
 V.Prasanna Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 6, November- December 2012, pp.312-325

312 | P a g e

E

Energy-Efficient Design of Battery-Powered Embedded Systems

V.Prasanna Kumar M.Tech,
Asst.Professor, Dept Of E.C.E, L.N.B.C.I.E.T, Satara

Abstract
Energy-efficient design of battery-

powered systems demands optimizations in

both hardware and software. We present a

modular approach for enhancing instruction

level simulators with cycle-accurate simulation

of energy dissipation in embedded systems.

Our methodology has tightly coupled

component models thus making our approach

more accurate. Performance and energy

computed by our simulator are within a 5%

tolerance of hardware measurements on the

SmartBadge [2]. We show how the simulation

methodology can be used for hardware design

exploration aimed at enhancing the SmartBadge

with real-time MPEG video feature. In

addition, we present a profiler that relates

energy consumption to the source code. Using

the profiler we can quickly and easily redesign

the MP3 audio decoder software to run in real

time on the SmartBadge with low energy

consumption. Performance increase of 92% and

energy consumption decrease of 77% over the

original executable specification have been

achieved.

Index Terms—Low-power design, performance

tradeoffs, power consumption model, system-

level.

I. INTRODUCTION
NERGY consumption is a critical factor in

system-level design of embedded portable

appliances. In addition, low costs with fast time to

market are crucial. As a result, typical portable

appliances are built of commodity components and

have a microprocessor-based architecture. Full

system evalua- tion is often done on prototype

boards resulting in long design times. Field
programmable gate array (FPGA) hardware emu-

lators are sometimes used for functional debugging

but cannot give accurate estimates of energy

consumption or performance. Performance can be

evaluated using instruction-set simulators (e.g., [1]),

but there is limited or no support for energy consump-

tion evaluation.

Ideally, when designing an embedded

system built of com- modity components, a designer

would like to explore a limited number of

architectural alternatives and test functionality, en-

ergy consumption, and performance without the need
to build a prototype first. In addition, designers need

to optimize software both during hardware

development and once the prototype is built in order

to get the best performance and energy consump-

tion from the system. Embedded software

optimization requires tools for estimating the impact

of program transformations on energy consumption

and performance.

This work presents a complete solution for

all embedded system design issues discussed above.

The distinctive features of our approach are the

following: i) complete system-level and component
energy consumption estimates as well as battery

lifetime estimates; ii) ability to explore multiple

architectural alternatives; and iii) easy estimation of

the impact of software changes both during and

after the architectural exploration. The tool set is

integrated within the instruction set simulator

provided by ARM Ltd. [1]. It consists of two

components: a cycle-accurate system-level energy

consumption simulator with battery lifetime

estimation and a system profiler that correlates

both energy consumption and performance with
the code. Our tools have been tested on a real-life

industrial application, and have proven to be both

accurate (within 5% of hardware measurements) and

highly effective in optimizing the energy

consumption in embedded systems (energy

consump- tion reduced by 77%). In addition, they

are very flexible and easy to adopt to different

systems. The tools contain general models for all

typical embedded system components but the

microprocessor. In order to adopt the tools to another

processor, the ARM ISS needs to be replaced by the

ISS for the processor of interest.
The rest of this manuscript is organized as

follows. We discuss related work in Section II.

System model and the methodology for cycle-

accurate simulation of energy dissi- pation are

presented in Section III. Section IV shows that the

simulation results of timing and energy dissipation

using the methodology presented are within 5% of

the hardware mea- surements for the Dhrystone test

case. Hardware architecture trade-offs for

SmartBadge’s real-time MPEG video decode

design are explored using cycle-accurate energy
simulation in Section V. The profiling support

we have developed is presented in Section VI. A

full software design example of MP3 audio decoder

for the SmartBadge that uses our profiler is shown

in Section VII.

 V.Prasanna Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 6, November- December 2012, pp.312-325

313 | P a g e

II. RELATED WORK
As portable embedded systems have

grown in importance in recent years, so has the

need for tools that enable energy consumption

estimation for such systems. CAE support for
embedded system design is still limited.

Commercial tools target mainly functional

verification and performance estima- tion [3]–[6],

but provide no support for energy-related cost

metrics.

Processor energy consumption is generally

estimated by nstruction-level power analysis, first

proposed by Tiwari et al. [24], [25]. This technique

estimates the energy consumed by a program by

summing the energy consumed by the execution of

each instruction. Instruction-by-instruction energy

costs, together with nonideal effects, are

precharacterized once for all for each target
processor. An approach proposed recently in [12]

attempts to evaluate the effects of different cache

and bus configurations using linear equations to

relate the main cache characteristics to system

performance and energy consumption. This approach

does not account for highly nonlinear behavior in

cache accesses for different cache configurations

that are both data and architecture dependent.

A few research prototype tools that estimate the

energy con- sumption of processor core, caches, and

main memory in SOC design have been proposed

[7], [10]. Memory energy consump- tion is estimated
using cost-per-access models. Processor ex- ecution

traces are used to drive memory models, thereby ne-

glecting the nonnegligible impact of a nonideal

memory system on program execution. The final

system energy is obtained by summing over the

contribution of each component. The main

limitation of the approaches presented in [7] and

[10] is that the interaction between memory system

(or I/O peripherals) and processor is not modeled.

