕ∗ dz    (35) 

 Integrating various terms of equation (35) by parts 

for an appropriate number of times and using the 

boundary conditions (33) or (34), we obtain 

 
𝛬

RS
   D2𝑤 2 + 2a2 D𝑤 2 + a4 𝑤 2 

1

0
dz +

1

RS
 

σ

ϵ
+

1

P𝑙
    D𝑤 2 + a2 𝑤 2 

1

0
dz 

−λ a2    D𝜃 2 + a2 𝜃 2 + Eσ∗p1 𝜃 2 
1

0
dz +

τa2    D𝜙 2 + a2 𝜙 2 +
E ′σ∗p1

τ
 𝜙 2 

1

0
dz = 0  

     

     

   (36) 

Equating the real and imaginary parts of equation 

(36) to zero and cancelling σi (≠0) throughout from 
the imaginary part, we have 

 
Λ

RS
   D2w 2 + 2a2 Dw 2 + a4 w 2 

1

0
dz +

1

RS
 

σr

ϵ
+

1

Pl
    Dw 2 + a2 w 2 

1

0
dz 

 −λ a2    Dθ 2 + a2 θ 2 + Eσr p1 θ 
2 

1

0
dz +

τa2    Dϕ 2 + a2 ϕ 2 +
E ′σr p1

τ
 ϕ 2 

1

0
dz = 0   

     

     

   (37) 

and 

  
1

ϵ RS
   Dw 2 + a2 w 2 

1

0
dz +

a2  Ep1λ   θ 2dz
1

0
− E′p1   ϕ 2dz

1

0
 = 0 

 (38) Equation (37) can be written as 

 
Λ

RS
   D2w 2 + 2a2 Dw 2 + a4 w 2 

1

0
dz +

1

RS
 

σr

ϵ
+

1

Pl
    Dw 2 + a2 w 2 

1

0
dz 

 −λ a2    Dθ 2 + a2 θ 2 
1

0
dz + τa2    Dϕ 2 +

1

0

a2ϕ2dz 

−σr  a2  Ep1λ   θ 2dz
1

0
− E′p1   ϕ 2dz

1

0
 = 0

    (39) 

 Multiplying equation (38) by σr and adding the 

resulting equation to equation (39), we get 

 
Λ

RS
   D2w 2 + 2a2 Dw 2 + a4 w 2 

1

0
dz +

1

RS
 

2σr

ϵ
+

1

Pl
    Dw 2 + a2 w 2 

1

0
dz 

 −λ a2    Dθ 2 + a2 θ 2 
1

0
dz + τa2    Dϕ 2 +

1

0

a2ϕ2dz=0  (40) 

Equation (38) implies that 

a2   ϕ 21

0
dz ≥

1

ϵRS E ′p1
   Dw 2 + a2 w 2 

1

0
dz

     (41) 

Also, since w, θ and ϕ vanish at z = 0 and z = 1,the 

Rayleigh-Ritz inequality [15] gives 

  Dw 2dz ≥ π2   w 21

0

1

0
dz  (42) 

  Dθ 2dz ≥ π2   θ 21

0

1

0
dz   (43) 

  Dϕ 2dz ≥ π2   ϕ 21

0

1

0
dz   (44) 

Combining inequalities (41) and (42), we obtain 

a2   ϕ 21

0
dz ≥

 π2+a2 

ϵRS E ′p1
  w 21

0
dz  (45) 

which in particular also implies that 

  ϕ 21

0
dz ≥

1

ϵRS E ′p1
  w 21

0
dz  (46) 

and 

a2   ϕ 21

0
dz ≥

π2  

ϵRS E ′p1
  w 21

0
dz   (47) 

Also, by utilizing the inequality (42), we can write 

   Dw 2 + a2 w 2 
1

0
dz ≥  π2 + a2   w 21

0
dz 

                                 (48) 

     

