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ABSTRACT

The Biot linearized theory for fluid
saturated porous materials is used to study the
plane strain deformation of an isotropic,
homogeneous, poroelastic half space in welded
contact with homogeneous, orthotropic elastic
half space in case (a) and with transversely
isotropic elastic half space in case (b) caused by a
normal line-load. The analytical expressions for
the displacements and stresses in the two half
spaces in welded contact have been obtained by
applying boundary conditions at the interface.
The integrals are solved analytically for the
limiting case i.e. undrained conditions in high
frequency limit. To examine the effect of
anisotropy, the variation of the undrained
dimensionless displacements, stresses and pore
pressure are shown graphically and it is found
that anisotropy is affecting the deformation
substantially.

Key words: - Anisotropy, Inclined line-load,
Orthotropic, Plane strain, Poroelastic, Transversely
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1. Introduction

Poroelasticity is the mechanics of
poroelastic solids with fluid filled pores. Its
mathematical theory deals with the mechanical
behaviour of an elastic porous medium which is
either completely filled or partially filled with pore
fluid and study the time dependent coupling
between the deformation of the rock and fluid flow
within the rock. The study of deformation by buried
sources of a fluid saturated porous medium is very
important because of its applications in earthquake
engineering, soil mechanics, seismology, hydrology,
geomechanics, geophysics etc. Biot [1], [2]
developed linearized constitutive and field equations
for poroelastic medium which has been used by
many researchers (see e.g. Wang [3] and the
references listed there in).

When the source surface is very long in one
direction in comparison with the others, the use of
two dimensional approximation is justified and
consequently calculations are simplified to a great

extent and one gets a closed form analytical
solution. A very long strip-source and a very long
line-source are examples of two dimensional
sources. Love [4] obtained expressions for the
displacements due to a line-source in an isotropic
elastic medium. Maruyama [5] obtained the
displacements and stress fields corresponding to
long strike-slip faults in a homogeneous isotropic
half-space. The two dimensional problem has also
been discussed by Rudnicki [6], Rudnicki and
Roeloffs[7],Singh and Rani [8], Rani and Singh
[9],Singh et al.[10].

Different approaches and methods like
boundary value method, displacement discontinuity
method, Galerkin vector approach, displacement
function approach and eigen value approach, Biot
stress function approach etc. have been made to
study the plane strain problem of poroelasticity. The
use of eigen value approach has the advantage of
finding the solutions of the governing equations in
the matrix form notations that avoids the
complicated nature of the problem. Kumar et al.
[11], [12], Garg et al. [13], Kumar and Ailwalia
[14], Selim and Ahmed [15], Selim [16],Chugh et
al.[17] etc. have used this approach for solving
plane strain problem of elasticity and poroelasticity.

In the present paper we examine the effect
of anisotropy on plane strain deformation of a two
phase medium consisting of a homogeneous,
isotropic, poroelastic half space lies below a
homogeneous, orthotropic elastic half space in case
(@) and lies below a homogeneous, transversely
isotropic elastic half space in case (b).which are in
welded contact, caused by an inclined line-load in
elastic half space in both cases. Using Biot stress
function (Biot [18], Roeloffs[19]) and Fourier
transform, we find stresses, displacement and pore
pressure for unbounded poroelastic medium in
integral form and using eigen value approach
following Fourier transform, we find stresses and
displacement for unbounded elastic medium in
integral form. Then we obtain the integral
expressions for the displacements and stresses in the
two half spaces in welded contact from the
corresponding expressions for an unbounded elastic
and poroelastic medium by applying suitable
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boundary conditions at the interface in both cases.
These integrals cannot be solved analytically for
arbitrary values of the frequency. We evaluate these
integrals for the limiting case i.e. undrained
condition in high frequency limit. To examine the
effect of anisotropy, the wvariation of the
dimensionless displacements, stresses and pore
pressure for poroelastic half space have been
compared graphically and it is found that anisotropy
is affecting the deformation substantially.
Anisotropy provides important information about
processes and mineralogy in the Earth (poroelastic
medium). It is used to find oil and gas in wells.
There are so many applications where we can use
anisotropic effect in poroelasticity.

2. Formulation of the problem

Consider a homogeneous, isotropic,
poroelastic half space lies below a homogeneous
orthotropic elastic half space in case (a) and lies
below a homogeneous transversely isotropic elastic
half space in case (b). A rectangular Cartesian
coordinate system oxyz is taken in such a way that a
plane x=0 coincides with the intersecting surface of
the two half spaces. We take x-axis vertically
downwards in the poroelastic half space so that
homogeneous, isotropic, poroelastic half space
becomes the medium-1 (x=0) and orthotropic elastic
half space becomes the medium- 1l (x<0)in case (a)
and transversely isotropic, elastic half space

9c(1 . vu)(vﬂ —-v)

A= 26821 - v) (A +1,)?

