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Abstract 
Energy-efficient design of battery-

powered systems demands  optimizations  in  

both  hardware  and   software.  We present  a  

modular  approach  for   enhancing  instruction  

level simulators with  cycle-accurate simulation 

of energy dissipation in   embedded  systems.  

Our  methodology  has  tightly   coupled 

component  models thus making our approach  

more  accurate. Performance and energy 

computed by our simulator are within a 5% 

tolerance of hardware  measurements on the 

SmartBadge [2]. We show how the  simulation 

methodology can be used for hardware design 

exploration aimed at enhancing the SmartBadge 

with  real-time  MPEG  video  feature.  In  

addition,  we  present a profiler that relates 

energy consumption to  the source code. Using 

the profiler we can quickly and  easily redesign 

the MP3 audio decoder software to run  in real 

time on the SmartBadge with low energy 

consumption. Performance increase of 92% and 

energy consumption decrease of 77% over the 

original executable specification have been 

achieved. 

 

Index Terms—Low-power design, performance 

tradeoffs, power consumption model, system-

level. 

 

I.  INTRODUCTION 
NERGY consumption is a critical factor in 

system-level design of embedded portable 

appliances. In addition, low costs with fast time to 

market are crucial. As a result, typical portable 

appliances are built of commodity components and 

have a microprocessor-based architecture. Full 

system evalua- tion is often done on prototype 

boards resulting in long design times. Field 
programmable gate array (FPGA) hardware emu- 

lators are sometimes used for functional debugging 

but cannot give accurate estimates of energy 

consumption or performance. Performance can be 

evaluated using instruction-set simulators (e.g., [1]), 

but there is limited or no support for energy consump- 

tion evaluation. 

Ideally, when designing an embedded 

system built of com- modity components, a designer 

would like to explore a limited number of 

architectural alternatives and test functionality, en- 

ergy consumption, and performance without the need 
to build a prototype first. In addition, designers need 

to optimize software both during hardware  

 
 

development and once the prototype is built in order 

to get the best performance and energy consump- 

tion from the system. Embedded software 

optimization requires tools for estimating the impact 

of program transformations on energy consumption 

and performance. 

 

This work presents a complete solution for 

all embedded system design issues discussed above. 

The distinctive features of our approach are the 

following: i) complete system-level and component 
energy consumption estimates as well as battery 

lifetime estimates; ii) ability to explore multiple 

architectural alternatives; and iii) easy estimation of 

the impact of software changes both during and 

after the architectural exploration. The tool set is 

integrated within the instruction set simulator 

provided by ARM Ltd. [1]. It consists of two 

components: a cycle-accurate system-level energy 

consumption simulator with  battery lifetime 

estimation and  a  system profiler  that correlates  

both  energy  consumption  and  performance  with 
the code. Our tools have been tested on a real-life 

industrial application, and have proven to be both 

accurate (within 5% of hardware measurements) and 

highly effective in optimizing the energy 

consumption in embedded systems (energy 

consump- tion reduced by 77%). In addition, they 

are very flexible and easy to adopt to different 

systems. The tools contain general models for all 

typical embedded system components but the 

microprocessor. In order to adopt the tools to another 

processor, the ARM ISS needs to be replaced by the 

ISS for the processor of interest. 
The rest of this manuscript is organized as 

follows. We discuss  related work  in  Section II.  

System model  and  the methodology  for cycle-

accurate  simulation of  energy dissi- pation are 

presented in Section III. Section IV shows that the 

simulation results of timing and energy dissipation 

using the methodology presented are within 5% of 

the hardware mea- surements for the Dhrystone test 

case. Hardware architecture trade-offs  for 

SmartBadge’s real-time MPEG video decode 

design  are explored using cycle-accurate energy 
simulation in  Section  V.  The  profiling  support 

we  have  developed  is presented in Section VI. A 

full software design example of MP3 audio decoder 

for the SmartBadge that uses our profiler is shown 

in Section VII. 
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II. RELATED WORK 
As portable embedded systems have 

grown in importance in recent years, so has the 

need for tools that enable energy consumption 

estimation for such systems. CAE support for 
embedded  system design is  still limited. 

Commercial tools target mainly functional 

verification and performance estima- tion [3]–[6], 

but provide no support for energy-related cost 

metrics. 

Processor energy  consumption is  generally 

estimated by nstruction-level power analysis, first 

proposed by Tiwari et al. [24], [25]. This technique 

estimates the energy consumed by a program by 

summing the energy consumed by the execution of  

each  instruction.  Instruction-by-instruction energy  

costs, together with nonideal effects, are 

precharacterized once for all for each target 
processor. An approach proposed recently in [12] 

attempts to evaluate the effects of different cache 

and bus configurations using linear equations to 

relate the main cache characteristics to system 

performance and energy consumption. This approach 

does not account for highly nonlinear behavior in 

cache accesses for different cache configurations 

that are both data and architecture dependent. 

A few research prototype tools that estimate the 

energy con- sumption of processor core, caches, and 

main memory in SOC design have been proposed 

[7], [10]. Memory energy consump- tion is estimated 
using cost-per-access models. Processor ex- ecution 

traces are used to drive memory models, thereby ne- 

glecting the nonnegligible impact of a nonideal 

memory system on program execution. The final 

system energy is obtained by summing over the 

contribution of each component. The main 

limitation of the approaches presented in [7] and 

[10] is that the interaction between memory system 

(or I/O peripherals) and processor is not modeled. 