Further, multiplying equation (31) by its 

complex conjugate and integrating the resulting 

equation appropriate number of times and utilizing 

boundary conditions (33) or (34), we obtain 

   D2 − a2 − E σp1 θ 

1

0

  D2 − a2 − E σ∗p1 θ
∗ dz =  ww∗dz

1

0

 

which gives 

    D2 − a2 θ 2dz + 2E p1σr
1

0
   Dθ 2 + a2 θ 2 

1

0
dz +

E2p1
2 σ 2   θ 21

0
dz =   w 21

0
dz,  (49) 

since, σr ≥ 0, it follows from equation (49) that 

  w 21

0
dz ≥

   D2 − a2 θ 2dz
1

0
+ E2p1

2 σ 2   θ 21

0
dz  

                                 (50) 

and 

  w 21

0
dz ≥    D2 − a2 θ 2dz

1

0
  

              (51) 

Furthermore, utilizing the Schwartz's inequality, we 

have 

     θ 2dz
1

0
 

1

2
   D2θ 2dz

1

0
 

1

2
    ≥

 − θ
∗D2θ dz

1

0
 =   Dθ 2dz

1

0
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≥ π2   θ 2dz
1

0
  (using (43)) 

Consequently, 

  D2θ 2dz
1

0
≥ π4   θ 2dz

1

0
   

   (52) 

using the similar logic we can show that 

  D2w 2dz
1

0
≥ π4   w 2dz

1

0
  

    (53)  

utilizing inequalities (42) and (53), we get 

   D2w 2 + 2a2 Dw 2 + a4 w 2 
1

0
dz ≥

 π2 + a2 2   w 2dz
1

0
 (54)  

Thus, utilizing (43) and (52), we can write 

   D2 − a2 θ 21

0
dz ≥  π2 + a2 2   θ 2dz

1

0
 

   (55)  

Combining inequalities (50) and (55), we obtain 

   w 21

0
dz ≥   π2 + a2 2 + E2p1

2 σ 2   θ 21

0
dz

   (56)  

Further, 

  w 2

1

0

dz     =    w 2

1

0

dz 

1
2

   w 2

1

0

dz 

1
2

 

    >  π2 + a2  1 +

E2p12σ2π2+a221201D2−a2θ2dz1201θ2dz12
  

                                               

(utilizing (51) and (56)) 

≥  π2 + a2  1 +
E2p1

2 σ 2

 π2 + a2 2
 

1
2

 − θ
∗ D2 − a2 θ

1

0

dz  

                                                (using 

Schwartz inequality) 

=  π2 + a2  1 +
E2p1

2  σ 2

 π2+a2 2
 

1

2
   Dθ 2 + a2 θ 2 dz

1

0
 

   (57) 
Using inequality (54) in the first integral, 

inequality (48) in the second integral, inequality 

(57) in the third integral and inequalities (44) and 

(45) in the last integral of (40) and utilizing the fact 

that σr ≥ 0, we obtain 

 
Λ

RS
 π2 + a2 2   w 21

0
dz +

 π2+a2 

P𝑙 RS
  w 21

0
dz +

τ π2+a2 
2

ϵRS E ′p1
  w 21

0
dz 

    

 −
λa2

 π2+a2  1+
E2p 1

2 σ 2

 π2+a 2 
2 

1
2

  w 21

0
dz < 0 

or 

 

 
 
 
 
 

Λ

RS
 π2 + a2 2 +

 π2+a2 

P𝑙 RS
+

τ π2+a2 
2

ϵRS E ′p1
−

λa2π2+a21+E2p12σ2π2+a221201w2dz<0 

which can be rearranged as 

   
Λ

RS
+

τ

ϵRS E ′p1
 

 π2+a2 
3

a2 +
 π2+a2 

2

a2P𝑙 RS
  1 +

E2p1
2  σ 2

 π2+a2 2
 

1

2
− λ   w 21

0
dz <

0                                                                         (58) 