3(17“ 1 v)
“TRa-2(1+ 1)

becomes the medium- 11 (x<0) in case (b). Further
a normal line-load of magnitude F;, per unit length,
is acting in the positive x-direction on the interface
x=0 along z-axis in both cases. The geometry of the
problem as shown in figure 1 and figure 2 and it
conforms to the two dimensional approximation. Let
the Cartesian coordinates be denoted by (x, y, z) =
(X1, X2, X3) with x—axis vertically downwards. We
consider a two dimensional approximation in which
the displacement component  (Uy, U, Usz)are
independent of the Cartesian coordinate x5, SO

thataiEO. For this  two dimensional
X3

approximation the plane strain problem (U; =
0) and the antiplane strain problem (U; = U, = 0)
get decoupled, and can therefore be solved
independently. Since the antiplane deformation is
not affected by pore pressure, we shall discuss plane
strain problem only.

3. Solution for poroelastic half space medium-I
(x=0)

A homogeneous, isotropic, poroelastic medium can
be described by five poroelastic parameters: Drained
Poisson’s ratio (v), undrained Poisson’s ratio (v,),
shear modulus (G) hydraulic diffusivity (c) and
Skempton’s coefficient (B). Darcy conductivity (x)
and Biot-willis coefficient a« can be expressed in
terms of these five parameters:

(1.1

1.2)

The two dimensional plane strain problem for an isotropic poroelastic medium can be solved in terms of Biot’s

stress function F (Wang [3]) as

d2F _9%F _ 3%F
ay2 622752 0127 X oy
V2(V2F + 2np) = 0

V2 — D[ V2F+
V=5

O11=

3
(A+vy)B p]

(1.3)
(1.4)
(1.5)

where gj; denotes the total stress in the fluid saturated porous elastic material, p the excess fluid pore pressure

(compression negative) and

_ (1-2v)a

= i) (1.6)
is the poroelastic stress coefficient.
From equations (1.4) and (1.5), we get the following decoupled equations

2 _9\y2, —

(ev>-2)vp=0 (1.7)
(ev>-2)viF=0 (1.8)
The general solution of equation (1.7) may be expressed as
P=p;+p; (1.9)
Where p; and p, satisfies the following equations:
cV?p, = 66%1 (1.10)
Vip, =0 (1.11)
Similarly, the general solution of equation (1.8) may be expressed as
F=F, +F, (1.12)
where
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cV?F, =
0Fq

at (1.13)

V4F, =0 (1.14)
Separation of time and space variables can be made for each of the four functions p; , p,, F1 and F, . Assuming
the time dependence as exp (—iwt), equations (1.10), (1.11), (1.13) and (1.14) become

Vip, +=p; =0 (1.15)
V2p, =0 (1.16)
VZF, +=F; =0 (1.17)
V'R, =0 (1.18)

where p;,p,, F1 and F, are now functions of x and y only.
Fourier transforms are now used to get suitable solutions of equations (1.15)-(1.18), which on using equations
(1.9) and (1.12), can be written as

P= L7 [Are™ + Ay + Agem 4 A, e] e di (119)
1 r” ;
F=o f [Bie™™ +B,e™ + (B, + Bs|klx)e ™M/* + (Bs+Bj [klx)el*]e ™ dk (1.20)
For medium-1(x= 0), using the relation conditions, we have
p =" [Aje™ + Ak e dk (1.21)
1 r” )
F=y f [Bye™ + (B, + By [Kklx)e K] e~ dic (1.22)
where B_l, B, ,B;, A; and A, are functions of k. From (1.4), (1.5), (1.21) and (1.22). We find
1
i 2 K2—io) |2
A = %Bl, A, ==(1+v,)BK?B;, m= (( - “’)) ,(Rem > 0) (1.23)
Using (1.22) in (1.3), the stresses in medium I(x= 0) are obtained as
Oy = zi J” [Bym2e™* + (B, — 2B3 + Bslk|x)k?e~ x| e~y dk (1.24)
o11 = _zl_nf_"‘;[Ble—mx + (B, + By [k[x)e k] k?e~ v dk =)
612 == J 7 [Byme ™ + (B, — By + By klx) lkle ] (—ik)e ™ dk (1.26)
Corresponding to these stresses, the displacements are obtained as (Singh and Rani [8])
26U, = — - [ [Bie™ +{B, + B3 (2, — 2 + IkIx)Je ] (~il)e v dk 1.27)
2GU, = zi J” [Byme™ + {B, + B3(1 — 2v, + [kx)}|klekIx]e~ ™ dk (1.28)
Also from equation (1.21), we have
% _ L 1" [ma e ™ — [k|Aye ] e di (1.29)

4. Solution for orthotropic elastic solid half space, Medium-11(x<0) case (a)
The equilibrium equations in Cartesian coordinate system (x;, x,, x3) in absence of body forces are

O 4 Ouz | 9uz _
gxl +gx2 +gx3 =0 (1.30)
d | Oz | Otz _
aXl + 5X2 + 5X3 - 0 (131)
Ot31 0132 + 9133 _ 0 (1.32)

0x1 0x2 0x3

where t;; (i, j = 1,2,3) are components of stress tensor.