A more recent approach presented in [11] combines

multiple power estimators into one simulation
engine thus enabling de- tailed simulation of some

components, while using high-level models for

others. This approach is able to account for interac-

tion between memory, cache and processor at run

time, but at the cost of potentially long run-times.

Longer run-times are caused by different abstraction

levels of various simulators and by the overhead in

communication between different components. The

techniques that enable significant simulation

speedup are pre- sented, but at the cost of the loss of

detail in software design and in the input data trace.

Cycle-accurate register-transfer level energy
estimation is pre- sented in [8]. This tool integrates

RT level processor simulator with DineroIII cache

simulator and memory model. It is shown to be

within 15% of HSPICE simulations. Unfortunately,

this ap- proach is not practical for component-based

designs such as the one presented in this paper, as it

requires knowledge of the in- ternal design of system

components. In addition, it is slower than our

approach as it models at lower abstraction level.

An alternative approach for energy estimation using

measure- ments as a basis for estimation is presented

in PowerScope tool [9]. PowerScope requires two

computers to collect the measure- ment statistics,

some changes to the operating system source code,
and a digital multimeter. Although this system

enables accurate code profiling of an existing

system, it would be very difficult to use it for both

hardware and software architecture ex- ploration we

present in this paper, as in the early design stages

neither hardware nor operating systems or software

are avail- able for measurements.

Finally, previous approaches do not focus

on battery life op- timization, the ultimate goal of

energy optimization for portable systems. In fact,

when the battery subsystem is not considered in

energy estimation significant errors can result [21].
Some an- alytical estimates of the tradeoff between

battery capacity and delay in digital CMOS systems

are presented in [18]. Battery capacity is strongly

dependent on the discharge current as can be seen

from any battery data sheet [22]. Hence, it is

important to accurately model discharge current as a

function of time in an embedded system.

In contrast to previous approaches, in this

work memory models and processor instruction-

level simulator are tightly integrated together with

an accurate battery model into cycle- accurate
simulation engine. Estimation results obtained with

our simulator are shown to be within 5% of

measured energy consumption in hardware. In

addition, we accurately model battery discharge

current. Since we develop only one simulation

engine, there is no overhead in executing simulators

at different levels of abstraction, or in the interface

between them. Thus, our approach enables fast and

accurate architecture exploration for both energy

consumption and performance.

In an industrial environment, the degrees

of freedom in hardware design for embedded
portable appliances are often very limited, but for

software a lot more freedom is available. As a

result, a primary requirement for system-level

design methodology is to effectively support code

energy consumption optimization. Several

techniques for code optimization have been

presented in the past. A methodology that

combines automated and manual software

optimizations focused on optimizing memory

accesses has been presented in [17]. Tiwari et al.

[24], [25] uses instruction-level energy models to
develop compiler-driven energy optimizations such

as instruction reordering, reduction of memory

operands, operand swapping in Booth multipliers,

efficient usage of memory banks, and series of

processor specific optimizations. Several other opti-

mizations have been suggested, such as energy

efficient register labeling during the compile

 V.Prasanna Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 6, November- December 2012, pp.312-325

314 | P a g e

phase [19], procedure inlining and loop unrolling

[7], as well as instruction scheduling [27]. Work

presented in [20] applies a set of compiler

optimizations concurrently and evaluates the

resulting energy consumption via simulation.

All of the techniques discussed above focus on

automated instruction-level optimizations driven by
the compiler. Unfor- tunately, currently available

commercial compilers have lim- ited capabilities.

The improvements gained when using stan- dard

compiler optimizations are marginal compared to

writing energy efficient source code [16]. The

largest energy savings were observed at the

interprocedural level that compilers have not been

able to exploit.

Code optimization requires extensive

program execution analysis to identify energy-

critical bottlenecks and to provide feedback on the

impact of transformations. Profiling is typically used
to relate performance to the source code for CPU

and L1 cache [1]. Leveraging our estimation engine,

we implemented a code profiling tool that gives

percentages of time and energy spent in each

procedure for every system component, not only

CPU and L1 cache. Thanks to energy profiling, the

programmer can easily identify the most energy-

critical procedures, apply transformations, and

estimate their impact not only on pro- cessor energy

consumption, but also on memory hierarchy and

system busses.

Fig. 1. SmartBadge.

Our approach enables complete system-

level and component energy consumption estimates

as well as battery lifetime es- timates. In addition, it

provides an ability to quickly explore multiple

architectural alternatives. Finally, it enables software

optimization both during and after architectural

exploration using our energy profiling tool. In the

following section we present the cycle-accurate

energy simulator architecture to- gether with energy

consumption models for the components modeled.

III. SYSTEM MODEL
Typical portable embedded systems have

processors, storage, and peripherals. We use

SmartBadge [2] throughout this paper as a vehicle

to illustrate our methodology and to obtain hard-

ware measurements. The SmartBadge, shown in Fig.

1, is an em- bedded system consisting of the

StrongARM-1100 processor, FLASH, SRAM,

sensors, and modem/audio analog front-end on a

PCB board powered by the batteries through a DC–

DC converter. The initial goal in designing the
SmartBadge was to allow a computer or a human

user to provide location and envi- ronmental

information to a location server through a heteroge-

neous network. The SmartBadge could be used as a

corporate ID card, attached (or built in) to devices

such as PDAs and mobile telephones, or

incorporated in computing systems. The design goal

for the SmartBadge has since been extended to

combine lo- cation awareness and authentication

with audio and video sup- port. We will illustrate

how our methodology has been used for architecture

exploration of the new SmartBadge that needed to
support real-time MPEG video decode feature. In

addition, we will show how our profiler and code

optimizations can be used to improve code for MP3

audio decoder.

