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ABSTRACT 
The Biot linearized theory for fluid 

saturated porous materials is used to study the 

plane strain deformation of an isotropic, 

homogeneous, poroelastic half space in welded 

contact with homogeneous,  orthotropic elastic 

half space  in case (a) and with transversely 

isotropic elastic half space in case (b) caused by a 

normal line-load. The analytical expressions for 

the displacements and stresses in the two half 

spaces in welded contact have been obtained by 

applying boundary conditions at the interface. 

The integrals are solved analytically for the 

limiting case i.e. undrained conditions in high 

frequency limit. To examine the effect of 

anisotropy, the variation of the undrained 

dimensionless displacements, stresses and pore 

pressure are shown graphically and it is found 

that anisotropy is affecting the deformation 
substantially.  

 

Key words: - Anisotropy, Inclined line-load, 
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1. Introduction 
Poroelasticity is the mechanics of 

poroelastic solids with fluid filled pores. Its  

mathematical theory deals with the mechanical 

behaviour of an elastic porous medium which is 

either completely filled or partially filled with pore 

fluid and  study the time dependent coupling 

between the deformation of the rock and fluid flow 

within the rock. The study of deformation by buried 

sources of a fluid saturated porous medium is very 

important because of its applications in earthquake 

engineering, soil mechanics, seismology, hydrology, 
geomechanics, geophysics etc. Biot [1], [2] 

developed linearized constitutive and field equations 

for poroelastic medium which has been used by 

many researchers (see e.g. Wang [3] and the 

references listed there in).  

When the source surface is very long in one 

direction in comparison with the others, the use of 

two dimensional approximation is justified and 

consequently calculations are simplified to a great 

extent and one gets a closed form analytical 

solution. A very long strip-source and a very long 

line-source are examples of two dimensional 

sources. Love [4] obtained expressions for the 

displacements due to a line-source in an isotropic 

elastic medium. Maruyama [5] obtained the 

displacements and stress fields corresponding to 
long strike-slip faults in a homogeneous isotropic 

half-space. The two dimensional problem has also 

been discussed by Rudnicki [6], Rudnicki and 

Roeloffs[7],Singh and Rani [8], Rani and Singh 

[9],Singh et al.[10]. 

Different approaches and methods like 

boundary value method, displacement discontinuity 

method, Galerkin vector approach, displacement 

function approach and eigen value approach, Biot 

stress function approach etc. have been made to 

study the plane strain problem of poroelasticity. The 
use of eigen value approach has the advantage of 

finding the solutions of the governing equations in 

the matrix form notations that avoids the 

complicated nature of the problem.  Kumar et al. 

[11], [12], Garg et al. [13], Kumar and Ailwalia 

[14], Selim and Ahmed [15], Selim [16],Chugh et 

al.[17] etc. have used this approach  for solving 

plane strain problem of elasticity and poroelasticity.  

In the present paper we examine the effect 

of anisotropy on plane strain deformation of a two 

phase medium consisting of a homogeneous, 

isotropic, poroelastic half space lies below a 
homogeneous, orthotropic elastic half space in case 

(a) and lies below a homogeneous, transversely 

isotropic elastic half space in case (b).which are in 

welded contact, caused by an inclined line-load in 

elastic half space in both cases. Using Biot stress 

function (Biot [18], Roeloffs[19]) and Fourier 

transform, we find stresses, displacement and pore 

pressure for unbounded poroelastic medium in 

integral form and using eigen value approach 

following Fourier transform, we find stresses and 

displacement for unbounded elastic medium in 
integral form. Then we obtain the integral 

expressions for the displacements and stresses in the 

two half spaces in welded contact from the 

corresponding expressions for an unbounded elastic 

and poroelastic medium by applying suitable 
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boundary conditions at the interface in both cases. 

These integrals cannot be solved analytically for 

arbitrary values of the frequency. We evaluate these 

integrals for the limiting case i.e. undrained 

condition in high frequency limit. To examine the 

effect of anisotropy, the variation of the 

dimensionless displacements, stresses and pore 
pressure for poroelastic half space have been 

compared graphically and it is found that anisotropy 

is affecting the deformation substantially. 

Anisotropy provides important information about 

processes and mineralogy in the Earth (poroelastic 

medium). It is used to find oil and gas in wells. 

There are so many applications where we can use 

anisotropic effect in poroelasticity. 

  

2. Formulation of the problem 
Consider a homogeneous, isotropic, 

poroelastic half space lies below a homogeneous 

orthotropic elastic half space in case (a) and lies 

below a homogeneous transversely isotropic elastic 

half space in case (b). A rectangular Cartesian 

coordinate system oxyz is taken in such a way that a 

plane x=0 coincides with the intersecting surface of 

the two half spaces.  We take x-axis vertically 

downwards in the poroelastic half space so that 
homogeneous, isotropic, poroelastic half space 

becomes the medium-I (x≥0) and orthotropic elastic 

half space becomes the medium- II (x≤0)in case (a) 

and transversely isotropic, elastic half space 

becomes the medium- II (x≤0) in case (b).  Further 

a normal line-load of magnitude F1, per unit length, 

is acting in the positive x-direction on the interface 

x=0 along z-axis in both cases. The geometry of the 

problem as shown in figure 1 and figure 2 and it 

conforms to the two dimensional approximation. Let 

the Cartesian coordinates be denoted by (x, y, z) ≡ 
(x1, x2, x3) with x–axis vertically downwards. We 

consider a two dimensional approximation in which 

the displacement component  (U1 , U2,U3) are 

independent of the Cartesian coordinate 𝑥3, so 

that  
∂

∂x3
≡ 0. For this two dimensional 

approximation the plane strain problem (U3 =
0) and the antiplane strain problem (U1 =  U2 = 0) 

get decoupled, and can therefore be solved 

independently. Since the antiplane deformation is 

not affected by pore pressure, we shall discuss plane 

strain problem only.  