The stress-strain relations for an orthotropic elastic medium are
T117 [dy1 dizdi3 0 0 O 11
To2| |dyp dyp dys O 0 O €22
T33|_|dyzdysdss 0 0 0 €33
T23 B 0 0 0 d44 0 0 2623
T13 0 0 0 0 dsg O |[2e13
T12 0 0 0 0 0 dgdl2ey
where e;; are the components of the strain tensor and are related with displacement components (uy, u,, uz) by
the relations

eij=§(2—;+2—:),131,js3 (1.34)
The two suffix quantity d;; (i,j = 1,2 — —6) are the elastic moduli for the orthotropic elastic medium. We
shall write (xq, x5, x3)=(X,Y,2), (uq, Uy, u3)=(u,v,w)

(1.33)
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The equilibrium equations in terms of the displacement components can be obtained from equations (1.30)-
(1.32) by using (1.33) and (1.34) and for the present two dimensional problem are

R 9%u 9%y

di 5+ dge 27 + (dgs 2+ dyz) @ =0 (1.35)
d“u v a“v
(dge + dlz)m +des 5 +_d22 P 0 (1.36)
We define Fourier transformf(x, k) of f(X, y) (Debnath, [21]) as
F ) =FIrem] = | fGoy)es dy (1.37)
So that
1 (”_ _

fxy) = 2—7J fxK)e™™ dk, (1.38)

where k is the transformed Fourier parameter. We know that (Sneddon, [22])

0 _
P55/ 9) = COFG 0

ok _
F (O_yzf % y)> = (—ik)*f(x k) (1.39)
Applying Fourier Transform as defined above on equations (1.35) and (1.36), we get
2= =4
—des kT + dy; jlel — ik(deg + d12) j_: = (1.40)
. e
_lk(d66 + dlz) j_: e d22 kZV + d66 ST\ZI =0 (141)
The equations (1.40)-(1.41) can be written in the following vector matrix differential equation as
2
ATZ+BT+CN=0 (1.42)
where
A= [du 0 B— [ : 0 —ik(dge + d12)]
0 del —ik(dge + dy2) 0 X

_ [~k2d 0 _qu
c_[ *dos _kzdn], N_[‘_,] (1.43)

We note that the matrices A, B, C are all symmetric and matrices A, B, C depends upon elastic moduli only.
Applying eigen value method to solve equation (1.42), we try a solution of the matrix equation (1.42) of the
form

N (x, K) =E (k) e%*, (1.44)
where s is a parameter and E(K) is a matrix of the type 2x1.Substituting the value of N from equation (1.44)
into equation (1.42),we get the following characteristic equation.

(di1dge)s* = (didaz — 2d1pdgs — dip?)k2s? + dppdesk® = 0, (1.45)
After solving the characteristic equation (1.45), we get the eigenvalues as

s =m,%k? m,?k?> where

Ao+ /A02—4BO , Ao /A02—4Bo
e

m*=———- m;

2
(dy1d, — 2dspdgs — dip*)
Ay = =T 2
0 ) (dy11de6) 5 2
And BO = dﬂ = m12 mzz (146)
11

where the quantities m; and m, for an orthotropic elastic medium depends upon elastic moduli only and are
independent of k. They may be real or complex. We assume that m; # m, for an orthotropic elastic medium.
Then the eigen values can be written as
sy =mylkl, s; =mylkl, s3=-mlkl, s,=—m,lk| (1.47)
with real parts of (m;, m,) as positive. The eigen vectors for an orthotropic elastic medium are obtained by
solving the matrix equation

[s2A+sB+CJE(K) =0 (1.48)
in which the matrices A, B ,C are given by equation (1.43)
The eigen vectors become
Xp' =[P, 1], Xpyo! =[Py, 1], for F=1,2 (1.48a)
In which

b imy k| / dgg + dy2 —ik [(dgem,? —d,,

2Tk (d11m12 - d66) -~ my K| ( des + di2 )
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_imylk| ( dgs + diz ) ik (d66m22 - dzz)

27k \dumy? —des/  molkl\ dg +dip

Thus a solution of the matrix equation (1.42) for orthotropic elastic medium is

N(x, k) =XF_; (cp Xpe™F KX + cp 5 Xp pe7mr k) (1.50)