The system we use in this work to illustrate

our methodology, the SmartBadge, has an ARM

processor. As a result, we im- plemented the energy

models as extensions to the cycle-accu- rate

instruction-level simulator for the ARM processor

family, called the ARMmulator [1]. The ARMulator

is normally used for functional and performance
validation. Fig. 2 shows the sim- ulator architecture.

The typical sequence of steps needed to set up

system simulation can be summarized as follows: 1)

The designer provides a simple functional model for

each system component other than the processor; 2)

The functional model is annotated with a cycle-

accurate performance model; 3) Ap- plication

software (written in C) is cross-compiled and

loaded in specified locations of the system memory

model; and 4) The simulator runs the code and the

designer can analyze execution using a cross-

debugger or collecting statistics. A designer inter-
ested in using our methodology would only need to

addition- ally provide cycle-accurate energy models

for each component during step 2) of the simulation

setup. Thus, the designer can obtain power estimates

with little incremental effort.

We developed a methodology for

enhancing cycle-accurate simulators with energy

models of typical components used in embedded

system design. Each component is characterized with

equivalent capacitance for each of its power states.

Energy spent per cycle is a function of equivalent
capacitance, current voltage, and frequency. The

equivalent capacitance allows us to easily scale

energy consumed for each component as frequency

or voltage of operation change. Equivalent

capacitances are cal- culated given the information

provided in data sheets.

Internal operation of our simulator proceeds as

 V.Prasanna Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 6, November- December 2012, pp.312-325

315 | P a g e

follows. On each cycle of execution the ARMulator

sends out the infor- mation about the state of the

processor (―cycle type‖) and its address and data

busses. Two main classes of processor cycle types

are processor active, where active power is consumed,

and processor idle, where idle power is consumed.

The processor idle state represents an off-chip
memory request. The number of cycles that the

processor remains idle depends on L2 cache and

memory model access times. L2 cache, when

present, is always accessed before the main memory

and so is active on every memory access request. On

L2 cache miss, main memory is accessed. Memory

model accounts for energy spent during the memory

access. The interconnect energy model calculates

energy consumed by the interconnect and pins

based on the number of lines switched during the

cycle on the data and ad- dress busses. The DC–DC

converter energy model sums all the currents
consumed each cycle by other system components,

ac- counts for its efficiency loss, and gets the total

energy consumed from the battery. The battery

model accounts for battery effi- ciency losses due to

the difference between the rated current and discharge

current computed the current cycle.

The total energy consumed by the system per cycle

is the sum of energies consumed by the processor

and L1 cache (), interconnect and pins (

), memory (), L2 cache (), the

DC–DC converter () and the efficiency losses
in the battery ()

The total energy consumed during the

execution of the software on a given hardware

architecture is the sum of the energies con- sumed

during the each cycle. Models for energy

consumption and performance estimation of each

system component are de- scribed in the following

sections.

A. Processor

The ARM simulator provides a cycle-

accurate, instruction- level model for ARM

processors and L1 on-chip cache. The model was

enhanced with energy consumption estimates based

on the information provided by the data sheets. Two

power states are considered: active state in which

processor is running with

Fig. 2. Simulator architecture.

the on-chip cache, and the state in which

the processor is exe- cuting NOPs while waiting to
fill the cache.

Note that in the case of StrongARM

processor used in this work, the data sheet values for

current consumption correspond well to the measured

values. Wan [26] extended the StrongARM processor

model with base current costs for each instruction.

The average power consumption for most of the

instructions is 200 mW measured at 170 MHz. Load

and store instructions re- quired 260 mW each.

Because the difference in energy per in- struction is

minimal, it can be expected that the average power
consumption value from the data sheets is on the

same level of accuracy as the instruction-level

model. Thus we can use data sheet values to derive

equivalent capacitances for the Stron- gARM. Note

that for other processors data sheet values would

need to be verified by measurement, as often data

sheet values report the maximum power

consumption, instead of typical.

When the processor is executing with the

on-chip cache, it consumes the active power

specified in the data sheet mea- sured at given

voltage and frequency of operation . Total
equivalent active capacitance within the processor

is estimated as

The amount of energy consumed by

processor and L1-cache at specified processor cycle

time and CPU core voltage is

When there is an on-chip cache miss, the processor

stalls and ex-

ecutes NOP instructions which consume less power.

 V.Prasanna Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 6, November- December 2012, pp.312-325

316 | P a g e

can be estimated from the power consumed during

execution of

NOPs at voltage and frequency

The energy consumed within processor core per cycle

while ex- ecuting NOPs is

B. Memory and L2 Cache

The processor issues an off-chip memory

access when there is an L1 cache miss. The cache-

fill request will either be ser- viced by the L2 cache

if one is present in the design or directly from the

main memory. On L2 cache miss, a request is issued

to the processor to fetch data from the main memory.

Data sheets specify the memory and L2 cache access

times and energy con- sumed during active and idle
states of operation.

Memory access time is scaled by the

processor cycle time to obtain the number of

cycles the processor has to wait to serve a request

 (6). Wait cycles are defined for two different

types of memory accesses: sequential and
nonsequen- tial. Sequential access is at the address

immediately following the address of the previous

access. In burst type memory the se- quential access

is normally a fraction of the first nonsequential

access

Two energy consumption states are

defined for each type of memory: active and idle.