 

3. Solution for poroelastic half space medium-I 

(x≥0) 

A homogeneous, isotropic, poroelastic medium can 
be described by five poroelastic parameters: Drained 

Poisson’s ratio (𝜈), undrained Poisson’s ratio (𝑣𝜇 ), 

shear modulus (G) hydraulic diffusivity (c) and 

Skempton’s coefficient (B). Darcy conductivity (𝜒) 

and Biot-willis coefficient 𝛼 can be expressed in 

terms of these five parameters: 

𝜒 =
9c 1 − 𝑣𝜇  (𝑣𝜇 − 𝜈)

2GB2 1 − 𝜈 (1 + 𝑣𝜇 )2
                                                                                                                                             (1.1) 

𝛼 =
3 𝑣𝜇 − 𝑣 

B 1 − 2𝑣  1 + 𝑣𝜇  
                                                                                                                                                   (1.2) 

The two dimensional plane strain problem for an isotropic poroelastic medium can be solved in terms of Biot’s 

stress function F (Wang [3]) as 

σ11=  

𝜕2𝐹

𝜕𝑦2  ,     σ22=
𝜕2𝐹

𝜕𝑥2   , σ12=- 
∂2F

∂X ∂y
                                                                                                                                     (1.3)                                                        

∇2(∇2F + 2𝜂𝑝) = 0                                                                                                                                                            (1.4) 

(𝑐∇2 −
𝜕

𝜕𝑡
)[ ∇2𝐹+

3

(1+𝑣𝜇 )𝐵
𝑝] = 0                                                                                                                                       (1.5)                                                         

where 𝜎ij  denotes the total stress in the fluid saturated porous elastic material, p the excess fluid pore pressure 

(compression negative) and 

 η =
 1−2𝑣 α

2 1−𝑣 
                                                                                                                                                                          (1.6) 

is the poroelastic stress coefficient. 

From equations (1.4) and (1.5), we get the following decoupled equations 

 c∇2 −
∂

∂t
 ∇2p = 0                                                                                                                                                              (1.7)                            

  c∇2 −
∂

∂t
 ∇4F = 0                                                                                                                                                             (1.8)                           

The general solution of equation (1.7) may be expressed as  

p = p1 + p2                                                                                                                                                                                                               (1.9) 

Where p1 and p2  satisfies the following equations: 

c ∇2p1 =
∂p1

∂t
                                                                                                                                                     (1.10)                          

∇2p2 = 0                                                                                                                                                                              (1.11)                                                           
Similarly, the general solution of equation (1.8) may be expressed as 

F = F1 + F2                                                                                                                                                                           1.12  
where 
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 c∇2F1 =
∂F1

∂t
                                                                                                                                                                             (1.13)   

   

∇4F2 = 0                                                                                                                                                                              (1.14)                                                                                  

Separation of time and space variables can be made for each of the four functions p1  , p2, F1 and F2 . Assuming 

the time dependence as exp (−iωt), equations (1.10), (1.11), (1.13) and (1.14) become 

∇2p1 +
iω

c
p1 = 0                                                                                                                                             (1.15) 

 ∇2p2 = 0                                                                                                                                                        (1.16) 

 ∇2F1 +
iω

c
F1 = 0                                                                                                                                           (1.17) 

∇4𝐹2 = 0                                                                                                                                                        (1.18) 

where  p1  , p2, F1  and F2 are now functions of x and y only.      

Fourier transforms are now used to get suitable solutions of equations (1.15)-(1.18), which on using equations 

(1.9) and (1.12), can be written as  

P =
1

2π
  A1e−mx + A2e− k x + A3emx + A4e k x 

∞

−∞
e−iky dk                                                                                 (1.19)  

F =
1

2π
  B1e−mx +B4emx +  B2 + B3 k x e− k x + (B5+B6 k x)e k x e−iky dk                                         (1.20)

∞

−∞

 

For medium-I(x≥ 0), using the relation conditions, we have 

p =
1

2π
  A1e−mx + A2e− k x 

∞

−∞
e−iky dk                                                                                                                   (1.21)   

F =
1

2π
  B1e−mx +  B2 + B3 k x e− k x 

∞

−∞

e−iky dk                                                                                            (1.22) 

where   B1, B2 , B3, A1   and A2   are functions of k. From (1.4), (1.5), (1.21) and   (1.22). We find 

  A1 =
iω

2η c
B1 ,    A2 =

2

3
 1 + vμ Bk2B3,      m =   

ck2−iω

c
  

1

2

,  Re m > 0                                                         (1.23) 

Using (1.22) in (1.3), the stresses in medium I(x≥ 0) are obtained as 

σ22 =
1

2π
  B1m2e−mx +  B2 − 2B3 +  B3 k x k2e− k x 

∞

−∞
e−iky dk                                                                     (1.24)  

σ11 = −
1

2π
  B1e−mx +  B2 + B3 k x e− k x 

∞

−∞
k2e−iky dk                                                                                    (1.25)  

σ12 =
1

2π
  B1me−mx +  B2 − B3 + B3 k x  k e

− k x 
∞

−∞
 −ik e−iky dk                                                              (1.26)  

Corresponding to these stresses, the displacements are obtained as (Singh and Rani [8]) 

 2GU2 = −
1

2π
  B1e−mx +  B2 + B3 2𝑣𝜇 − 2 +  k x  e− k x 

∞

−∞
 −ik e−iky dk                                                  1.27)       

2GU1 =
1

2π
 [B1me−mx +  B2 + B3 1 − 2𝑣𝜇 +  k x   k e− k x∞

−∞
]e−iky dk                                                         (1.28)  

Also from equation (1.21), we have 
∂p

∂x
=

1

2π
  −mA1e−mx −  k A2e− k x 

∞

−∞
e−iky dk                                                                                                        (1.29)    

4. Solution for orthotropic elastic solid half space, Medium-II(x≤0) case (a) 

The equilibrium equations in Cartesian coordinate system (𝑥1, 𝑥2, 𝑥3)  in absence of body forces are 
∂τ11

∂x1
+

∂τ12

∂x2
+

∂τ13

∂x3
= 0                                                                                                                                     (1.30)                                                                   

∂τ21

∂x1
+

∂τ22

∂x2
+

∂τ23

∂x3
= 0                                                                                                                                     (1.31)                                                           

∂τ31

∂x1
+

∂τ32

∂x2
+

∂τ33

∂x3
= 0                                                                                                                                     (1.32)  

where τij (i, j = 1,2,3) are components of stress tensor. 