Where ¢y, ¢, c3, c4, are coefficients to be determined from boundary conditions. From equations (1.43),

(1.48a), (1.49) and (1.50), we write

(1.49)

i(x, k) = ¢, P,y emtlklx 4 ¢, p, emzlklx — ¢ p, e~milklx_c, p, e=malklx, (1.51)
V(x, k) = cyemlklx 4 ¢ emalklx 4 ¢ emilklx g o @=malklx (1.52)
Inversion of equation (1.51) and (1.52) gives the displacements in the following integral forms

ulx,y) = Zinfjow[clp21em1lklx + c,P emzlklx _ C3P21e_m1|k|X—C4P22 e—mzlklx] e~y dk (1.53)
vxy) = Zinf_ww[qeml'k"‘ + cpem2kix  ciemmilkix 4o, gmm2lkix] g=iky gk (1.54)

For the transformed stresses for plane strain deformation parallel to xy plane of orthotropic elastic medium,
using equations (1.33)-(1.34) and (1.38)-(1.39), we get

fll = (_lk)dlzv + d11 3_: (155)
flz = (_lk)d66ﬁ + d66 3_:: (156)
where U, v used in equations (1.55)-(1.56) are Fourier Transforms of u(x, y) and v(X, y).
Putting the values of t and v from equations (1.51) and (1.52) and their derivatives into equations (1.55)-

(1.56) we obtain T,; , 75, as

T4 = [ClQmemIIkIX + ¢;Qpem2 kX + ¢3Qyy ek 4, Qyy e_m2|k|x] (1.57)
71y = dgg (¢ Ry €™ KX + ¢, R, em2lklx — ¢ R, e Milkix—c, R, e7m2lklx) (1.58)
where

Qzr = dyq Pypmglk] —id; k (1.59)
Ry = mplk| — iPygk, for F=1,2 (1.60)

Inversion of equations (1.57)-(1.58) gives the stresses in the following integral forms for an orthotropic elastic
medium as

1 [~ .

Ty = _27'5,[ [c1Qa1e™ 1 + ¢, Qqpem2kix + c;Qy e ™1k K4 c, Qyp e ™2k |emiky dik (1.61)
1 [~ .

T]_z = EJ d66 [C1R21em1|klx + CzRZZemzlklx . C3R21e_mllklx_C4RZZe_m2|k|X] e_lky dk (162)

The dispIaEements and stress components for orthotropic elastic half space medium Il (x<0) case (a) are now
obtained as from equations (1.53)-(1.54) and(1.61)-(1.62)

u(x,y) = if_ww[cl Py ekl 4 ¢, P, em2lkix] e=iky g (1.63)
v(x,y) = if_ww[clem“k'x + cyemalki] ey gk (1.64)
Ty = if_ww[QQnemllklx + c;Qppem2Kx|e~ 1 dk (1.65)
T2 = if_wwx[des (ciRpremilkix 4 ¢, R, em2lkix)] e~y dk (1.66)

4.1 Normal Line-load

z

Medium-II (x--‘-‘-U)\ & Orthotropic Elastic

al

>y

Medium-1 (x=0) Poroelastic

"F
Fig.1: A Normal line-load F, , per unit length, acting in the positive x-direction on the interface x=0 along z-
axis.

Consider a normal line-load F; , per unit length, acting in the positive x-direction on the interface x=0 along z-
axis. Since the half spaces (poroelastic half space and orthotropic elastic half space) are assumed to be in welded
contact along the plane x=0, the continuity of the stresses and the displacements give the following boundary
conditions at x=0:
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O12 = T12 (1.67)
011~ 11 = —F18(y) (1.68)
Ull(x. y) =u(xy) (1.69)
Uy, (xy) =v(xy) (1.70)
where §(y) in equation (1.68) is the Dirac delta function and it satisfies the following properties
JZ8()dy = 1,8(y) = - [ e dk (172)
Also, if we assume that the interface is impermeable, the hydraulic boundary condition x=0 is
2=0 1.72)
Now using equations (1.25)-(1.29), (1.63)-(1.66) and (1.67)-(1.72) we get the following system of equations
mB, + [k|B, — |k|B; — “2%2L ¢, — K662 ¢, = (1.73)
By + B+, +Zc, =1 (1.74)
By + By + (20, —2)By + -7, +5-¢; = 0 (1.75)
Bym + B, [k| + [k|(1 — Zvu)B3 2GPy;¢; — 2GPyyc, = 0 (1.76)
ma!B; + |[k|b!B; =0 1.77)
where
io 2
al =2 bl =12 (1+v,)Bk? (1.78)
Solving the system of equations (1.73)-(1.77) using (1.78) we obtain
—|k|pt
B, = —3 B, (1.79)
F:
2 = s {5 (Pt 4 26Ps1) = 7 (Pt + 2GPy;) + 555 (pu + 2GPy,)} (1.80)
F1 —ts tPR uR
B =25 {tE—Fs + =G P—Q} (1.81)
Hf sv K5
G = kz{tE—Fs P—Q} (1.82)
F R
C = k—lz{m} (183)
Where
_rlfall,p—ma+|k|(1—2 )r=am—|k|,q=a+2vﬂ—2,
_ 5 2Gi Qa1 2Gi Qa2 __ s _ Q21 , idgsRa21
E=q—o, F— KZ’ G— KZ,L o |k| M—K2+—k|k|,
% 1d66R22 - _&_ 2GP21 = _ﬁ _ ZGPZZ
Al _( E :-) g ’(GLS ENl) | 29" ) : E-il-lil = : i
u S S
D (tE-Fs)’ Q= (FL—EM)’ g = (tE—Fs) + (FL—EM) (1.84)