Energy consumed per cycle while

Fig. 3. DC–DC converter efficiency

memory is in active state operating at

supply voltage is a function of equivalent

active capacitance, voltage of operation and number
of total access cycles (+1)

Active memory capacitance can be

estimated from the ac- tive power specified in the data

sheet measured at voltage and frequency

Multibank memory can be represented as multiple

one-bank memories
Idle state can be further subdivided into

multiple states that describe modes of operation for

different types of memories. For example, DRAM

might have two idle states: refresh and sleep.

The designer specifies the percentage of the time

memory spends in each idle state. Total idle energy

per cycle for memory is

where is power consumption in idle

state . Both RAM and ROM are represented with

the same memory model, but with different

parameters.

The L2 cache access time and energy

consumption are treated the same way as any other
memory. L2 cache organization is de- termined from

the number of banks, lines per bank, and words per

line. Line replacement can follow any of the well-

known replace- ment policies. Cache hit rate is

strongly dependent on its organi- zation, which in turn

affects the total memory access time and the energy

consumption. Note that we are simulating details of

the L2 cache access and thus know the exact L2 cache

miss rate.

C. Interconnect and Pins
The interconnects on the PCB can

contribute a large portion of the off-chip

capacitance. Capacitance per unit length of the

interconnect is a parameter in the energy model that

can be ob- tained from the PCB manufacturer. The

length of an intercon- nect can be estimated by the

designer based on the approximate placement of the

selected components on the PCB. Pin capaci- tance

values are reported on the data sheets.

For each component the average length of

the clock line, data, and address buses between the
processor and the component are provided as one of

the input simulation parameters. Hence, the designer

is free to use any wire-length estimate [14] or mea-

surement. The interconnect lengths used in our

simulation of SmartBadge come from the prototype

board layout.

The total capacitance switched during one cycle is

shown in (10). It depends on the capacitance of one

interconnect line and the pins attached to it

and the number of lines switched during the cycle

 V.Prasanna Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 6, November- December 2012, pp.312-325

317 | P a g e

The total energy consumed per cycle

 is a function

of the voltage swing on the lines that switched

total capac- itance switched and the total time

to access the memory

D. DC–DC Converter

DC–DC converter losses can account for a

significant frac- tion of the total energy consumption.

Fig. 3 from the datasheets shows the dependence of

efficiency on the DC–DC converter output current.
Total current drawn from the DC–DC converter by

the system each cycle is a sum of the currents

drawn by each system component. A component

current is defined by

where is the energy consumed by the

component during cycle of length at

operating voltage .

Total current drawn from the battery can be

calculated as

Efficiency can be estimated using linear

interpolation from the data points derived from the

output current versus efficiency plot in the data

sheet. From our experience, a table with 20 points
derived from the data sheets gives enough

information for accurate linear estimation of values

not directly represented in the table.

Total energy DC–DC converter draws out of the

battery each cycle is

The energy consumed by the DC–DC converter

 is differ-

ence between the energy provided by the battery
 and

the energy consumed from the DC–DC converter

by all other components,

E. Battery Model

The main battery characteristic is its rated

capacity measured in megawatt hours. Since total

available battery capacity varies with the discharge
rate, manufacturers specify plots in the datasheets

with discharge rate versus battery efficiency similar

to the one shown below.

The discharge rate (or discharge current ratio) is

given by

where , the rated discharge current, is

derived from the battery specification and is the

average current drawn by the DC–DC converter. As a

battery cannot respond to instantaneous changes in

current, a first order time constant is defined to

determine the short-term average current drawn from

the battery [23]. Given , and processor cycle time
, we can compute , the number of cycles

over which average DC–DC current is calculated as

where is the instantaneous current drawn

from the bat- tery. With discharge current ratio, we

estimate battery efficiency using battery efficiency

plot such as the one shown in Fig. 4. The

Fig. 4. Battery efficiency.

total energy loss of the battery per cycle
is the product of energy drained from the

battery by the system with the effi- ciency loss

Given the battery capacity model described
above, battery es-timation is performed as follows.

First, the designer character- izes the battery with its

rated capacity, the time constant, and the table of

points describing the discharge plot similar to the

one shown in Fig. 4. During each simulation cycle

discharge cur- rent ratio is computed from the rated

battery current and average DC–DC current

calculated from the last cycles. Efficiency is

calculated using linear interpolation between the

points from the discharge plot. Total energy drawn

from the battery during the cycle is obtained from
(19). Lower efficiency means that less battery energy

remains and thus the battery lifetime is propor-

tionally lower. For example, if battery efficiency is

60% and its rated capacity is 100 mAhr at 1 V, then

 V.Prasanna Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 6, November- December 2012, pp.312-325

318 | P a g e

the battery would be drained in 12 min at average

DC–DC current of 300 mA. With efficiency of

100% the battery would last 1 h.