 The stress-strain relations for an orthotropic elastic medium are 

 
 
 
 
 
 
𝜏11

𝜏22

𝜏33

𝜏23

𝜏13

𝜏12 
 
 
 
 
 

= 

 
 
 
 
 
 
𝑑11

𝑑12  
𝑑13

0
0
 0 

 𝑑12

𝑑22

𝑑23

0
0
 0 

 

𝑑13

𝑑23

𝑑33

0
0
 0 

 

0
0
0

𝑑44

0
 0 

   

0
0
0
0

𝑑55

 0 

0
0
0
0
0

 𝑑66   
 
 
 
 
 

 

 
 
 
 
 
 
𝑒11

𝑒22

𝑒33

2𝑒23

2𝑒13

2𝑒12 
 
 
 
 
 

                                                                                                                 (1.33)  

where  𝑒𝑖𝑗  are the components of the strain tensor and are related with displacement components (𝑢1, 𝑢2, 𝑢3) by 

the relations 

eij =
1

2
 
∂ui

∂xj
+

∂uj

∂xi
 , 1 ≤ i, j ≤ 3                                                                                                                       (1.34)    

The two suffix quantity 𝑑𝑖𝑗    (𝑖, 𝑗 = 1,2 − −6) are the elastic moduli for the orthotropic elastic medium. We 

shall write (𝑥1, 𝑥2, 𝑥3)=(x,y,z), (𝑢1, 𝑢2, 𝑢3)=(u,v,w)  
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     The equilibrium equations in terms of the displacement components can be obtained from equations (1.30)-

(1.32) by using (1.33) and (1.34) and for the present two dimensional problem are 

d11
∂2u

∂x2 + d66
∂2u

∂y2 +  d66 + d12 
∂2v

∂x ∂𝐲
= 0                                                                                                       (1.35) 

 d66 + d12 
∂2u

∂x ∂y
+ d66

∂2v

∂x2 + d22
∂2v

∂𝐲2 = 0                                                                                                       (1.36) 

We define Fourier transform𝑓 (x, k) of 𝑓(x, y) (Debnath, [21]) as 

𝑓  x, k = F 𝑓(x, y) =  𝑓 x, y eiky
∞

−∞

𝑑𝑦                                                                                                                   (1.37) 

So that 

𝑓 x, y =
1

2π
 𝑓  x, k e−iky

∞

−∞

𝑑𝑘,                                                                                                                                  (1.38) 

where k is the transformed Fourier parameter. We know that (Sneddon, [22]) 

F 
∂

∂y
𝑓(x, y) =  −ik 𝑓  x, k  

F 
∂2

∂y2
𝑓(x, y) =  −ik 2𝑓  x, k                                                                                                                                    (1.39) 

Applying Fourier Transform as defined above on equations (1.35) and (1.36), we get 

 −d66 k2u + d11  
d2u 

dx2 − ik d66 + d12 
dv 

dx
= 0                                                                                                  (1.40) 

−ik d66 + d12 
du 

dx
− d22  k2v + d66

d2v 

dx2 = 0                                                                                                   (1.41) 

 The equations (1.40)-(1.41) can be written in the following vector matrix differential equation as 

A
d2N

dx2 + B
dN

dx
+ CN = 0                                                                                                                                   (1.42)                                                    

where 

A =  
d11

0
    

0
d66

 ,                     B=  
0

−ik d66 + d12 
    

−ik d66 + d12 

0
 ,  

C=  −k2d66

0
    

0
−k2d22

 ,       N =  
u 
v 

                                                                                                                          (1.43)  

We note that the matrices A, B,  C are all symmetric and  matrices A, B, C  depends upon elastic moduli only. 
Applying eigen value method to solve equation (1.42), we try a solution of the matrix equation (1.42) of the 

form 

N (x, k) =E (k) esx ,                                                                                                                                                           (1.44)                                                                                  

where s is a parameter and E(k) is a matrix of the type 2×1.Substituting  the value of N from equation (1.44) 

into equation (1.42),we get the following characteristic equation. 

  d11 d66 𝑠
4 −  d11 d22 − 2d12 d66 − d12

2 𝑘2𝑠2 + d22 d66𝑘
4 = 0,                                                                       (1.45)                                                                       

After solving  the characteristic equation (1.45), we get the eigenvalues as  

𝑠2 = 𝑚1
2𝑘2 ,𝑚2

2𝑘2     where 

m1
2 =

A0 + A0
2−4B0

2
,        m2

2 =
A0− A0

2−4B0

2
 

A0 =
 d11 d22 − 2d12 d66 − d12

2 

 d11 d66 
= m1

2 + m2
2 

 And     B0 =
d22

d11
= m1

2 m2
2                                                                                                                           (1.46) 

where the quantities m1 and m2 for an orthotropic elastic medium depends upon elastic moduli only and are 

independent of k. They may be real or complex. We assume that m1 ≠ m2  for an orthotropic elastic medium. 

Then the eigen values can  be written as  

s1 = m1 k ,    s2 = m2 k ,       s3 = −m1 k ,        s4 = −m2 k                                                                       (1.47)  

 with real parts of (m1 , m2) as positive. The eigen vectors for an orthotropic elastic medium are obtained by 

solving the matrix equation 

 s2A + sB + C E K = 0                                                                                                                                (1.48) 
in which the matrices A, B ,C are given by equation (1.43) 
The eigen vectors become 

XF
T =  P2F , 1 ,       XF+2

T =  −P2F , 1  ,  for  F=1,2                                                                                       (1.48a) 

In which 

P21 =
im1 k 

k
 

d66 + d12

d11 m1
2 − d66

 =
−ik

m1 k 
 

d66 m1
2 − d22

d66 + d12
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P22 =
im2 k 

k
 

d66 + d12

d11 m2
2 − d66

 =
−ik

m2 k 
 

d66 m2
2 − d22

d66 + d12

                                                                                      (1.49) 

Thus a solution of the matrix equation (1.42) for orthotropic elastic medium is 

N(x, k) = (cF
2
F=1 XFemF  k x + cF+2XF+2e−mF  k x)                                                                                          (1.50) 

Where c1 ,    c2,      c3  ,   c4, are coefficients to be determined from boundary conditions. From equations (1.43), 

(1.48a), (1.49) and (1.50), we write 

u  x, k = c1P21 em1 k x + c2P22 em 2 k x − c3P21 e−m1 k x−c4P22 e−m2 k x ,                                                        (1.51) 

v  x, k = c1em1 k x + c2em2 k x + c3e−m1 k x +c4e−m2 k x                                                                               (1.52) 
Inversion of equation (1.51) and (1.52) gives the displacements in the following integral forms 

u x, y =
1

2π
  c1P21em1 k x + c2P22 em2 k x − c3P21 e−m1 k x−c4P22 e−m2 k x 

∞

−∞
e−iky dk                                  (1.53)  

v x, y =
1

2π
  c1em1 k x + c2em 2 k x + c3e−m1 k x +c4e−m2 k x 

∞

−∞
e−iky dk                                                          (1.54)                                                                                                                           

  For the transformed stresses for plane strain deformation parallel to xy plane of orthotropic elastic medium, 

using equations (1.33)-(1.34) and (1.38)-(1.39), we get 

 τ 11 =  −ik d12 v + d11
du 

dx
                                                                                                                                         (1.55)                                       

τ 12 =  −ik d66 u + d66
dv 

dx
                                                                                                                           (1.56)                              

where  u  , v  used in equations (1.55)-(1.56) are Fourier Transforms of u(x, y) and v(x, y).  