4.1.1 Undrained state, w — oo

Putting the values of By, B, and Bz from equations (1.79)-(1.81) into equations(1.24)-(1.29) which corresponds

to the stresses ,displacements and pore pressure for poroelastic half space medium-1(x= 0) and then taking

limit @ — oo and then integrate, we get
-F, X F, P, x(x? —y?)

N =—Pp - 1.85
u n( 7 x2 +)y2 T (x%+ yé)z . (1.85)
Fl P7_2P6 X F1P6XX _y
o™ = 2 2 2 2)2 (1.86)
T xt+y T (x*+y?)
_F _2F1P Z
012 L (P - P7) 2+y 71_[ @ (x;:(yz)z (187)
2GU21(N) =5((P + P2y, — 2))tan1L + . (1.88)
F F,P, x?
260" = =22 (P + (1 - 25,)) og(e? +32) + L2 (1.89)
2F;(1+v,)BP;  x
™ =21 i 1.90
P 3n X2 +y? (1.90)
Where P, P, are as follow
1 _ dee+d12
P! = {-26m, (52 - 26} (2v, - 2)
dge+d
- {ZG - d11m22 (ﬁ) + dlz} (3 - 41]#) (191)
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dee +d
= frzom, (g ) -, -
1111 7 Uee
dgg+d
—{26 - dyym,? (ﬁ) +di2} (3 - 47,) (1.92)

P’
P=o (1.93)

1

de. +d
P1={2G—d mz(M>+d }
2 M2 m, % — dgg 12

—(2v, = 2) [{dyymy? (2551 ) — dp, |+ dggm, {1+ (252 )} (1.94)

di1my%—des diimz2—des

dge +d
P“:{zc—d mz(—66 12 >+d }
2 11My dyymy? — dgg 12

dge+d dge+d
—(2v, = 2) [{dimy? (77252 ) = digf + dgem {1+ (72252 (1.95)
P,

P, = BT (1.96)

3—-4vp
P, = (P—n”) (1.97)

1

2v, — 1

Pt = (157) (1.98)
2

P3 = P31 + P311 (199)

P3
P, = 3+, (1.100)
P, = P! — PP, (1.101)

p, [26m, (2ss %2 ) 4 26| + b, [26m, (9sstdz ) 4 26
d;ym%—d d;ym,%—d
P6 o 11 SN 66 117152 66 (1102)
d(3 _d4v”) des + d
. 66 T dip ) ( 66 T di2 ) }

P, _{ (1 ZUM)P6+2Gm1(d11m12 " T P; + 2Gm, Ty — do, P, (1.103)

Putting the values of c;, and ¢, from equations (1.82)-(1.83) into equations(1.63)-(1.66) which corresponds to
the stresses and displacements for orthotropic elastic half space medium-11(x< 0) and then taking limit @
—> 00 and then integrate, we get

™) — F1Psdgemy {1 5 ( dge +di, )}( -y )
T dyymy? — dge /) \(y? + my 2x?