IV. VALIDATION OF THE SIMULATION

METHODOLOGY
We validated the cycle-accurate power

simulator by com- paring the computed energy

consumption with measurements on the SmartBadge

prototype implementation. The SmartBadge

prototype consists of the StrongARM-1100

processor, DC–DC Converter, FLASH, and SRAM

on a PCB board. All the com- ponents except the
CPU core are powered through the 3.3 V supply

line. CPU core runs on 1.5 V supply. DC–DC

converter is powered by the 3.5 V supply. DC–DC

converter efficiency table contains 22 points derived

from the plot shown in Fig. 3. Stripline interconnect

model is used with 1.6 pF/cm capacitance calculated

based on the PCB board characteristics [13]. Table I

shows other system components. Average current

consumed by the processor’s power supply and the

total current drawn from the battery are measured

with digital multimeters. Execution time is

measured using the processor timer.
Industry standard Dhrystone benchmark is used as a

vehicle for methodology verification. Measurements

and simulations have been done for ten different

operating frequencies of SA-1100 and SA-110

processors. Dhrystone test case is run 10 million

times, 445 instructions per loop. Simulations ran

Table 1

DHRYSTONE TEST CASE SYSTEM DESIGN

On HP Vectra PC with Pentium II MMX

300 MHz processor and 128 MB of memory.

Hardware ran 450 times faster than the simulations

without the energy models. Simulations with energy

models were slightly slower (about 7%). Fig. 5

shows average processor core and battery currents.

Average simulation current is obtained by dividing
the total energy consumed by the processor core or

the battery with their respective supply voltages and

the total execution time.

Simulation results are within 5% of the

hardware measure- ments for the same frequency of

operation. The methodology presented in this paper

for cycle-accurate energy consumption simulation is

very accurate and thus can be used for architecture

design exploration in embedded system designs. An

example of such exploration is presented next.

V. EMBEDDED MPEG DECODER

SYSTEM DESIGN EXPLORATION
The primary motivation for the

development of cycle-accu- rate energy

consumption simulation methodology is to provide

an easy way for embedded system designers to

evaluate mul- tiple hardware and software

architectures with respect to per- formance and

energy consumption constraints. In this section we

will present an application of the simulation

methodology to embedded MPEG video decoder

system design exploration. The MPEG decoder

design consists of the processor, the off-chip

memory, the DC–DC converter, output to the LCD
display, and the interface to the source of the MPEG

stream. The input and output portions of the MPEG

decoder design will not be consid- ered at this point.

We focus on selection of memory hierarchy that is

most energy efficient.

The characteristics of memory

components considered are shown in Table II.

Two different instruction memories were

evaluated—low-power FLASH and power-hungry

burst FLASH. We looked at three different data

memories—low- power SRAM, faster burst

SRAM, and very power-hungry burst SDRAM.
Both instruction and data memories are 1 MB in

size. We considered using L2 cache in addition to L1

cache. Unified L2 cache is 256 Kb, four-way set

associative. The hardware configurations simulated

are shown in Table III. The MPEG video decode

sequence we used has 12 frames running at 30

frames/second, with two I, three P, and seven B-

frames. We found that the results we obtained with a

shorter video sequence matched well the results

obtained with the longer trace.

Fig. 6 shows the amount of time each
system component is active during the MPEG

decode and the amount of energy con- sumed. The

original configuration is limited by the bandwidth of

data memory. L2 cache is very fast but also

consumes too much energy. Burst SDRAM design

fully solves the memory bandwidth problem with

least energy consumption. Instruction

 V.Prasanna Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 6, November- December 2012, pp.312-325

319 | P a g e

Fig. 5. Average processor core and battery

currents.

TABLE II

MEMORY ARCHITECTURES FOR MPEG

DESIGN

TABLE III HARDWARE CONFIGURATIONS

memory constitutes a very small portion of

the total energy due to the relatively large L1 cache in

comparison to the MPEG code size. The DC–DC

converter consumes a significant amount of total

energy and thus should be considered in system
simula- tions. We conclude from this example that

using faster and more power-hungry memory can be

energy efficient.

Fig. 6. Performance and energy consumption for

hardware architectures

Fig. 7. Cycle-accurate energy plot

The analysis of peak energy consumption
and the fine tuning of the architectures can be done

by studying the energy con- sumption and the

memory access patterns over a period of time. Fig. 7

shows the energy consumption over time of the

processor with burst FLASH and SRAM. Peak

energy consumption can reach twice the average

consumption, so the thermal character- istics of the

hardware design, the DC–DC converter, and the bat-

tery have to be specified accordingly.

For best battery utilization, it is important to

match the current consumption of the embedded

 V.Prasanna Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 6, November- December 2012, pp.312-325

320 | P a g e

system to the discharge charac- teristic of the

battery. On the other hand, the more capacity bat-

tery has, the heavier and more expensive it will be.

Fig. 8 shows that the instantaneous battery efficiency

varies greatly over time with MPEG decode running

on the hardware described above.

Lower capacity batteries have larger
efficiency losses. Fig. 9 shows that the total decrease

in battery lifetime when contin- ually running

MPEG algorithm on a battery with lower rated

discharge current can be as high as 16%. The battery’s

time con- stant was set to ms.

The design exploration example presented

in this section il- lustrates how the methodology for

cycle-accurate energy con- sumption simulation can

be used to select and fine-tune hard- ware

configuration that gives the best tradeoff between

perfor- mance and energy consumption.

The main limitation of the cycle-accurate
energy simulator is that the impact of code

optimizations is not easily evaluated. For example, in

order to evaluate energy efficiency of two different

implementations of a particular portion of software,

the designer would need to obtain cycle-by-cycle

plots and then manually relate cycles to the software

portion of interest. The profiling methodology

presented next addresses this limitation.

VI. PROFILING OF SOFTWARE

ENERGY CONSUMPTION
The profiler architecture is shown in Fig. 10.