Putting the values of u   and  v    from equations (1.51) and (1.52) and their derivatives into equations (1.55)-

(1.56) we obtain 𝜏 11  ,  𝜏 12 , as  

𝜏 11 =  c1Q21 em1 k x + c2Q22 em2 k x + c3Q21 e−m1 k x +c4Q22 e−m2 k x                                                     (1.57)   

𝜏 12 = d66 c1R21em1 k x + c2R22 em2 k x − c3R21 e−m1 k x−c4R22 e−m2 k x                                               (1.58)     

where  

Q2F = d11 P2FmF k − id12 k                                                                                                                        (1.59) 

R2F = mF k − iP2Fk,      for F=1,2                                                                                                             (1.60)        
Inversion of equations (1.57)-(1.58) gives the stresses in the following integral forms for an orthotropic elastic 

medium as 

τ11 =
1

2π
  c1Q21 em1 k x + c2Q22 em2 k x + c3Q21 e−m1 k x +c4Q22 e−m2 k x e−iky dk

∞

−∞

                            (1.61) 

τ12 =
1

2π
 d66 c1R21em1 k x + c2R22 em2 k x − c3R21e−m1 k x−c4R22e−m2 k x 

∞

−∞

e−iky dk                      (1.62) 

The displacements and stress components for orthotropic elastic half space medium II (x≤0) case (a) are now 

obtained as from equations (1.53)-(1.54) and(1.61)-(1.62) 

u x, y =
1

2π
  c1P21em1 k x + c2P22 em2 k x 

∞

−∞
e−iky dk                                                                              (1.63) 

v x, y =
1

2π
  c1em1 k x + c2em 2 k x 

∞

−∞
e−iky dk                                                                                        (1.64) 

τ11 =
1

2π
  c1Q21 em1 k x + c2Q22 em2 k x e−iky dk

∞

−∞
                                                                                   (1.65)                  

τ12 =
1

2π
  d66 c1R21em1 k x + c2R22em2 k x  

∞

−∞×
e−iky dk                                                                               (1.66)    

 

4.1 Normal Line-load     

 
Fig.1: A Normal line-load 𝑭𝟏 , per unit length, acting in the positive x-direction on the interface x=0 along z-

axis. 

Consider a normal line-load F1 , per unit length, acting in the positive x-direction on the interface x=0 along z-

axis. Since the half spaces (poroelastic half space and orthotropic elastic half space) are assumed to be in welded 

contact along the plane x=0, the continuity of the stresses and the displacements give the following boundary 

conditions at x=0: 
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σ12 = τ12                                                                                                                                                                              (1.67)                                                                                                    

σ11 − τ11 = −F1δ y                                                                                                                                                         (1.68)                                                                                 

U1
1 x, y = u x, y                                                                                                                                                             (1.69)                                                                                      

U2
1 x, y = v x, y                                                                                                                                                              (1.70)   

where 𝛿(𝑦)  in equation (1.68) is the Dirac delta function and it satisfies the following properties 

 δ y dy = 1
∞

−∞
, δ y =

1

2π
 e−iky dk

∞

−∞
                                                                                                         (1.71)                                                                                                        

Also, if we assume that the interface is impermeable, the hydraulic boundary condition x=0 is 
∂p

∂x
= 0                                                                                                                                                                             (1.72)                                                                                                     

Now using equations (1.25)-(1.29), (1.63)-(1.66) and (1.67)-(1.72) we get the following system of equations  

mB1 +  k B2 −  k B3 −
id66 R21

k
c1 −

id66 R22

k
c2 = 0                                                                                                    (1.73)          

B1 + B2 +
Q21

K2 c1 +
Q22

K2 c2 =
F1

K2                                                                                                                        (1.74)                    

B1 + B2 +  2𝑣𝜇 − 2 B3 +
2Gi

k
c1 +

2Gi

k
c2 = 0                                                                                                             (1.75)  

B1m + B2 k +  k  1 − 2𝑣𝜇  B3 − 2GP21 c1 − 2GP22 c2 = 0                                                                                   (1.76)         

ma1B1 +  k b1B3 = 0                                                                                                                                                       (1.77)  

where                                                                           

a1 =
iω

2ηc
, b1 =

2

3
 1 + 𝑣𝜇  Bk2                                                                                                                                         (1.78)                          

Solving the system of equations (1.73)-(1.77) using (1.78) we obtain 

B1 =
− 𝑘 𝑏1

𝑚𝑎1 B3                                                                                                                                                   (1.79) 

B2 =
𝐹1

 𝑘 𝑘2
 

s

tE−Fs
 pt + 2GP21 −

PR

P−Q
 pt + 2GP21 +

R

P−Q
 pu + 2GP22                                                       (1.80)                                                     

B3 =
𝐹1

𝑘2𝑠
 

−ts

tE−Fs
+

tPR

P−Q
−

uR

P−Q
                                                                                                                           (1.81)                                                                                                                         

c1 =
𝐹1

𝑘2
 

s

tE−Fs
−

PR

P−Q
                                                                                                                                        (1.82)   

c2 =
𝐹1

𝑘2
 

R

P−Q
                                                                                                                                                    (1.83) 

Where 

𝛼 =  
− 𝑘 𝑏1

𝑚𝑎1 , p = mα +  𝑘  1 − 2𝑣𝜇  , r = αm −  𝑘 , 𝑞 = 𝛼 + 2𝑣𝜇 − 2,                

E = q − α,    F =
2Gi

k
−

Q21

K2 ,      G =
2Gi

k
−

Q22

K2 ,   L = α −
r

 k 
,    M =

Q21

K2 + 
id66 R21

k k 
,       

 N =
Q22

K2 +  
id66 R22

k k 
,   s =

p

 𝐤 
− q,   t = −

2Gi

k
− 

2GP21

 k 
, u = −

2Gi

k
− 

2GP22

 k 
,   

P =
 uE−Gs 

 tE−Fs 
,   Q =

 GL−EN 

 FL−EM 
,   R =  

s

tE−Fs
 +  

E+L

FL−EM
                                                                                   (1.84)                                                                                                                                                         

4.1.1 Undrained state, 𝝎 → ∞                                                                 

      