A more recent approach presented in [11] combines 

multiple power estimators into one simulation 
engine thus enabling de- tailed simulation of some 

components, while using high-level models for 

others. This approach is able to account for interac- 

tion between memory, cache and processor at run 

time, but at the cost of potentially long run-times. 

Longer run-times are caused by different abstraction 

levels of various simulators and by the overhead in 

communication between different components. The 

techniques that enable significant simulation 

speedup are pre- sented, but at the cost of the loss of 

detail in software design and in the input data trace. 

Cycle-accurate register-transfer level energy 
estimation is pre- sented in [8]. This tool integrates 

RT level processor simulator with DineroIII cache 

simulator and memory model. It is shown to be 

within 15% of HSPICE simulations. Unfortunately, 

this ap- proach is not practical for component-based 

designs such as the one presented in this paper, as it 

requires knowledge of the in- ternal design of system 

components. In addition, it is slower than our 

approach as it models at lower abstraction level. 

An alternative approach for energy estimation using 

measure- ments as a basis for estimation is presented 

in PowerScope tool [9]. PowerScope requires two 

computers to collect the measure- ment statistics, 

some changes to the operating system source code, 
and a digital multimeter. Although this system 

enables accurate code profiling of an existing 

system, it would be very difficult to use it for both 

hardware and software architecture ex- ploration we 

present in this paper, as in the early design stages 

neither hardware nor operating systems or software 

are avail- able for measurements. 

Finally, previous approaches do not focus 

on battery life op- timization, the ultimate goal of 

energy optimization for portable systems. In fact, 

when the battery subsystem is not considered in 

energy estimation significant errors can result [21]. 
Some an- alytical estimates of the tradeoff between 

battery capacity and delay in digital CMOS systems 

are presented in [18]. Battery capacity is strongly 

dependent on the discharge current as can be seen 

from any battery data sheet [22]. Hence, it is 

important to accurately model discharge current as a 

function of time in an embedded system. 

In contrast to previous approaches, in this 

work memory models and processor instruction-

level simulator are tightly integrated together with 

an accurate battery model into cycle- accurate 
simulation engine. Estimation results obtained with 

our simulator are shown to be within 5% of 

measured energy consumption in hardware. In 

addition, we accurately model battery discharge 

current. Since we develop only one simulation 

engine, there is no overhead in executing simulators 

at different levels of abstraction, or in the interface 

between them. Thus, our approach enables fast and 

accurate architecture exploration for both energy 

consumption and performance. 

In  an  industrial environment,  the  degrees  

of  freedom in hardware design for embedded 
portable appliances are often very limited, but for 

software a lot more freedom is available. As a 

result, a primary requirement for system-level 

design methodology is to effectively support code 

energy consumption optimization. Several 

techniques for code optimization have been  

presented in  the  past.  A  methodology that  

combines automated and manual software 

optimizations focused on optimizing memory 

accesses has been presented in [17]. Tiwari et al. 

[24], [25] uses instruction-level energy models to 
develop compiler-driven energy optimizations such 

as instruction reordering, reduction of memory 

operands, operand swapping in Booth multipliers, 

efficient usage of memory banks, and series of 

processor specific optimizations. Several other opti- 

mizations have been suggested, such as energy 

efficient register labeling  during the  compile 
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phase [19], procedure inlining and loop unrolling 

[7], as well as instruction scheduling [27]. Work 

presented in [20] applies a set of compiler 

optimizations concurrently and evaluates the 

resulting energy consumption via simulation. 

All of the techniques discussed above focus on 

automated instruction-level optimizations driven by 
the compiler. Unfor- tunately, currently available 

commercial compilers have lim- ited capabilities. 

The improvements gained when using stan- dard 

compiler optimizations are marginal compared to 

writing energy efficient source code [16]. The 

largest energy savings were observed at the 

interprocedural level that compilers have not been 

able to exploit. 

Code optimization requires extensive 

program execution analysis to identify energy-

critical bottlenecks and to provide feedback on the 

impact of transformations. Profiling is typically used 
to relate performance to the source code for CPU 

and L1 cache [1]. Leveraging our estimation engine, 

we implemented a code profiling tool that gives 

percentages of time and energy spent in each 

procedure for every system component, not only 

CPU and L1 cache. Thanks to energy profiling, the 

programmer can easily identify the most energy-

critical procedures, apply transformations, and 

estimate their impact not only on pro- cessor energy 

consumption, but also on memory hierarchy and 

system busses. 
 

 
 
Fig. 1.   SmartBadge. 

 

Our approach enables complete system-

level and component energy consumption estimates 

as well as battery lifetime es- timates. In addition, it 

provides an ability to quickly explore multiple 

architectural alternatives. Finally, it enables software 

optimization both during and after architectural 

exploration using our energy profiling tool. In the 

following section we present the cycle-accurate 

energy simulator architecture to- gether with energy 

consumption models for the components modeled. 
 

III. SYSTEM MODEL 
Typical portable embedded systems have 

processors, storage, and peripherals. We use 

SmartBadge [2] throughout this paper as a vehicle 

to illustrate our methodology and to obtain hard- 

ware measurements. The SmartBadge, shown in Fig. 