Inequality (58) clearly implies that we must have 

1

RS
  Λ +

τ

ϵE ′p1
 

 π2+a2 
3

a2 +
 π2+a2 

2

a2Pl
  1 +

E2p1
2  σ 2

 π2+a2 2
 

1

2
< 𝜆 

                                         (59) 

    Since minimum value of 
 π2+a2 

3

a2  w.r.t. a² is 
27

4
π4 

(for a² =
π²

2
) and minimum value of 

 π2+a2 
2

a2  w.r.t. a² 

is 4π² (for a² = π²), we obtain, from inequality (59) 

that 

 1 +
E2p1

2 σ 2

 π2 + a2 2
 

1
2

<
λRS

27
4 π4  Λ +

τ

ϵE′p1
 +

4π² 
P𝑙

 

or 

 𝜎 <
 π2+a2 

E p1
 Ω² − 1   

                  (60)  

where 

Ω =
λ RS

27

4
π4 Λ+

τ

ϵE ′p₁
 +

4π2

P𝑙

  

Since, σr ≥ 0, it follows from equation (40) that 

 
Λ

RS
   D2w 

2
+ 2a2 Dw 2 + a4 w 2 

1

0
dz +

1

RSPl
   Dw 2 + a2 w 2 

1

0
dz 

+τa2    Dϕ 2 + a2 ϕ 2 
1

0
dz ≤ λ a2    Dθ 2 + a2 θ 2 

1

0
dz 

                                                       (61) 

 

which upon using inequalities (44),(45),(48),(54) 

and (57) gives 

 π2 + a2   Λ +
τ

ϵE′p1

 
 π2+a2 

2

a2
+

 π2+a2 

a2Pl
 < 𝜆 RS

                        (62) 

    Since, 
 π2+a2 

a2P𝑙
>

1

P𝑙
 and minimum value of 

 π2+a2 
2

a2
 

w.r.t. a² is 4π² (at a² = π²), it follows from inequality 

(62) that 

≤
λRS

4π² Λ+
τ

ϵE′p1

 +
1

P𝑙

    

                                 (63) 

Combining inequalities (60) and (63), we obtain 

 𝜎  <
λRS

E p1 4π² Λ+
τ

ϵE′p1

 +
1

P𝑙
 
 Ω² − 1. 

 

which completes the proof of the theorem. 

    Theorem 1, from the physical point of view may 

be stated as follows: the complex growth rate 

σ = σr + iσi of an arbitrary oscillatory  σi ≠ 0  

perturbation of growing amplitude  σr ≥ 0  in 
thermohaline instability of Veronis type in a porous 

medium lies inside a semicircle in the right half of 

the p
r
p

i
 - plane whose centre is at the origin and 

radius is 
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λRS

E p1 4π² Λ+
τ

ϵE′p1

 +
1

P𝑙
 
 Ω² − 1 =

R

E p1 4π² Λ+
τ

ϵE′p1

 +
1

P𝑙
 
 Ω² − 1. 

 It may further be noted that the above 

result is uniformly valid for an initially top-heavy (λ 

≥ 1) as well as an initially bottom-heavy (λ ≤ 1) 

configuration. 

Corollary 1: If (w, θ, ϕ, σ), σ = σr + iσi,  σi ≠ 0 , 

is a nontrivial solution of equations (30) – (32) 

together with boundary conditions (33) or (34) and 

R > 0, RS  > 0 and 

λ <

27

4
π4 Λ+

τ

ϵE′p₁
 +

4π2

P𝑙

RS
 ,   

then σr < 0 

Proof: Corollary follows from theorem 1. 

    Corollary 1 implies that oscillatory motions of 

neutral or growing amplitude are not allowed in 

thermohaline instability of Veronis type if the initial 

stability parameter λ does not exceed the value  
27

4
π4 Λ+

τ

ϵE′p₁
 +

4π2

P𝑙

RS
 . Further this result is uniformly valid 

for an initially top-heavy (λ ≥ 1) as well as an 

initially bottom-heavy (λ ≤ 1) configuration. 