F1P4d66m2{ ( dge + dy )}( -y )
+ - 1+ B e (1.104)

FP. dee +d —m X
= () o )

T12

Ep 11my? — d66d d (y? + my ?x?
15 66 12 —MpX
Fulafy e +do: ) o ISR ) 1105
o T2 { nsz Pdumz2 — des ZIN(y? + my2x? ( )
N =Bl o1 () B o1 (Y
viN(x,y) = —tan (mlx) +——tan (mzx) (1.106)
—F;P,m dgg +d F;Psm deg +d
) _ "Ml 1( 66 12 )l 2 2.2y X1fs 2( 66 12 )1 2 2.2
uNM(x,y) o dom?—d og(y* + m; “x%) 21 \dimZ—dy og(y* + my“x“)
(1.107)
5. Solution for transversely isotropic elastic solid half space Medium-11 (x<0), Case (b)
The equilibrium equations in Cartesian coordinate system (x;, x,, x3) in absence of body forces are
dr11 |, 0712 , 0T13 _ 0 (2 1)
aX1 axz aX3 - ’
dty1 , 0Ty | 0723 _
om Tom Tax, 0 (22)
9t31 | Otsz | 9733 _ (2.3)

6X1 axz axg
where Ty are components of stress tensor.
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The stress-strain relations for a transversely isotropic elastic medium are

[di1 diadi3 0 0 8 ]
T33]_|dy3dy3 d3g 0 0
|37l 0 0 0 dyu O 0 | ze23| (24)
lT13J 0 0 0 O dy 1 0 2eq3
T12 00 00 0 3 (d11 — dyp) | L2ey,

where e; are the components of the strain tensor and are related with displacement components (u,, u,, u;) by
the relatlons
1[0y 3
j i

The two suffix quantity dij are the elastic moduli for the transversely isotropic elastic medium. We shall write
(xll x2! X3)_:(X,¥,Z), (ull u_Zl ug_):(U,V,W) . . .

The equilibrium equations in terms of the displacement components can be obtained from equations (2.1)-
(2.4) by using (1.34) and for the present two dimensional problem are

dy 2o+l —d )E+ 1y +di) e = 0 2.6
1162 11 12 2 112 17 axgy_ ( . )
a a
(d11 + dlz) + (dn dlz)# +dyy a_y]z] =0 (2.7)
Applylng Fourler Transform as defined by (1.37)-(1.39) on equations (2.6) and (2.7), we get
d?m _ K2 (d11—d1z) i+l (d11+d12)d_V (2.8)
dx? - 2dq1 2dqq dx !
d%v _ o 2d11 \o , .y (d11+dip)du
d7 . k (dll—dlz)v + lk (d11—d12) dx (29)
The above equations (2.8)-(2.9) can be written in the following vector matrix equation form as
o= AN (2.10)
where
[2]
|dV | 0 0 1 0
Jd@p - fo o 0 1
x| Blk2npmitn T0N kR, o)
IlvaI 0 k?R; ikR, 0

Where R; ,R,, R; and R, are as follow

dy; —dyp dy; +dypp 1
R, = T = 20, R3—R1, R, = R,R; (2.12)
Applying eigen value method to solve equation (2.10), we try a solution of the matrix equation (2.10) of the
form
N (x, k) =E (k) e** (2.13)
where s is a parameter and E(K) is a matrix of the type 4x1.Substituting the value of N from equation (2.13)
into equation (2.10),we get the following characteristic equation.

st —2k?s2+k*=0 (2.14)
After solving the characteristic equation (2.14) , we get the repeated eigenvalues as
s=s5; =8, =—53=—5, = [kl
An eigen vector X;, corresponding to the eigenvalue s = s; = |k| of multiplicity 2 is found to be
ilk]
X, = 111:2 2.15)
klk|

Second eigen vector X, corresponding to the eigenvalue s = s, = |k| can be obtained as by Ross [23]

k=4 (755)

1
X, = k(x—7p) (2.16)
[llkl {lklx N (d11+d12 )}J
k|k|x
An eigen vector X3, corresponding to the eigenvalue s = s; = —|k| of multiplicity 2 is found to be
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—ilK|
|k
X3 = 2 (2.17)
—Kk[K|
Similarly second eigen vector X, corresponding to the eigenvalue s = s, = —|k| can be obtained as by Ross
[23]
diq
{ {|k|X+4(d11+d12)}-|
I k(x+5) I (2.18)
3d11—d12
[llkl {lle + (d11+d12 )}J
—k|k|x
Thus, a general solution of (2.10) for a transversely isotropic elastic medium is
N; = (D;X; + D, Xp)ek* + (D3X5 + D, X,)e kK (2.19)

Where D;, D,, D; and D, are coefficients to be determined from boundary conditions and they may depend
upon k. From (2.11) and (2.15)-(2.19), we obtain

i =i [{Dy Ikl + D, (Iklx — =)} el — {Dykc| + D, (Iklx + =2 )} e~1ki] (2.20)

di1+dq2 dq1+dq2

k[g 1 +D, (x——l)}e“‘lx {D3 + D, (x+ |11<I>} -'k|X] (2.21)
.