1, is an em- bedded system consisting of the 

StrongARM-1100 processor, FLASH, SRAM, 

sensors, and modem/audio analog front-end on a 

PCB board powered by the batteries through a DC–

DC converter. The initial goal in designing the 
SmartBadge was to allow a computer or a human 

user to provide location and envi- ronmental 

information to a location server through a heteroge- 

neous network. The SmartBadge could be used as a 

corporate ID card, attached (or built in) to devices 

such as PDAs and mobile telephones, or 

incorporated in computing systems. The design goal 

for the SmartBadge has since been extended to 

combine lo- cation awareness and authentication 

with audio and video sup- port. We will illustrate 

how our methodology has been used for architecture 

exploration of the new SmartBadge that needed to 
support real-time MPEG video decode feature. In 

addition, we will show how our profiler and code 

optimizations can be used to improve code for MP3 

audio decoder. 

The system we use in this work to illustrate 

our methodology, the SmartBadge, has an ARM 

processor. As a result, we im- plemented the energy 

models as extensions to the cycle-accu- rate 

instruction-level simulator for the ARM processor 

family, called the ARMmulator [1]. The ARMulator 

is normally used for functional and performance 
validation. Fig. 2 shows the sim- ulator architecture. 

The typical sequence of steps needed to set up 

system simulation can be summarized as follows: 1) 

The designer provides a simple functional model for 

each system component other than the processor; 2) 

The functional model is annotated with a cycle-

accurate performance model; 3) Ap- plication 

software (written in C) is cross-compiled and 

loaded in specified locations of the system memory 

model; and 4) The simulator runs the code and the 

designer can analyze execution using a cross-

debugger or collecting statistics. A designer inter- 
ested in using our methodology would only need to 

addition- ally provide cycle-accurate energy models 

for each component during step 2) of the simulation 

setup. Thus, the designer can obtain power estimates 

with little incremental effort. 

We developed a methodology for 

enhancing cycle-accurate simulators with energy 

models of typical components used in embedded 

system design. Each component is characterized with 

equivalent capacitance for each of its power states. 

Energy spent per cycle is a function of equivalent 
capacitance, current voltage, and frequency. The 

equivalent capacitance allows us to easily scale 

energy consumed for each component as frequency 

or voltage of operation change. Equivalent 

capacitances are cal- culated given the information 

provided in data sheets. 

Internal operation of our simulator proceeds as 
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follows. On each cycle of execution the ARMulator 

sends out the infor- mation about the state of the 

processor (―cycle type‖) and its address and data 

busses. Two main classes of processor cycle types 

are processor active, where active power is consumed, 

and processor idle, where idle power is consumed. 

The processor idle state represents an off-chip 
memory request. The number of cycles that the 

processor remains idle depends on L2 cache and 

memory model access times. L2 cache, when 

present, is always accessed before the main memory 

and so is active on every memory access request. On 

L2 cache miss, main memory is accessed. Memory 

model accounts for energy spent during the memory 

access. The interconnect energy model calculates 

energy consumed by the interconnect and pins 

based on the number of lines switched during the 

cycle on the data and ad- dress busses. The DC–DC 

converter energy model sums all the currents 
consumed each cycle by other system components, 

ac- counts for its efficiency loss, and gets the total 

energy consumed from the battery. The battery 

model accounts for battery effi- ciency losses due to 

the difference between the rated current and discharge 

current computed the current cycle. 

The total energy consumed by the system per cycle 

is the sum of energies consumed by the processor 

and L1 cache ( ), interconnect and pins (

), memory ( ), L2 cache ( ), the 

DC–DC converter ( ) and the efficiency losses 
in the battery ( ) 

 
The total energy consumed during the 

execution of the software on a given hardware 

architecture is the sum of the energies con- sumed 

during the each cycle. Models for energy 

consumption and performance estimation of each 

system component are de- scribed in the following 

sections. 

 

A. Processor 

The ARM simulator provides a cycle-

accurate, instruction- level model for ARM 

processors and L1 on-chip cache. The model was 

enhanced with energy consumption estimates based 

on the information provided by the data sheets. Two 

power states are considered: active state in which 

processor is running with 

 
 

Fig. 2.   Simulator architecture. 

 

the on-chip cache, and the state in which 

the processor is exe- cuting NOPs while waiting to 
fill the cache. 

Note that in the case of StrongARM 

processor used in this work, the data sheet values for 

current consumption correspond well to the measured 

values. Wan [26] extended the StrongARM processor 

model with base current costs for each instruction. 

The average power consumption for most of the 

instructions is 200 mW measured at 170 MHz. Load 

and store instructions re- quired 260 mW each. 

Because the difference in energy per in- struction is 

minimal, it can be expected that the average power 
consumption value from the data sheets is on the 

same level of accuracy as the instruction-level 

model. Thus we can use data sheet values to derive 

equivalent capacitances for the Stron- gARM. Note 

that for other processors data sheet values would 

need to be verified by measurement, as often data 

sheet values report the maximum power 

consumption, instead of typical. 