The shaded por- tion represents the extension we

made to the cycle-accurate en- ergy simulator to

enable code profiling. Profiling for energy and

performance enables designers to identify those

portions of their source code that need to be further

optimized in order to either decrease energy
consumption, increase performance, or both. Our

profiler enables designers to explore multiple dif-

ferent hardware and software architectures, as well as

to do sta- tistical analysis based on the input

samples. In this way the de-

Fig. 8. Battery efficiency for MPEG decoder.

Fig. 9. Percent decrease in battery lifetime for

MPEG decoder

sign can be optimized for both energy

consumption and perfor- mance based on the

expected input data set.

The profiler operates as follows. Source
code is compiled using a compiler for a target

processor (e.g., application or op- erating system

code). The output of the compiler is the exe- cutable

that the cycle-accurate simulator executes

(represented in this figure as assembly code that is

input into the simulator) and a map of locations of

each procedure in the executable that a profiler uses

to gather statistics (the map is correspondence of

assembly code blocks to procedures in ―C‖ source

code). In order to increase the simulation speed, a

user-defined profiling interval is set so that the

profiler gathers statistics only at pre- determined
time increments. Usually an interval of 1 s is suf-

ficient. Note that longer intervals will give slightly

faster ex- ecution time, with a loss of accuracy. Very

short intervals (on the other of a few cycles) have

larger calculation overhead. For example, energy

consumption calculation gives approximately 10%

overhead to standard cycle-accurate performance

simula- tion. Profiling with an interval of 1 s gives

negligible overhead over energy simulation (less then

1%), with still accurate results. During each cycle of

operation, the cycle-accurate energy consumption
simulator calculates the current total executiontime

and energy consumption of all system

components as shown in (1). The profiler works

concurrently with the cycle-accurate simulator. It

periodically samples the simulation results (using

sample interval specified by the user) and maps the

energy and performance to the function executed

using information gathered at the compile time.

Once the simulation is complete, the results of

profiling can be printed out by the total energy or

time spent in each function.
The main advantage of the profiler is that it allows

designers to obtain energy consumption breakdown

by procedures in their source code after running only

one simulation. This information is of critical

 V.Prasanna Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 6, November- December 2012, pp.312-325

321 | P a g e

importance when designing an embedded system, as

it enables designers to quickly identify and address

the areas in the source code that will provide largest

overall energy sav- ings. A good example of profiler

usage is shown in Table IV. The table shows a

portion of energy profile for MP3 audio de- code.

The first column gives the name of the top procedure,
fol- lowed by its children. The next column gives

the total energy spent for that procedure. For

example, the total energy spent running the program

() is 0.32 mWhr. The final column gives

the amount of energy spent only in that particular

proce- dure. For example, under it is

clear that and its descendants spend

the most energy, 0.0671 mWhr. Looking at the entry

for , it is easy to see that the largest portion

of energy is consumed by its child, . There- fore,

the procedures to focus optimization on are

and . Although in this example we showed
source code profile of total battery energy

consumption, the pro- filer can report energy

consumption for any system component, such as

SRAM or the interconnect.

The profiler allows for fast and accurate

evaluation of software and hardware architectures.

Most importantly, it gives good guidance to the

designer during the design process without requiring

manual intervention. In addition, the profiler

accounts for all embedded system components, not

just the processor and the L1 cache as most
general-purpose profilers do. In the next section we

present a real design example

Fig. 10. Profiler architecture.

uses the profiler to guide the implementation of

the source code optimizations described earlier for

the MP3 audio decoder running on the martBadge.

VII. OPTIMIZING MP3 AUDIO DECODER
The block diagram of the MPEG Layer III

audio decoding algorithm (MP3) is shown in Fig. 11.

It consists of three blocks: frame unpacking,

reconstruction, and inverse mapping. The first step

in decoding is synchronizing the incoming bitstream

and the decoder. Huffman decoding of the subband

coefficients is performed before requantization.

Stereo processing, if applicable, occurs before the

inverse mapping which consists of an inverse

modified cosine transform (IMDCT) followed by a

polyphase synthesis filterbank. We obtained the

original MP3 audio decoder software from the
International Organization for Standardization [28].

Our design goal was to obtain real-time performance

with low energy consumption while keeping in full

compliance with the MPEG standard.

Given the limited compiler support available [16],

our ap- proach to code optimization is based on

manual code rewriting and optimization guided by

our profiler. Code transformations are applied in

layers, starting from a high level of abstraction and

moving down to very detailed and architecture-

specific op- timization. In the next three
subsections, we will describe in detail the three

optimization layers, moving from high to low

abstraction. The results of optimizations applied to

the MP3 de- coder will be presented in the last

subsection. Note that all the optimizations presented

in the following subsections were per- formed

manually.

A. Algorithmic Optimization
The top layer in the optimization hierarchy

targets algorithms. The original specification is first
profiled to identify all compu- tational kernels, i.e.,

the procedures where most time and power are spent.

Each computational kernel is then analyzed from a

functional viewpoint. Then, the alternative

algorithms for im- plementing the same functionality

are considered and compared

˘ IMUNIĆ et al.: ENERGY-EFFICIENT DESIGN
OF BATTERY-POWERED EMBEDDED

SYSTEMS

 V.Prasanna Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 6, November- December 2012, pp.312-325

322 | P a g e

Table IV

SAMPLE ENERGY PROFILING

with the original one. At this level of

abstraction, we consider only high-level estimators

of algorithmic efficiency (such as number of basic

operations).