Putting the values of B1, B2 and B3 from equations (1.79)-(1.81) into equations(1.24)-(1.29) which corresponds 

to the  stresses ,displacements and pore pressure for poroelastic half space medium-I(x≥ 0) and then taking 

limit    and then integrate, we get 

σ11
(N) =

−F1

π
P7

x

x2 + y2
−

F1P6

π

x x2 − y2 

(x2 + y2)2
                                                                                                               (1.85) 

σ22
(N) =

F1 P7 − 2P6 

π

x

x2 + y2
+

F1P6

π

x x2 − y2 

(x2 + y2)2
                                                                                                   (1.86) 

σ12
(N) =

F1

π
 P6 − P7 

y

x2+y2 −
2F1P6

π

yx2

(x2+y2)2                                                                                                                 (1.87)  

2GU2
1(N)

=
F1

π
  P7 + P6(2𝑣𝜇 − 2  tan−1 y

x
+

F1P6

π

xy

x2 +y2                                                                                         (1.88)    

2GU1
1(N)

= −
F1

2π
 P7 + P6(1 − 2𝑣𝜇 ) log(x2 + y2) +

F1P6

π

x2

x2 + y2
                                                                    (1.89) 

p(N) =
2F1 1 + 𝑣𝜇  BP6

3π

x

x2 + y2
                                                                                                                                    (1.90) 

Where P6 , P7  are as follow 

 

 P1
1 =  −2Gm2  

d66 +d12

d11 m2
2−d66

 − 2G  2𝑣𝜇 − 2  

                                   −  2G − d11 m2
2  

d66 +d12

d11 m2
2−d66

 + d12  3 − 4𝑣𝜇                                                              (1.91) 
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P1
11 =  −2Gm1  

d66 + d12

d11 m1
2 − d66

 − 2G  2𝑣𝜇 − 2  

                              −  2G − d11 m1
2  

d66 +d12

d11 m1
2−d66

 + d12  3 − 4𝑣𝜇                                                                  (1.92) 

P1 =
P1

1

P1
11                                                                                                                                                                             (1.93) 

 

P2
1 =  2G − d11 m2

2  
d66 + d12

d11 m2
2 − d66

 + d12  

             − 2𝑣𝜇 − 2   d11 m2
2  

d66 +d12

d11 m2
2−d66

 − d12 + d66 m2  1 +  
d66 +d12

d11 m2
2−d66

                                         (1.94) 

 

 

P2
11 =  2G − d11 m1

2  
d66 + d12

d11 m1
2 − d66

 + d12  

              − 2𝑣𝜇 − 2   d11 m1
2  

d66 +d12

d11 m1
2−d66

 − d12 + d66 m1  1 +  
d66 +d12

d11 m1
2−d66

                                        (1.95) 

P2 =
P2

1

P2
11                                                                                                                                                                             (1.96) 

P3
1 =

 3 − 4𝑣𝜇  

P1
11                                                                                                                                                                (1.97) 

P3
11 =

 2𝑣𝜇 − 1 

P2
11                                                                                                                                                              (1.98) 

P3 = P3
1 + P3

11                                                                                                                                                                  (1.99) 

P4 =
P3

P1 − P2

                                                                                                                                                                    (1.100) 

P5 = P3
1 − P1P4                                                                                                                                                                (1.101) 

 

P6 =
P5  2Gm1   

d66 + d12

d11 m1
2 − d66

 + 2G + P4  2Gm2   
d66 + d12

d11 m2
2 − d66

 + 2G 

 3 − 4𝑣𝜇  
                                                (1.102) 

P7 =  − 1 − 2𝑣𝜇  P6 + 2Gm1   
d66 + d12

d11 m1
2 − d66

 P5 + 2Gm2   
d66 + d12

d11 m2
2 − d66

 P4                                          (1.103) 

Putting the values of c1, and c2 from equations (1.82)-(1.83) into equations(1.63)-(1.66) which corresponds to 

the  stresses  and displacements for orthotropic elastic half space medium-II(x≤ 0) and then taking limit 
  and then integrate, we get 

τ12
(N) =

F1P5d66 m1

π
 1 +  

d66 + d12

d11 m1
2 − d66

   
−y

(y2 + m1
2x2

 

+
F1P4d66 m2

π
 1 +  

d66 + d12

d11 m2
2 − d66

   
−y

(y2 + m2
2x2

                                                           (1.104) 

τ11
(N) =

F1P5

π
 d11 m1

2  
d66 + d12

d11 m1
2 − d66

 − d12  
−m1x

(y2 + m1
2x2

 

+
F1P4

π
 d11 m2

2  
d66 + d12

d11 m2
2 − d66

 − d12  
−m2x

(y2 + m2
2x2

                                                     (1.105) 

v(N) x, y =
F1P5

π
tan−1  

y

m1x
 +

F1P4

π
tan−1  

y

m2x
                                                                                                   (1.106)   

u N  x, y =
−F1P4m1

2π
  

d66 + d12

d11 m1
2 − d66

 log(y2 + m1
2x2) −

F1P5m2

2π
  

d66 + d12

d11 m2
2 − d66

 log(y2 + m2
2x2)   

                                                                                                                                                                       (1.107) 

5. Solution for transversely isotropic elastic solid half space Medium-II (x≤0), Case (b) 

The equilibrium equations in Cartesian coordinate system (𝑥1, 𝑥2, 𝑥3)  in absence of  body forces are 
𝜕𝜏11

𝜕𝑥1
+

𝜕𝜏12

𝜕𝑥2
+

𝜕𝜏13

𝜕𝑥3
= 0                                                                                                                                       (2.1)                                                                   

𝜕𝜏21

𝜕𝑥1
+

𝜕𝜏22

𝜕𝑥2
+

𝜕𝜏23

𝜕𝑥3
= 0                                                                                                                                       (2.2)                                                           

𝜕𝜏31

𝜕𝑥1
+

𝜕𝜏32

𝜕𝑥2
+

𝜕𝜏33

𝜕𝑥3
= 0                                                                                                                                       (2.3)  

where 𝜏𝑖𝑗  are components of stress tensor. 
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 The stress-strain relations for a transversely isotropic elastic medium are 

 
 
 
 
 
 
𝜏11

𝜏22

𝜏33

𝜏23

𝜏13

𝜏12 
 
 
 
 
 

= 

 
 
 
 
 
 d11

d12  
d13

0
0
 0 

 d12

d11

d13

0
0
 0 

 

d13

d13

d33

0
0

 0 

 

0
0
0

d44

0
 0 

   