When the processor is executing with the 

on-chip cache, it consumes the active power 

specified in the data sheet  mea- sured at given 

voltage  and frequency of operation . Total 
equivalent active capacitance within the processor 

is estimated as 

 
 

The amount of energy consumed by 

processor and L1-cache at specified processor cycle 

time  and CPU core voltage  is 

 

 
 

When there is an on-chip cache miss, the processor 

stalls and ex- 

ecutes NOP instructions which consume less power. 
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can be estimated from the power consumed during 

execution of 

NOPs  at voltage  and frequency  

 
 

The energy consumed within processor core per cycle 

while ex- ecuting NOPs is 

 

 
 

B. Memory and L2 Cache 

The processor issues an off-chip memory 

access when there is an L1 cache miss. The cache-

fill request will either be ser- viced by the L2 cache 

if one is present in the design or directly from the 

main memory. On L2 cache miss, a request is issued 

to the processor to fetch data from the main memory. 

Data sheets specify the memory and L2 cache access 

times and energy con- sumed during active and idle 
states of operation. 

Memory access time  is scaled by the 

processor cycle time  to obtain the number of 

cycles the processor has to wait to serve a request 

 (6). Wait cycles are defined for two different 

types of memory accesses: sequential and 
nonsequen- tial. Sequential access is at the address 

immediately following the address of the previous 

access. In burst type memory the se- quential access 

is normally a fraction of the first nonsequential 

access 

 
Two energy consumption states are 

defined for each type of memory: active and idle. 

Energy consumed per cycle while 

 

 
 

Fig. 3.   DC–DC converter efficiency 

memory is in active state operating at 

supply voltage  is a function of equivalent 

active capacitance, voltage of operation and number 
of total access cycles ( +1) 

 
Active memory capacitance  can be 

estimated from the ac- tive power specified in the data 

sheet  measured at voltage  and frequency 

 

 
Multibank  memory can be represented as multiple 

one-bank memories 
Idle state can be further subdivided into 

multiple states that describe modes of operation for 

different types of memories. For example, DRAM 

might have two idle states: refresh and sleep.   

The designer specifies the percentage of the time 

memory spends in each idle state. Total idle energy 

per cycle for memory is 

 
where  is power consumption in idle 

state  . Both RAM and ROM are represented with 

the same memory model, but with different 

parameters. 

The L2 cache access time and energy 

consumption are treated the same way as any other 
memory. L2 cache organization is de- termined from 

the number of banks, lines per bank, and words per 

line. Line replacement can follow any of the well-

known replace- ment policies. Cache hit rate is 

strongly dependent on its organi- zation, which in turn 

affects the total memory access time and the energy 

consumption. Note that we are simulating details of 

the L2 cache access and thus know the exact L2 cache 

miss rate. 

 

C. Interconnect and Pins 
The interconnects on the PCB can 

contribute a large portion of the off-chip 

capacitance. Capacitance per unit length of the 

interconnect is a parameter in the energy model that 

can be ob- tained from the PCB manufacturer. The 

length of an intercon- nect can be estimated by the 

designer based on the approximate placement of the 

selected components on the PCB. Pin capaci- tance 

values are reported on the data sheets. 

For each component the average length of 

the clock line, data, and address buses between the 
processor and the component are provided as one of 

the input simulation parameters. Hence, the designer 

is free to use any wire-length estimate [14] or mea- 

surement. The interconnect lengths used in our 

simulation of SmartBadge come from the prototype 

board layout. 

The total capacitance switched during one cycle is 

shown in (10). It depends on the capacitance of one 

interconnect line and the pins attached to it  

and the number of lines switched during the cycle 
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The total energy consumed per cycle 

 is a function 

of the voltage swing on the lines that switched  

total capac- itance switched   and the total time 

to access the memory 

 

 
 

D. DC–DC Converter 

DC–DC converter losses can account for a 

significant frac- tion of the total energy consumption. 

Fig. 3 from the datasheets shows the dependence of 

efficiency on the DC–DC converter output current. 
Total current drawn from the DC–DC converter by 

the system each cycle  is a sum of the currents 

drawn by each system component. A component 

current  is defined by 

 
 

where  is the energy consumed by the 

component during cycle of length  at 

operating voltage . 

Total current drawn from the battery  can be 

calculated as 

 
 

Efficiency can be estimated using linear 

interpolation from the data points derived from the 

output current versus efficiency plot in the data 

sheet. From our experience, a table with 20 points 
derived from the data sheets gives enough 

information for accurate linear estimation of values 

not directly represented in the table. 

Total energy DC–DC converter draws out of the 

battery each cycle is 

 
The energy consumed by the DC–DC converter 

 is differ- 

ence between the energy provided by the battery 
  and 

the energy consumed from the DC–DC converter 

by all other components,  

 
 

E. Battery Model 

The main battery characteristic is its rated 

capacity measured in megawatt hours. Since total 

available battery capacity varies with  the discharge 
rate, manufacturers specify plots in  the datasheets 

with discharge rate versus battery efficiency similar 

to the one shown below. 

The discharge rate (or discharge current ratio) is 

given by 

 
where , the rated discharge current, is 

derived from the battery specification and  is the 

average current drawn by the DC–DC converter. As a 

battery cannot respond to instantaneous changes in 

current, a first order time constant is defined to 

determine the short-term average current drawn from 

the battery [23]. Given   , and processor cycle time  
, we can compute , the number of cycles 

over which average DC–DC current is calculated as 

 
where  is the instantaneous current drawn 

from the bat- tery. With discharge current ratio, we 

estimate battery efficiency using battery efficiency 

plot such as the one shown in Fig. 4. The 

 
 

Fig. 4.   Battery efficiency. 