Our approach to algorithmic optimization

in MP3 decoding has been conservative. First, we
focused on just one computa- tional kernel where a

large fraction of run time (and power) was spent,

namely the subband synthesis. Second, we did not

try to develop new original algorithms but we used

previously pub- lished algorithmic enhancements

[29], [30] that are still fully compliant to the MPEG

standard. The new algorithm incorpo- rates an

integer implementation of the scaled Chen discrete

co- sine transform (DCT) instead of a generic DCT in

the polyphase synthesis filterbank. The use of a

scaled DCT reduces the DCT multiply count by
28%.

B. Data Optimization

At a lower level of abstraction than the

algorithmic level, we optimize code by changing the

representation of the data ma- nipulated by the

algorithms. The main objective is to match the

characteristics of the target architecture with the

processed data. In our case, the executable

specification of the MPEG de- coder performed

most computations using doubles, while the

processor SA-1100 has no hardware floating point
support. As a result, a direct implementation of the

decoding algorithm, even after algorithmic

optimization, was unacceptably slow and power-

consuming. Trying to reduce the precision of

floating point computation, such as discussed in [31],

would have helped only marginally as the processor

would have to emulate in soft- ware all the floating

point operations.

To overcome this problem, we developed a fixed-
precision library and we implemented all

computational kernels of the algorithm using fixed

precision numbers. The number of dec- imal digits

can be set at compile time. The ARM architecture

is designed to support computation with 32-bits

integers with maximum efficiency. Hence, little can

be gained by reducing data size below 32 bits. On

the other hand, when multiplyingtwo 32-bit

numbers, the result is a 64-bit number and directly

truncating the result of a multiplication to 32 digits

frequently leads to incorrect results because of

overflow. To increase ro- bustness, 64-bit numbers
have been used for fixed-point compu- tation. This

data type is supported by the ARM compiler through

the definition of a integer type.

Computing with integers is less
efficient than using 32-bit integers, but results are

accurate and the risk of overflow is minimized.

Data optimization produced significant energy

savings and speedups for almost all computational

kernels of MP3 without any perceivable degradation
in quality. The fixed-point library developed for this

purpose contains macros for conversion from fixed-

point to floating point, accuracy adjustment,

elementary function computation.

C. Instruction Flow Optimization

Moving further down in abstraction level,

the third layer of optimizations targets low-level

instruction flow. After extensive profiling, the most

critical loops are identified and carefully analyzed.

Source code is then rewritten to make computation

more efficient. Well-known techniques such as loop
merging, unrolling, software pipelining, loop

invariant extraction, etc. [36], [35] have been

applied. In the innermost loops, code can be

written directly as inline assembly, to better exploit

specialized instructions.

Instruction flow optimizations have been

extensively applied in the MP3 decoder, obtaining

significant speedup. We do not describe these

optimizations in detail because they are common

knowledge in the optimizing compilers literature
[36], [35]. However, in our case most optimizations

were performed manually due to lack of support by

the ARM compiler.

A simple example of this class of

transformation is the use of the multiply-

accumulate instruction () available in the ARM

SA-1100 core. The inner loops of subband synthesis

and inverse modified cosine transform (the two key

computational kernels of MP3 decoder) contain

 V.Prasanna Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 6, November- December 2012, pp.312-325

323 | P a g e

matrix multiplications which can be implemented

efficiently with multiply-accumulate. In this case,

we forced the ARM compiler to use the instruc-

tion by inlining it in assembly.

D. Results of MP3 Audio Decode Optimization

Table V shows the top three functions in
energy consumption for each code revision we

worked on. The original code has a very large

overhead due to floating point emulation, about 80%

of energy consumption. The next largest issue is the

redesign of SubBandSynthesis function that

implements the polyphase syn- thesis filterbank. The

details of each optimization type, namely

algorithmic, data, and instruction-level optimizations,

have been presented above.

We will use the SubBandSynthesis function

redesign as a ve- hicle to illustrate the use of our

profiler. In the initial stage, we transferred all critical
operations to fixed-point from floating point. The

transfer resolved the issue with floating-point opera-

tions but at the same time increased

SubBandSynthesis fraction of total energy six times.

Next we introduced a series of instruc- tion-level

optimizations that resulted in a 30% decrease of Sub-

BandSynthesis fraction of total energy, to 34.32% as

shown in

Fig. 11. MP3 audio decoder architecture.

Table V

PROFILING FOR MP3 IMPLEMENTATIONS

Table VI ENERGY FOR MP3

IMPLEMENTATIONS

the Table V. In parallel we had decided to try the

algorithmic changes on the current code.

Profiling results in Table V show that the

algorithmic opti- mizations considerably reduced the

energy consumption of Sub- BandSynthesis

function—it does not appear in the top three func-

tions, and in fact it is only 3.2% of the total energy

consump- tion. The final step is to combine the

algorithmic changes with the data and instruction-
level changes, resulting in decrease of Sub-

BandSynthesis fraction of energy consumption to 6%

of total.