0
0
0
0

d44

 0 

    

0
0
0
0
0

1

2
  d11 −  d12   

 
 
 
 
 

 

 
 
 
 
 
 
𝑒11

𝑒22

𝑒33

2𝑒23

2𝑒13

2𝑒12 
 
 
 
 
 

                                                                                             (2.4)  

where  𝑒𝑖𝑗  are the components of the strain tensor and are related with displacement components (𝑢1, 𝑢2, 𝑢3) by 

the relations 

eij =
1

2
 
∂ui

∂xj
+

∂uj

∂xi
 , 1 ≤ i, j ≤ 3                                                                                                                         (2.5)    

The two suffix quantity 𝑑𝑖𝑗   are the elastic moduli for the transversely isotropic elastic medium. We shall write 

(𝑥1, 𝑥2, 𝑥3)=(x,y,z), (𝑢1, 𝑢2, 𝑢3)=(u,v,w)  

     The equilibrium equations in terms of the displacement components can be obtained from equations (2.1)-

(2.4) by using (1.34) and for the present two dimensional problem are 

d11
∂2u

∂x2 +
1

2
 d11 − d12 

∂2u

∂y2 +
1

2
 d11 + d12 

∂2v

∂x ∂𝐲
= 0                                                                                      (2.6) 

1

2
 d11 + d12 

𝜕2𝑢

𝜕𝑥𝜕𝑦
+

1

2
 d11 − d12 

𝜕2𝑣

𝜕𝑥2 + d11
𝜕2𝑣

𝜕𝒚2 = 0                                                                                      (2.7) 

Applying Fourier Transform as defined by (1.37)-(1.39) on equations (2.6) and (2.7), we get 

 
d2 u 

dx2 =  k2  
d11−d12

2d11
 u + ik  

d11 +d12

2d11
 

dv 

dx
                                                                                                            (2.8) 

d2v 

dx2 =  k2  
2d11

d11−d12
 v + ik 

d11 +d12

d11−d12
 

du 

dx
                                                                                                             (2.9) 

The above equations (2.8)-(2.9) can be written in the following vector matrix equation form as 
dN1

dx
= A1N1                                                                                                                                                       (2.10)                                                                       

where 

N1 =

 
 
 
 
 
 

u 
v 

du 

dx
dv 

dx 
 
 
 
 
 

, A1 =  

0
0

k2R1

0

 

0
0
0

k2R3

   

1
0
0

ikR4

 

0
1

ikR2

   0

                                                                                                                 (2.11) 

Where R1  , R2, R3 and R4 are as follow 

R1 =
d11 − d12

2d11

,       R2 =
d11 + d12

2d11

 ,    R3 =
1

R1

 ,    R4 =  R2R3                                                                           (2.12) 

Applying eigen value method to solve equation (2.10), we try a solution of the matrix equation (2.10) of the 

form  

N (x, k) =E (k) esx                                                                                                                                                              (2.13)                                                                                  

where s is a parameter and E(k) is a matrix of the type 4×1.Substituting  the value of N from equation (2.13) 

into equation (2.10),we get the following characteristic equation. 

 s4 − 2k2s2 + k4 = 0                                                                                                                                                      (2.14)                                                                       
After solving the characteristic equation (2.14) , we get  the repeated eigenvalues as  

s = s1 = s2 = −s3 = −s4 =  k   
An eigen vector X1, corresponding to the eigenvalue s = s1 =  k   of multiplicity 2 is found to be 

X1, =  

i k 

k
ik2

k k 

                                                                                                                                                     (2.15) 

Second eigen vector  X2 corresponding to the eigenvalue 𝑠 = 𝑠2 =  𝑘  can be obtained as by Ross [23] 

  X2 =

 
 
 
 
 
 i   k x − 4  

d11

d11 +d12
  

k x −
1

 k 
 

i k   k x −  
3d11−d12

d11 +d12
  

k k x  
 
 
 
 
 

                                                                                                                     (2.16) 

An eigen vector X3, corresponding to the eigenvalue s = s3 = − k   of multiplicity 2 is found to be 
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X3, =  

−i k 

k
ik2

−k k 

                                                                                                                                                   (2.17) 

Similarly second eigen vector  X4 corresponding to the eigenvalue s = s4 = − k  can be obtained as by Ross 

[23] 

  X4 =

 
 
 
 
 
 −i   k x + 4  

d11

d11 +d12
  

k x +
1

 k 
 

i k   k x +  
3d11−d12

d11 +d12
  

−k k x  
 
 
 
 
 

                                                                                                                    (2.18) 

 Thus, a general solution of (2.10) for a transversely isotropic elastic medium is 

  N1 = (D1X1 + D2X2)e k x + (D3X3 + D4X4)e− k x                                                                                                 (2.19)   

Where  D1 ,   D2, D3  and D4 are coefficients to be determined from boundary conditions and they may depend 

upon k. From (2.11) and (2.15)-(2.19), we obtain 

u = i   D1 k + D2   k x −
4d11

d11 +d12
  e k x −  D3 k + D4   k x +

4d11

d11 +d12
  e− k x                                        (2.20)       

v = k   D1 + D2  x −
1

 k 
  e k x +  D3 + D4  x +

1

 k 
  e− k x                                                                             (2.21) 

du 

dx
= i

 
 
 
 
 
  D1k2 + D2 k   k x −  

3d11 − d12

d11 + d12

   e k x

+  D3k2 + D4 k   k x +  
3d11 − d12

d11 + d12

   e− k x

 
 
 
 
 
 

                                                                                      (2.22) 

dv 

dx
= k k   D1 + D2x e k x −  D3 + D4x e− k x                                                                                                        (2.23) 

 

Inversion of equation (2.20) and (2.21) gives the displacements in the following integral forms 

u x, y =
i

2π
  

 D1 k + D2   k x −
4d11

d11 +d12
  e k x

− D3 k + D4   k x +
4d11

d11 +d12
  e− k x

 
∞

−∞
e−iky dk                                                                      (2.24)  

 v x, y =
1

2π
 k   D1 + D2  x −

1

 k 
  e k x +  D3 + D4  x +

1

 k 
  e− k x 

∞

−∞
e−iky dk                                       (2.25) 

For the transformed stresses for plane strain deformation parallel to xy plane of a transversely isotropic elastic 

medium, using  equations (1.37)-(1.39) and (2.4)-(2.5), we get  

 τ 11 =  −ik d12 v + d11
du 

dx
                                                                                                                                             (2.26)                                       

τ 12 =
1

2
  d11 −  d12  

dv 

dx
− iku                                                                                                                                    (2.27)                                                                                              

where  u  , v  used in equations (2.26)-(2.27) are Fourier Transform of u(x, y) and v(x, y).  