 

total energy loss of the battery per cycle  
is the product of energy drained from the 

battery by the system with the effi- ciency loss 

  

Given the battery capacity model described 
above, battery es-timation is performed as follows. 

First, the designer character- izes the battery with its 

rated capacity, the time constant, and the table of 

points describing the discharge plot similar to the 

one shown in Fig. 4. During each simulation cycle 

discharge cur- rent ratio is computed from the rated 

battery current and average DC–DC current 

calculated from the last  cycles. Efficiency is 

calculated using linear interpolation between the 

points from the discharge plot. Total energy drawn 

from the battery during the cycle is obtained from 
(19). Lower efficiency means that less battery energy 

remains and thus the battery lifetime is propor- 

tionally lower. For example, if battery efficiency is 

60% and its rated capacity is 100 mAhr at 1 V, then 
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the battery would be drained in 12 min at average 

DC–DC current of 300 mA. With efficiency of 

100% the battery would last 1 h. 

 

 

IV. VALIDATION OF THE SIMULATION 

METHODOLOGY 
We validated the cycle-accurate power 

simulator by com- paring the computed energy 

consumption with measurements on the SmartBadge 

prototype implementation. The SmartBadge 

prototype consists of the StrongARM-1100 

processor, DC–DC Converter, FLASH, and SRAM 

on a PCB board. All the com- ponents except the 
CPU core are powered through the 3.3 V supply 

line. CPU core runs on 1.5 V supply. DC–DC 

converter is powered by the 3.5 V supply. DC–DC 

converter efficiency table contains 22 points derived 

from the plot shown in Fig. 3. Stripline interconnect 

model is used with 1.6 pF/cm capacitance calculated 

based on the PCB board characteristics [13]. Table I 

shows other system components. Average current 

consumed by the processor’s power supply and the 

total current drawn from the battery are measured 

with digital multimeters. Execution time is 

measured using the processor timer. 
Industry standard Dhrystone benchmark is used as a 

vehicle for methodology verification. Measurements 

and simulations have  been  done  for  ten  different  

operating  frequencies  of SA-1100 and SA-110 

processors. Dhrystone test case is run 10 million 

times, 445 instructions per loop. Simulations ran 

 

Table 1 

DHRYSTONE TEST  CASE  SYSTEM DESIGN 

 
 

On HP Vectra PC with Pentium II MMX 

300 MHz processor and 128 MB of memory. 

Hardware ran 450 times faster than the simulations 

without the energy models. Simulations with energy 

models were slightly slower (about 7%). Fig. 5 

shows average processor core and battery currents. 

Average simulation current is obtained by dividing 
the total energy consumed by the processor core or 

the battery with their respective supply voltages and 

the total execution time. 

Simulation results are within 5% of the 

hardware measure- ments for the same frequency of 

operation. The methodology presented in this paper 

for cycle-accurate energy consumption simulation is 

very accurate and thus can be used for architecture 

design exploration in embedded system designs. An 

example of such exploration is presented next. 

 

V. EMBEDDED  MPEG DECODER  

SYSTEM  DESIGN EXPLORATION 
The primary motivation for the 

development of cycle-accu- rate energy 

consumption simulation methodology is to provide 

an easy way for embedded system designers to 

evaluate mul- tiple hardware and software 

architectures with respect to per- formance and 

energy consumption constraints. In this section we 

will present an application of the simulation 

methodology to embedded MPEG video decoder 

system design exploration. The MPEG decoder 

design consists of the processor, the off-chip 

memory, the DC–DC converter, output to the LCD 
display, and the interface to the source of the MPEG 

stream. The input and output portions of the MPEG 

decoder design will not be consid- ered at this point. 

We focus on selection of memory hierarchy that is 

most energy efficient. 

The  characteristics  of  memory  

components  considered are  shown in  Table II.  

Two  different  instruction memories were 

evaluated—low-power FLASH and power-hungry 

burst FLASH. We looked at three different data 

memories—low- power  SRAM, faster  burst 

SRAM, and very power-hungry burst SDRAM. 
Both instruction and data memories are 1 MB in 

size. We considered using L2 cache in addition to L1 

cache. Unified L2 cache is 256 Kb, four-way set 

associative. The hardware configurations simulated 

are shown in Table III. The MPEG video decode 

sequence we used has 12 frames running at 30 

frames/second, with two I, three P, and seven B-

frames. We found that the results we obtained with a 

shorter video sequence matched well the results 

obtained with the longer trace. 

Fig. 6 shows the amount of time each 
system component is active during the MPEG 

decode and the amount of energy con- sumed. The 

original configuration is limited by the bandwidth of 

data memory. L2 cache is very fast but also 

consumes too much energy. Burst SDRAM design 

fully solves the memory bandwidth problem with 

least energy consumption. Instruction 
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Fig. 5.   Average processor core and battery 

currents. 

 

TABLE   II 

MEMORY ARCHITECTURES  FOR MPEG 

DESIGN 

 
 

TABLE  III HARDWARE  CONFIGURATIONS 

 
memory constitutes a very small portion of 

the total energy due to the relatively large L1 cache in 

comparison to the MPEG code size. The DC–DC 

converter consumes a significant amount of total 

energy and thus should be considered in system 
simula- tions. We conclude from this example that 

using faster and more power-hungry memory can be 

energy efficient. 