3dy; —dy, 1

o+ Dy (202=) ) g
{ 3 dy; +dy; I
|
|

du (2.22)
— = .
o Dyk2 + Dy Kl [ [klx + (M) elklx
l ¢ dy; +dy |
4o
d: = kIKkI[(D; + Dyx)ell* — (D; + Dyx)e k] (2.23)
Inversion of equation (2.20) and (2.21) gives the displacements in the following integral forms
D, [kl + D, (Iklx — —i)1 glkix
u(xy) = Zf_oo { ( d 4-;—111112)} by e~ky dk (2.24)
— {1kl + D, (Il + - )}e
BN 1 Aol [k|x —|k|x | p—iky
v(xy) = =k [{D1 +D, (X Ikl)} e {D3 +D, (X +i I)} e ] e v dk (2.25)

For the transformed stresses for plane strain deformation parallel to xy plane of a transversely isotropic elastic
medium, using equations (1.37)-(1.39) and (2.4)-(2.5), we get

T = ( ik)d;,V + dy; 3 _u (2.26)
Tz =3 > (dyy — dy) (E; = ikﬁ) (2.27)
where U, ¥ used in equations (2.26)-(2.27) are Fourier Transform of u(x, y) and v(x, y).

Putting the values of t and v from equations (2.20) and (2.21) and their derivatives into equations (2.26)-
(2.27) we obtain T;; , Ty, @S

- 2 2
k2 (dll . d12)D1e|k|X + {(dll - d12)k2X+ Ikl ( 3dy1°+2dq1dqp+dgp )}Dze'klx

d11+dq2

‘Ell == l 2d Z—Zd L. 2 (228)
+Kk2(dy; — dyp)Dge M + {(ol11 — dyp)k?x + [ie] (22 o, )}D4e_|k|"
klkIDy el + (lelklx — %) D, elklx
Ty = (dyy — dyz) (2.29)

—klkIDge Tk — (klklx + P AL ), -l

Inversion of equations (2.28)-(2.29) gives the stresses in the following integral forms for a transversely isotropic
elastic medium

T11
—3dy; % 4 2dy;dyy + dyp?

ool k?(dyy — dyz)Dyelh + {(dn —dpp)k’x + |k|< = . +11dllz L >} D,elklx ]l
o | e=ikv dk,

—o0 2 —|k|x 2 3d112 - 2d11d12 - dlZ2 —|k|x

+k*(dy; —dyz)Dse +1(dy; —dy)k?x + [K] T d D,e
11 12
(2.30)
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[ klkID IkIX+(kk —M)D [klx ]
© | | 1€ | |X d11+d12 2€

_ dyj; —dyy
T12 = —271:

2d,.k
—*|—k|k|D —'kIX—(kk +#)D —Iklx
[ IkIDse Ikl dy; +dj 4

The displacements and stress components for transversely isotropic elastic half space medium 11 (x<0) are now
obtained as from equations (2.24)-(2.25) and (2.30)-(2.31)

e v dk (2.31)

uCxy) = 52/, [{Dilkd + D, (Il — 7252 el e dk (2.32)
vixy) =57 k [{D1 +D, (x - “1(—|)} e“""] =19 dk (2.33)
= [0 0 0~ W (oo o
vy = (H572) [, [KIKID, + (Klklx - ) D, | elenii dk (235)

5.1 Normal Line-load

Z

Medium-11 [r-‘-‘-l]ﬁ\ X Transversely Isotropic

i

>y

Medium-1 (x==0} Poroelastic

‘F
Fig.2 A Normal Line-load F, per unit length, acting in the positive x-direction on the interface x=0 along z-
axis.

Consider a normal line-load F; , per unit length, acting in the positive x-direction on the interface x=0 along z-
axis. Since the half spaces (poroelastic half space and transversely isotropic elastic half space) are assumed to be

in welded contact along the plane x=0, the continuity of the stresses and the displacements give the following
boundary conditions at x=0:

012 = T12 (236)
611 — 11 = —F18(y) (2.37)
U;(x,y) = u(x,y) (2.38)
U,(x,y) = v(x,2) (2.39)

where §(y) in equation (2.37) is the Dirac delta function.

Also, if we assume that the interface is impermeable, the hydraulic boundary condition x=0 is
@ _

0 (2.40)
dax
Now using equations (1.25)-(1.29), and (2.32)-(2.40), we get the following system of equations
Bl + Bz + iszl +tm3D2 — % (242)