Putting the values of u   and  v    from equations (2.20) and (2.21) and their derivatives into equations (2.26)-

(2.27) we obtain  𝜏 11  ,  𝜏 12, as  

τ 11 = i  
k2 d11 − d12 D1e k x +   d11 − d12 k2x +  k  

−3d11
2+2d11 d12 +d12

2

d11 +d12
  D2e k x

+ k2 d11 − d12 D3e− k x +   d11 − d12 k2x +  k  
3d11

2−2d11 d12−d12
2

d11 +d12
  D4e− k x

                         (2.28)  

𝜏 12 =  d11 − d12  
k k D1e k x +  k k x −

2d11 k

d11 +d12
 D2e k x

−k k D3e− k x −  k k x +
2d11 k

d11+d12
 D4e− k x

                                                                         (2.29)          

Inversion of equations (2.28)-(2.29) gives the stresses in the following integral forms for a transversely isotropic 

elastic medium 

τ11

=
i

2π
 

 
 
 
 
 k2 d11 − d12 D1e k x +   d11 − d12 k2x +  k  

−3d11
2 + 2d11 d12 + d12

2

d11 + d12

  D2e k x

+k2 d11 − d12 D3e− k x +   d11 − d12 k2x +  k  
3d11

2 − 2d11 d12 − d12
2

d11 + d12

  D4e− k x

 
 
 
 
 

e−iky dk,
∞

−∞

 

                                                                                                                                                                        (2.30) 
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τ12 =  
d11 − d12

2π
  

 
 
 
 k k D1e k x +  k k x −

2d11 k

d11 + d12

 D2e k x

−k k D3e− k x −  k k x +
2d11 k

d11 + d12

 D4e− k x

 
 
 
 ∞

−∞

e−iky dk                                            (2.31)  

The displacements and stress components for transversely isotropic elastic half space medium II (x≤0) are now 
obtained as from equations (2.24)-(2.25) and (2.30)-(2.31) 

u x, y =  
i

2π
   D1 k + D2   k x −

4d11

d11 +d12
  e k x 

∞

−∞
e−iky dk                                                                            (2.32)                                                                                                            

v x, y =
1

2π
 k   D1 + D2  x −

1

 k 
  e k x 

∞

−∞
e−iky dk                                                                                              (2.33) 

τ11 =
i

2π
  k2 d11 − d12 D1 + D2   d11 − d12 k2x +  k  

−3d11
2+2d11 d12 +d12

2

d11 +d12
   e k x e−iky dk

∞

−∞
             (2.34)                                                                                           

τ12 =  
d11−d12

2π
   k k D1 +  k k x −

2d11 k

d11 +d12
 D2 

∞

−∞
e k x e−iky dk                                                                      (2.35)   

  

5.1 Normal Line-load 

 
Fig.2 A Normal Line-load 𝑭𝟏, per unit length, acting in the positive x-direction on the interface x=0 along z-      
axis.   

Consider a normal line-load 𝐹1 , per unit length, acting in the positive x-direction on the interface x=0 along z-

axis. Since the half spaces (poroelastic half space and transversely isotropic elastic half space) are assumed to be 

in welded contact along the plane x=0, the continuity of the stresses and the displacements give the following 

boundary conditions at x=0: 

σ12 = τ12                                                                                                                                                                            (2.36)                                                                                                    

σ11 − τ11 = −F1δ y                                                                                                                                                      (2.37)                                                                                 

U1 x, y = u x, y                                                                                                                                                             (2.38)                                                                                      

U2 x, y = v x, z                                                                                                                                                              (2.39)   

where 𝛿(𝑦)  in equation (2.37) is the Dirac delta function.  

Also, if we assume that the interface is impermeable, the hydraulic boundary condition x=0 is  
𝜕𝑝

𝜕𝑥
= 0                                                                                                                                                                                  (2.40)                                                                                                     

Now using equations (1.25)-(1.29), and (2.32)-(2.40), we get the following system of equations  

mB1 +  k B2 −  k B3 − m2i k D1 + 2m1m2iD2 = 0                                                                                             (2.41)          

B1 + B2 + im2D1 +
i

 k 
m3D2 =

F1

K2                                                                                                                (2.42)                    

B1 + B2 +  2𝑣𝜇 − 2 B3 + 2GiD1 −
2Gi

 k 
D2 = 0                                                                                                        (2.43)  

 B1m + B2 k +  k  1 − 2𝑣𝜇  B3 − 2Gi k D1 + 8Gim1D2 = 0                                                                             (2.44)         

ma1B1 +  k b1B3 = 0                                                                                                                                                      (2.45)  

where                                                                           

a1 =
iω

2ηc
, b1 =

2

3
 1 + vμ Bk

2, m1 =
d11

d11+d12
 , m2 = d11 − d12,

m3 =   
−3d11

2+2d11d12+d12
2

d11+d12
                                                                                                                                         (2.46)                          

Solving the system of equations (2.41)-(2.45) using (2.46), we obtain 

B1 =
− 𝑘  𝑏 1

𝑚𝑎 1 B3                                                                                                                                                 (2.47) 

B2 = −pB3 + 2𝐺𝑖 D1 −
8𝐺𝑖

 𝑘  
𝑚1D2                                                                                                                                (2.48)                  
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B3 =
4𝐺𝑖

 p−q 
D1 −

2𝐺𝑖

 𝑘  
 

1+4𝑚1

 p−q 
 D2                                                                                                                                    (2.49)   

D1 =
𝐹 1

i𝑘 2  
F α−r −t q−r 

 tE−Fs  q−α  α−r 
                                                                                                                                            (2.50)                                                                                             

D2 =
 𝑘  

it
 

𝐹 1

𝑘 2 q−α 
+ isD1                                                                                                                                                (2.51)     

where                                                                                                        

α =  
− 𝑘  𝑏 1

𝑚𝑎 1 , p =
mα

 𝑘  
+  1 − 2𝑣 𝜇  , r =

mα

 𝑘  
− 1, q = 𝛼 + 2𝑣 𝜇 − 2, E =  

2G−𝑚2

 q−α 
−

2𝑚2

 α−r 
                 

 F =  
2G + 𝑚3

 q − α 
+

𝑚3 − 2𝑚1𝑚2

 α − r 
 , s =  

4G

p − q
+

2G − 𝑚2

 q − α 
 ,   t =  

2G 1 + 4𝑚1 

 p − q 
+

 2G + m3 

 q − α 
               (2.52) 