 

 
Fig. 6.   Performance and energy consumption for 

hardware architectures 

 

 
Fig. 7.   Cycle-accurate energy plot 

 

The analysis of peak energy consumption 
and the fine tuning of the architectures can be done 

by studying the energy con- sumption and the 

memory access patterns over a period of time. Fig. 7 

shows the energy consumption over time of the 

processor with burst FLASH and SRAM. Peak 

energy consumption can reach twice the average 

consumption, so the thermal character- istics of the 

hardware design, the DC–DC converter, and the bat- 

tery have to be specified accordingly. 

For best battery utilization, it is important to 

match the current consumption of the embedded 
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system to the discharge charac- teristic of the 

battery. On the other hand, the more capacity bat- 

tery has, the heavier and more expensive it will be. 

Fig. 8 shows that the instantaneous battery efficiency 

varies greatly over time with MPEG decode running 

on the hardware described above. 

Lower capacity batteries have larger 
efficiency losses. Fig. 9 shows that the total decrease 

in battery lifetime when contin- ually running 

MPEG algorithm on a battery with lower rated 

discharge current can be as high as 16%. The battery’s 

time con- stant was set to ms. 

The design exploration example presented 

in this section il- lustrates how the methodology for 

cycle-accurate energy con- sumption simulation can 

be used to select and fine-tune hard- ware 

configuration that gives the best tradeoff between 

perfor- mance and energy consumption. 

The main limitation of the cycle-accurate 
energy simulator is that the impact of code 

optimizations is not easily evaluated. For example, in 

order to evaluate energy efficiency of two different 

implementations of a particular portion of software, 

the designer would need to obtain cycle-by-cycle 

plots and then manually relate cycles to the software 

portion of interest. The profiling methodology 

presented next addresses this limitation. 

 

VI. PROFILING OF SOFTWARE 

ENERGY CONSUMPTION 
The profiler architecture is shown in Fig. 10. 

The shaded por- tion represents the extension we 

made to the cycle-accurate en- ergy simulator to 

enable code profiling. Profiling for energy and 

performance enables designers to identify those 

portions of their source code that need to be further 

optimized in order to either decrease energy 
consumption, increase performance, or both. Our 

profiler enables designers to explore multiple dif- 

ferent hardware and software architectures, as well as 

to do sta- tistical analysis based on the input 

samples. In this way the de- 

 
Fig. 8.   Battery efficiency for MPEG decoder. 

 

 
Fig. 9.   Percent decrease in battery lifetime for 

MPEG decoder 

sign can be optimized for both energy 

consumption and perfor- mance based on the 

expected input data set. 

The profiler operates as follows. Source 
code is compiled using a compiler for a target 

processor (e.g., application or op- erating system 

code). The output of the compiler is the exe- cutable 

that the cycle-accurate simulator executes 

(represented in this figure as assembly code that is 

input into the simulator) and a map of locations of 

each procedure in the executable that a profiler uses 

to gather statistics (the map is correspondence of 

assembly code blocks to procedures in ―C‖ source 

code). In order to increase the simulation speed, a 

user-defined profiling interval is set so that the 

profiler gathers statistics only at pre- determined 
time increments. Usually an interval of 1   s is suf- 

ficient. Note that longer intervals will give slightly 

faster ex- ecution time, with a loss of accuracy. Very 

short intervals (on the other of a few cycles) have 

larger calculation overhead. For example, energy 

consumption calculation gives approximately 10% 

overhead to standard cycle-accurate performance 

simula- tion. Profiling with an interval of 1   s gives 

negligible overhead over energy simulation (less then 

1%), with still accurate results. During each cycle of 

operation, the cycle-accurate energy consumption 
simulator calculates the current total executiontime  

and  energy  consumption  of  all  system  

components as  shown in (1). The profiler works 

concurrently with the cycle-accurate simulator. It 

periodically samples the simulation results (using 

sample interval specified by the user) and maps the 

energy and performance to the function executed 

using information gathered at the compile time. 

Once the simulation is complete, the results of 

profiling can be printed out by the total energy or 

time spent in each function. 
The main advantage of the profiler is that it allows 

designers to obtain energy consumption breakdown 

by procedures in their source code after running only 

one simulation. This information is of critical 
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importance when designing an embedded system, as 

it enables designers to quickly identify and address 

the areas in the source code that will provide largest 

overall energy sav- ings. A good example of profiler 

usage is shown in Table IV. The table shows a 

portion of energy profile for MP3 audio de- code. 

The first column gives the name of the top procedure, 
fol- lowed by its children. The next column gives 

the total energy spent for that procedure. For 

example, the total energy spent running the program 

( ) is 0.32 mWhr. The final column gives 

the amount of energy spent only in that particular 

proce- dure. For example, under  it is 

clear that  and its descendants spend 

the most energy, 0.0671 mWhr. Looking at the entry 

for   , it is easy to see that the largest portion 

of energy is consumed by its child, . There- fore, 

the procedures to focus optimization on are 

and . Although in this example we showed 
source code profile of total battery energy 

consumption, the pro- filer can report energy 

consumption for any system component, such as 

SRAM or the interconnect. 

The profiler allows for fast and accurate 

evaluation of software  and  hardware  architectures.  

Most  importantly,  it gives good guidance to the 

designer during the design process without requiring 

manual intervention. In addition, the profiler 

accounts for all embedded system components, not 

just the processor and the L1 cache as most 
general-purpose profilers do. In the next section we 

present a real design example 

 

 
Fig. 10.   Profiler architecture. 

uses the profiler to guide the implementation of 

the source code optimizations described earlier for 

the MP3 audio decoder running on the martBadge. 