B, + B, + (2v, — 2)Bs + 2GiD, —%Dz =0 (2.43)
B;m + B, |kl + |kI(1 — 2v,)B; — 2Gilk|D; + 8Gim,D, = 0 (2.44)
malBl + |k|b1B3 =0 (245)

where
1 _do 1 2 2 _ di1 _ _
al =50t = (14, )BK, mp =, my = dyy —di,

—3dy324+2d1d1p+dpo?
M3 = ( . (111"%(111212 . ) (2.46)
Solving the system of equations (2.41)-(2.45) using (2.46), we obtain
rars
Bl = mﬂl 83 (247)
B, = —pB; + 24 D, — %mpz (2.48)
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44 _2d (l4am
B; = (p—a) Dl( )Ikl (gp—q) ) D, (2.49)
_ F(a—r)—t(q—r
Dy = i4? {(tE—FS)(q—a)(a—r)} (2.50)
_ m £ "
27 it 2w + 'SDl] (2.51)
where
o= 2 =2+ (1-2v,)r=r-1lq=a+2v,—2,E= ( 2 _ 2’”2)
mat P 141 |'{'| g (q—a) (=)

- (ZG +m = 27771”72)' | 46 26— %) 4= [26(1 tam) @G+ M) (252)

+ + , +

Q- (a—r) -4 @-a (P—a) -0
5.1.1. Undrained state, @ — «

Putting the values of B;, B, and B; from equations (2.47)-(2.49) into equations(1.24)-(1.29) which corresponds

to the stresses ,displacements and pore pressure for poroelastic half space medium-I(x= 0) and then taking limit
@ —> o0 and then integrate, we get

-F; X qu x(x% —y?)
1™ = 9
7 doiz Y T (Cty) (2.53)
6., (N) = Fl(qlo 2q9) X F10y X(<* — y?) 254
22 - T X2+y2 P (X2+ 2N2 ( )
y9)
(N) _ R _ 2Fgy oy
¥ (qlo |t (2.55)
=
ZGU21 ((q10 + 0,22, —2) Jtan ¥ 4 2 (2.56)
N) Fig, X2
26U, = ——(q10 +0,(1-22,)) log(x* + y2) + ~ 9X2 ey (2.57)
2F,(1+7,)Bg, X
. 3n X2 +y? (289

Putting the values of D;, and D, from equations (2.50)-(2.51) into equations(2.32)-(2.35) which corresponds to
the stresses and displacements for transversely isotropic elastic half space medium-I1(x< 0) and then taking
limit ® — oo and then integrate, we get

U y) = g, — dmya Hog( +y2) — kX (259)
¢ 2n SN e T X2 +y? '
Fy Y RO xy
vV (xy) =— (g, = gg) tan l; 1 2ty ">
F1m,gg x(x% — y?)
Tll(N) = _(m2q7 + m3qg) X2 + y2 - 2 (XZ + yz)z (261)
A 2Fimyq,  yx?
N) — _1 X3 y 1'112Mg
T - (m,a, — 2m;m,a,) Ty i) (2.62)
Where q,,4q,,,9,, g, areas follow
4G 2G—m, 2G(1 +4m;) 2G +my 2G—m,
ql= + b :[ ]: z[—_2m21
3-4v, 2v,-2 2 3-4v, 20 P
26+m {a,=9 @, 1} i g
4 I:ZV/I + (m3 2mlm2)] q5 42211—_21 q5 " q2q3 - q1q4: q7 - i:
_ {140,027, -2)} B {4Gq, — 2G(1 + 4my)q,}
% = 9,27, —2) G = B-4v,) ’
={-1-27,)q,+ 2Gq, — 8Gm,q,} (2.63)
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Fig. 3 (previous page) and Fig.4 (above)
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Dimensionless Stress B
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Fig. 7 (above) and Fig.8 (below)
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6. Numerical results and discussion
We define the following dimensionless quantities

X _y _ Sij .o _ Ui
X—E ,Y—H,Andzij—é,,lsl,/ SZ,Ui =

-

i=1, 2.
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For numerical computation we use elastic constants
given by Love ([4]) for Topaz material and for
poroelastic half space, values of poroelastic
constants  correspond to Ruhr  Sandstone
(Wang[3]).We have plotted graphs in figures (3-8)
for the variation of the displacements, stresses and
pore pressure against the horizontal distance X for
a fixed value of X=1. Figure (3) shows the
variation of normal displacement (U;) and figure
(4) shows the variation of tangential displacement
(Uy) respectively. Figure (5-7) correspond to the
variation of stresses against the dimensionless
horizontal distance X. Figure (8) correspond to the
variation of dimensionless pore pressure against the
dimensionless horizontal distance X . From these
figures, it is concluded that the anisotropy is
affecting the deformation substantially

7. Appendix (x > 0)

2x

fe_lklxe_b{y & =— 7
—o0 yot+x

o y 21,2_ 2
f lile ¥V e g L& VE )/2’

(r?+x?)
“ud el =2
j #1° e a = 2 A 2
| vt
Jwi’f ety gy = 3
2 2)2
0 (2 +x?)
® 1 —|&lx
J- v e™ a =-2;tan! (J—/>,
® 1 —|k|x
J- 7 e™ a =—log(y*+ x?)
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