    Theorem 2: If (w, θ, ϕ, σ), σ = σr + iσi, σr ≥ 0, 

σi ≠ 0, is a nontrivial solution of equations (30) – 

(32), together with boundary conditions (33) or (34) 

and R < 0, RS < 0 and 

 𝜎  <
λ   R τ2

E′ p1
 4π² Λ + 

1

ϵEp1
  + 

1

P𝑙
 
 Ω ² − 1  

   (65) 

where 

Ω =
λ   R τ

27

4
π4 Λ + 

1

 ϵ E p₁
  + 

4π2

P𝑙

 and  λ =
 RS 

 R 
 . 

Proof: Replacing R with −|R| and RS with −|RS| in 

equations (30) – (32) and proceeding exactly as in 

Theorem 1, we obtain the desired result. 

Corollary 2: If (w, θ, υ, σ), σ = σr + iσi, σi ≠ 0, is 

a nontrivial solution of equations (30) – (32), 

together with the boundary conditions (33) or (34) 

and R < 0, RS < 0 and 

λ ≤
1

 R τ
 

27

4
π4  Λ +

1

ϵ E p₁
 +

4π2

P𝑙
 , then σr < 0. 

 

Proof: Corollary follows from Theorem 2. The 

essential contents of theorem 2 and corollary 2 from 
the point of view of hydrodynamic stability are 

similar to those of Theorem 1 and corollary 1, but in 

this case they pertain to thermohaline instability of 

the Stern type.   

 

References 
1. G. Veronis, On finite amplitude instability 

in thermohaline convection, J. Mar. Res., 

23, 1 – 17 (1965). 

2. M. E. Stern, The salt fountain and 

thermohaline convection, Tellus, 12, 171 – 

175 (1960). 

3. J.S. Turner, Double-Diffusive 

phenomenon, Ann. Rev. Fluid Mechanics, 

6, 37 – 54 (1974). 

4. D. A. Nield and A. Bejan, Convection in 
Porous Media, Springer (2006). 

5. B. Straughan, Stability and wave motion in 

porous media, Springer (2008). 

6.  E. R. Lapwood, Convection of a fluid in a 

porous medium, Proc. Camb. Phil. Soc. 44, 

508 – 521 (1948). 

7.  R. A. Wooding, Rayleigh instability of a 

thermal boundary layer in flow through a 

porous medium, J. Fluid Mech. 9, 183 – 

192 (1960). 

8. J. W. Tounton, E. N. Lightfoot, and T. 

Green, Thermohaline instability and salt 
fingers in a porous medium, The Phys. 

Fluids, 15(5), 748 – 753 (1972). 

9. D. B. Ingham, and I. Pop, Transport 

phenomenon in porous media, Vol. III, 

Elsevier (2005). 

10. K. Vafai, Handbook of Porous media, 

Taylor and Francis (2006). 

11. Jyoti Prakash and Vinod Kumar, On 

nonexistence of oscillatory motions in 

thermohaline convection of Stern type in 

porous medium, J. Rajasthan Acad. Phy. 
Sci., 10(4), 331 – 338  (2011). 

12. Jyoti Prakash and Vinod Kumar, Recent 

Advances in Continuum Mechanics and 

Algebra, Regal Publications, New Delhi 

(2010). 

13. D. Poulikakos, Double-diffusive 

convection in a horizontally sparsely 

packed porous layer, Int. Comm. Heat 

Mass Transfer, 13, 587 – 598 (1986). 

14. R. C. Givler and S. A. Altobelli, A 

determination of the effective viscosity for 

the Brinkman-Forchheimer flow model, J. 
Fluid Mech, 258, 355 – 370 (1994). 

15. M. H. Schultz, Spline Analysis, Prentice 

Hall, Englewood Cliffs, NJ, (1973). 