 

VII. OPTIMIZING MP3 AUDIO DECODER 
The block diagram of the MPEG Layer III 

audio decoding algorithm (MP3) is shown in Fig. 11. 

It consists of three blocks: frame unpacking, 

reconstruction, and inverse mapping. The first step 

in decoding is synchronizing the incoming bitstream 

and the decoder. Huffman decoding of the subband 

coefficients is performed before requantization. 

Stereo processing, if applicable, occurs before the 

inverse mapping which consists of an inverse 

modified cosine transform (IMDCT) followed by a 

polyphase synthesis filterbank. We obtained the 

original MP3 audio decoder software from the 
International Organization for Standardization [28].  

Our design goal was to obtain real-time performance 

with low energy consumption while keeping in full 

compliance with the MPEG standard. 

Given the limited compiler support available [16], 

our ap- proach to code optimization is based on 

manual code rewriting and optimization guided by 

our profiler. Code transformations are applied in 

layers, starting from a high level of abstraction and 

moving down to very detailed and architecture-

specific op- timization. In the next three 
subsections, we will describe in detail the three 

optimization layers, moving from high to low 

abstraction. The results of optimizations applied to 

the MP3 de- coder will be presented in the last 

subsection. Note that all the optimizations presented 

in the following subsections were per- formed 

manually. 

 

A. Algorithmic Optimization 
The top layer in the optimization hierarchy 

targets algorithms. The original specification is first 
profiled to identify all compu- tational kernels, i.e., 

the procedures where most time and power are spent. 

Each computational kernel is then analyzed from a 

functional viewpoint. Then, the alternative 

algorithms for im- plementing the same functionality 

are considered and compared 

˘ IMUNIĆ et al.: ENERGY-EFFICIENT DESIGN 
OF BATTERY-POWERED EMBEDDED 

SYSTEMS 
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Table IV 

SAMPLE ENERGY PROFILING 

 
 

with the original one. At this level of 

abstraction, we consider only high-level estimators 

of algorithmic efficiency (such as number of basic 

operations). 

Our approach to algorithmic optimization 

in MP3 decoding has been conservative. First, we 
focused on just one computa- tional kernel where a 

large fraction of run time (and power) was spent, 

namely the subband synthesis. Second, we did not 

try to develop new original algorithms but we used 

previously pub- lished algorithmic enhancements 

[29], [30] that are still fully compliant to the MPEG 

standard. The new algorithm incorpo- rates an 

integer implementation of the scaled Chen discrete 

co- sine transform (DCT) instead of a generic DCT in 

the polyphase synthesis filterbank. The use of a 

scaled DCT reduces the DCT multiply count by 
28%. 

 

B. Data Optimization 

At a lower level of abstraction than the 

algorithmic level, we optimize code by changing the 

representation of the data ma- nipulated by the 

algorithms. The main objective is to match the 

characteristics of the target architecture with the 

processed data. In our case, the executable 

specification of the MPEG de- coder performed 

most computations using doubles, while the 

processor SA-1100 has no hardware floating point 
support. As a result, a direct implementation of the 

decoding algorithm, even after algorithmic 

optimization, was unacceptably slow and power-

consuming. Trying to reduce the precision of 

floating point computation, such as discussed in [31], 

would have helped only marginally as the processor 

would have to emulate in soft- ware all the floating 

point operations. 

To overcome this problem, we developed a fixed-
precision library and we implemented all 

computational kernels of the algorithm using fixed 

precision numbers. The number of dec- imal digits 

can be set at compile time. The ARM architecture 

is designed to support computation with 32-bits 

integers with maximum efficiency. Hence, little can 

be gained by reducing data size below 32 bits. On 

the other hand, when multiplyingtwo 32-bit 

numbers, the result is a 64-bit number and directly 

truncating the result of a multiplication to 32 digits 

frequently leads to incorrect results because of 

overflow. To increase ro- bustness, 64-bit numbers 
have been used for fixed-point compu- tation. This 

data type is supported by the ARM compiler through 

the definition of a    integer type. 

Computing with    integers is less 
efficient than using 32-bit integers, but results are 

accurate and the risk of overflow is minimized. 

Data optimization produced significant energy 

savings and speedups for almost all computational 

kernels of MP3 without any perceivable degradation 
in quality. The fixed-point library developed for this 

purpose contains macros for conversion from fixed-

point to floating point, accuracy adjustment, 

elementary function computation. 

 

C. Instruction Flow Optimization 

Moving further down in abstraction level, 

the third layer of optimizations targets low-level 

instruction flow. After extensive profiling, the most 

critical loops are identified and carefully analyzed. 

Source code is then rewritten to make computation 

more efficient. Well-known techniques such as loop 
merging, unrolling, software pipelining, loop 

invariant extraction, etc. [36], [35] have been 

applied. In the innermost loops, code can be 

written directly as inline assembly, to better exploit 

specialized instructions. 

 

Instruction flow optimizations have been 

extensively applied in  the MP3 decoder, obtaining 

significant speedup. We do not describe these 

optimizations in detail because they are common 

knowledge in the optimizing compilers literature 
[36], [35]. However, in our case most optimizations 

were performed manually due to lack of support by 

the ARM compiler. 