 

5.1.1. Undrained state, 𝝎 → ∞    

                                                              

Putting the values of B1, B2 and B3 from equations (2.47)-(2.49) into equations(1.24)-(1.29) which corresponds 

to the  stresses ,displacements and pore pressure for poroelastic half space medium-I(x≥ 0) and then taking limit 
   and then integrate, we get 

 

σ11
(N) =

−F1

π
q

10

x

x2 + y2
−

F1q
9

π

x x2 − y2 

(x
2 + y2)2

                                                                                                            (2.53) 

σ22
(N) =

F1 q
10

− 2q
9
 

π

x

x2 + y2
+

F1q
9

π

x x2 − y2 

(x
2

+ y2)2
                                                                                                (2.54) 

 σ12
(N) =

−F1

π
 q

10
− q

9
 

y

x2+y2
−

2F1q9

π

yx2

(x2+y2)2
                                                                                                          (2.55) 

2GU2
1(N)

=
F1

π
  q

10
+ q

9
(2𝑣 𝜇 − 2  tan−1 y

x
+

F1q9

π

xy

x2+y2
                                                                                     (2.56)  

2GU1
1(N)

= −
F1

2π
 q

10
+ q

9
(1 − 2𝑣 𝜇 ) log(x

2 + y2) +
F1q

9

π

x2

x2 + y2
                                                                (2.57) 

p =
2F1 1 + 𝑣 𝜇  Bq

9

3π

x

x2 + y2
                                                                                                                                         (2.58) 

Putting the values of D1, and D2 from equations (2.50)-(2.51) into equations(2.32)-(2.35) which corresponds to 

the  stresses  and displacements for transversely isotropic elastic half space medium-II(x≤ 0) and then taking 

limit    and then integrate, we get 

u(N) x, y =
−F1

2π
 q

7
− 4m1q

8
 log(x

2 + y2) −
F1q

8

π

x2

x2 + y2
                                                                             (2.59) 

v(N) x, y =
F1

π
 q

7
− q

8
 tan−1

y

x
−

F1q
8

π

xy

x2 + y2
                                                                                                  (2.60) 

τ11
(N) =

−F1

π
 m2q

7
+ m3q

8
 

x

x2 + y2
+

F1m2q
8

π

x x2 − y2 

(x
2

+ y2)2
                                                                              (2.61) 

τ12
(N) =

−F1

π
 m2q

7
− 2m1m2q

8
 

y

x2 + y2
+

2F1m2q
8

π

yx2

(x
2

+ y2)2
                                                                   (2.62) 

Where q
9
, q

10
, q

7
, q

8
  are as follow 

q
1

=  
4G

3 − 4𝑣 𝜇
+

2G − m2

2𝑣 𝜇 − 2
 ,   q

2
=  

2G(1 + 4m1)

3 − 4𝑣 𝜇
+

2G + m3

2𝑣 𝜇 − 2
 ,   q

3
=  

2G − m2

2𝑣 𝜇 − 2
− 2m2 , 

q
4

=  
2𝐺 +𝑚3

2𝑣 𝜇 −2
+  m3 − 2m1m2  , q

5
=

 q4−q2
 2𝑣 𝜇 −1  

2𝑣 𝜇 −2
, q

6
= q

2
q

3
− q

1
q

4
, q

7
=

q5

q6

,     

q
8

=
 1 + q

1
q

7
 2𝑣 𝜇 − 2  

q
2
 2𝑣 𝜇 − 2 

, q
9

=
 4Gq

7
− 2G 1 + 4m1 q8

 

 3 − 4𝑣 𝜇  
,   

q
10

=  − 1 − 2𝑣 𝜇  q
9

+ 2Gq
7
− 8Gm1q

8
                                                                                                              (2.63) 
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Fig. 3 (previous page) and Fig.4 (above) 

  
Fig. 5 
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   Fig. 6  

 

 
Fig. 7 (above) and Fig.8 (below) 

 
 

 6. Numerical results and discussion 

We define the following dimensionless quantities 

X =
x

h
  , Y =

y

h
, And Σij =

σij

G
, ,1≤ 𝑖 , 𝑗 ≤ 2, U𝐢 =

U𝐢
1

h
,    i=1, 2. 
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For numerical computation we use elastic constants 

given by Love ([4]) for Topaz material and for 

poroelastic half space, values of poroelastic 

constants correspond to Ruhr Sandstone  

(Wang[3]).We have plotted graphs in figures (3-8) 

for the variation of the displacements, stresses and 

pore pressure against the horizontal distance X for 
a fixed value of X=1. Figure (3) shows the 

variation of normal displacement (U1) and figure 

(4) shows the variation of tangential displacement 

(U2) respectively. Figure (5-7) correspond to the 

variation of stresses against the dimensionless 

horizontal distance X. Figure (8) correspond to the 

variation of dimensionless pore pressure against the 

dimensionless horizontal distance X . From these 

figures, it is concluded that the anisotropy is 

affecting the deformation substantially  

                                                                                                 

7. Appendix (𝒙 > 0) 

 

 𝑒 − 𝑘  𝑥 𝑒 −𝜄𝑘𝑦
∞

−∞

𝑑𝑘 =
2𝑥

𝑦 2 + 𝑥 2 , 

 

  𝑘  𝑒 − 𝑘  𝑥 𝑒 −𝜄𝑘𝑦
∞

−∞

𝑑𝑘 =
2(𝑥 2 − 𝑦 2)

 𝑦 2 + 𝑥 2 
2, 

 

 
𝑘

 𝑘  
𝑒

− 𝑘  𝑥

𝑒 −𝜄𝑘𝑦
∞

−∞

𝑑𝑘 =
−2𝜄𝑦

𝑦 2 + 𝑥 2, 

 

       𝑘𝑒 − 𝑘  𝑥 𝑒 −𝜄𝑘𝑦
∞

−∞

𝑑𝑘 =
−4𝜄𝑥𝑦

 𝑦 2 + 𝑥 2 
2, 

 

      
1

𝑘
𝑒

− 𝑘  𝑥

𝑒 −𝜄𝑘𝑦
∞

−∞

𝑑𝑘 = −2𝜄 tan−1  
𝑦

𝑥
 , 

 

     
1

 𝑘  
𝑒

− 𝑘  𝑥

𝑒 −𝜄𝑘𝑦
∞

−∞

𝑑𝑘 = − log 𝑦 2 + 𝑥 2  
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