A simple example of this class of 

transformation is the use of the multiply-

accumulate instruction ( ) available in the ARM 

SA-1100 core. The inner loops of subband synthesis 

and inverse modified cosine transform (the two key 

computational kernels of MP3 decoder) contain 
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matrix multiplications which can be implemented 

efficiently with multiply-accumulate. In this case, 

we forced the ARM compiler to use the instruc- 

tion by inlining it in assembly. 

 

D. Results of MP3 Audio Decode Optimization 

Table V shows the top three functions in 
energy consumption for each code revision we 

worked on. The original code has a very large 

overhead due to floating point emulation, about 80% 

of energy consumption. The next largest issue is the 

redesign of SubBandSynthesis function that 

implements the polyphase syn- thesis filterbank. The 

details of each optimization type, namely 

algorithmic, data, and instruction-level optimizations, 

have been presented above. 

We will use the SubBandSynthesis function 

redesign as a ve- hicle to illustrate the use of our 

profiler. In the initial stage, we transferred all critical 
operations to fixed-point from floating point. The 

transfer resolved the issue with floating-point opera- 

tions but at the same time increased 

SubBandSynthesis fraction of total energy six times. 

Next we introduced a series of instruc- tion-level 

optimizations that resulted in a 30% decrease of Sub- 

BandSynthesis fraction of total energy, to 34.32% as 

shown in 

 

 
 

Fig. 11.   MP3 audio decoder architecture. 

 

Table V 

PROFILING FOR  MP3 IMPLEMENTATIONS 

 
 

 

 

 

 

Table VI ENERGY  FOR  MP3 

IMPLEMENTATIONS 

 
 

the Table V. In parallel we had decided to try the 

algorithmic changes on the current code. 

Profiling results in Table V show that the 

algorithmic opti- mizations considerably reduced the 

energy consumption of Sub- BandSynthesis 

function—it does not appear in the top three func- 

tions, and in fact it is only 3.2% of the total energy 

consump- tion. The final step is to combine the 

algorithmic changes with the data and instruction-
level changes, resulting in decrease of Sub- 

BandSynthesis fraction of energy consumption to 6% 

of total. 

System and component energy 

consumptions are shown in Table VI for different 

revisions of source code optimization. Positive  

percentages show  energy  decrease with  respect 

to the original code. Table VII shows the same 

results but for performance measurements. Positive 

percentages show perfor- mance increase. Although 

the energy savings of algorithmic versus data and 
instruction-level optimizations as compared to 

original code are comparable, the performance 

improvement of data and instruction-level 

optimizations is significant. Note that  the  increase  

in  energy  consumption and  the  decrease in 

performance of Flash is due to the increase in 

code size with the algorithmic change in 

SubBandSynthesis procedure. The  total  

improvement  in  system  performance and  energy 

consumption more than makes up for the 

degradation of Flash performance  and  energy 

consumption. Combined optimiza- tions give real-
time performance for MP3 audio decode which is  a  

primary constraint for  this  project. In  addition, 

lower energy consumption enables longer battery 

life. Note that faster implementation that is also 

more energy efficient might imply higher power 

consumption, which can be an issue for thermal 

design of the device. In the case presented in this 

paper, it 

 



 V.Prasanna Kumar / International Journal of Engineering Research and Applications 

 (IJERA)              ISSN: 2248-9622            www.ijera.com 

Vol. 2, Issue 6, November- December 2012, pp.312-325 

324 | P a g e  

Table VII 

PERFORMANCE FOR MP3 

IMPLEMENTATIONS 

 

 
Table VIII 

FIXED-POINT   PRECISION   AND 

COMPLIANCE 
 

 
was critical to get real-time performance with 

longer battery lifetime. The average and peak power 

consumption constraints are met with our final 

design. 
The final MP3 audio decoder compliance to 

the MPEG stan- dard has been tested as a function 

of precision for fixed-point computation. We used 

the compliance test provided by the MPEG standard 

[32], [33]. The range of RMS error between the 

samples defines the compliance level. Table VIII 

shows that results. Clearly, the larger number of 

precision bits results in better compliance. In our 

final MP3 audio decoder we used 27 bits precision. 

Using our design tools to guide the software 

optimization process, we have been able to increase 
performance by 92% while decreasing energy 

consumption by 77%, with full com- pliance to the 

MP3 audio decode standard. 

 

VIII. CONCLUSION 
I developed a methodology for cycle-accurate 

simulation of performance and energy consumption 

in embedded systems. Accuracy, modularity, and 

ease of integration with the instruc- tion-level 
simulators widely used in industry make this method- 

ology very applicable to the embedded system 

hardware and soft- ware design exploration. 

Simulation is found to be within 5% of the 

hardware measurements for Dhrystone benchmark. 

We presented MPEG video decoder embedded system 

design explo- ration as an example of how our 

methodology can be used in prac- tice to aid in the 

selection of the best hardware configuration. 

I have also developed a tool for profiling 

energy consump- tion of software in embedded 

systems. Profiling results enabled us to quickly and 

easily target the redesign the MP3 audio de- coder 

software. Our final MP3 audio decoder is fully 

compliant with the MPEG standard and runs in real 
time with low energy consumption. Using our 

design tools we have been able to in- crease 

performance by 92% while decreasing energy 

consump- tion by 77%. 
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