System and component energy

consumptions are shown in Table VI for different

revisions of source code optimization. Positive

percentages show energy decrease with respect

to the original code. Table VII shows the same

results but for performance measurements. Positive

percentages show perfor- mance increase. Although

the energy savings of algorithmic versus data and
instruction-level optimizations as compared to

original code are comparable, the performance

improvement of data and instruction-level

optimizations is significant. Note that the increase

in energy consumption and the decrease in

performance of Flash is due to the increase in

code size with the algorithmic change in

SubBandSynthesis procedure. The total

improvement in system performance and energy

consumption more than makes up for the

degradation of Flash performance and energy

consumption. Combined optimiza- tions give real-
time performance for MP3 audio decode which is a

primary constraint for this project. In addition,

lower energy consumption enables longer battery

life. Note that faster implementation that is also

more energy efficient might imply higher power

consumption, which can be an issue for thermal

design of the device. In the case presented in this

paper, it

 V.Prasanna Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 6, November- December 2012, pp.312-325

324 | P a g e

Table VII

PERFORMANCE FOR MP3

IMPLEMENTATIONS

Table VIII

FIXED-POINT PRECISION AND

COMPLIANCE

was critical to get real-time performance with

longer battery lifetime. The average and peak power

consumption constraints are met with our final

design.
The final MP3 audio decoder compliance to

the MPEG stan- dard has been tested as a function

of precision for fixed-point computation. We used

the compliance test provided by the MPEG standard

[32], [33]. The range of RMS error between the

samples defines the compliance level. Table VIII

shows that results. Clearly, the larger number of

precision bits results in better compliance. In our

final MP3 audio decoder we used 27 bits precision.

Using our design tools to guide the software

optimization process, we have been able to increase
performance by 92% while decreasing energy

consumption by 77%, with full com- pliance to the

MP3 audio decode standard.

VIII. CONCLUSION
I developed a methodology for cycle-accurate

simulation of performance and energy consumption

in embedded systems. Accuracy, modularity, and

ease of integration with the instruc- tion-level
simulators widely used in industry make this method-

ology very applicable to the embedded system

hardware and soft- ware design exploration.

Simulation is found to be within 5% of the

hardware measurements for Dhrystone benchmark.

We presented MPEG video decoder embedded system

design explo- ration as an example of how our

methodology can be used in prac- tice to aid in the

selection of the best hardware configuration.

I have also developed a tool for profiling

energy consump- tion of software in embedded

systems. Profiling results enabled us to quickly and

easily target the redesign the MP3 audio de- coder

software. Our final MP3 audio decoder is fully

compliant with the MPEG standard and runs in real
time with low energy consumption. Using our

design tools we have been able to in- crease

performance by 92% while decreasing energy

consump- tion by 77%.

REFERENCES
[1] Advanced RISC Machines Ltd (ARM),

ARM Software Development Toolkit

Version 2.11, 1996.

[2] G. Q. Maguire, M. Smith, and H. W. P.
Beadle, ―SmartBadges: A wear- able

computer and communication system,‖ in

Proc. 6th Int. Workshop

Hardware/Software Codesign, 1998,

Invited talk.

[3] CoWare. CoWareN2c [Online]. Available:

url:www.coware.com/n2c. html [4]

Mentor Graphics. [Online]. Available:

www.mentor.com/codesign

[5] Synopsys. [Online]. Available:

www.synopsys.com/products/hwsw
[6] Cadence. [Online]. Available:

www.cadence.com/alta/products

[7] Y. Li and J. Henkel, ―A framework for

estimating and minimizing energy

dissipation of embedded HW/SW systems,‖

in Proc. Design Automation Conf., 1998,

pp. 188–193.

[8] N. Vijaykrishnan, M. Kandemir, M.

Irwin, H. Kim, and W. Ye, ―Energy-

driven integrated hardware–software

optimizations using SimplePower,‖ in
Proc. 27th Int. Symp. Computer

Architecture, 2000, pp. 24–30.

[9] J. Flinn and M. Satyanarayanan,

―PowerScope:A tool for profiling the

energy usage of mobile applications,‖ in

Proc. 2nd IEEE Workshop Mo-bile

Computing Systems Applications, 1999, pp.

23–30.

[10] B. Kapoor, ―Low power memory

architecutres for video applications,‖ in

Proc. 8th Great Lakes Symp. VLSI, 1998,

pp. 2–7.
[11] M. Lajolo, A. Raghunathan, and S. Dey,

―Efficient power co-estimation techniques

for SOC design,‖ in Proc. Design,

Automation Test Europe Conf., 2000, pp.

27–34.

[12] T. Givargis, F. Vahid, and J. Henkel, ―Fast

cache and bus power estima- tion for

parameterized SOC design,‖ in Proc.

Design, Automation Test Europe Conf.,

http://www.coware.com/n2c
http://www.mentor.com/codesign
http://www.synopsys.com/products/hwsw
http://www.cadence.com/alta/products

 V.Prasanna Kumar / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 6, November- December 2012, pp.312-325

325 | P a g e

2000, pp. 333–339.

[13] OZ Electronics Manufacturing. PCB

Modeling Tools [Online]. Avail- able: url:

www.oem.com.au/manu/pcbmodel.html

[14] A. El Gamal and Z. A. Syed, ―A stochastic

model for interconnections in custom

integrated circuits,‖ IEEE Trans. Circuits
Syst., vol. CAS-28, pp. 888–894, Sept.

1981.

[15] T. Simunic, L. Benini, and G. De Micheli,

―Cycle-accurate simulation of energy

consumption in embedded systems,‖ in

Proc. Design Automation Conf., 1999, pp.

867–872.

[16] T. Simunic, L. Benini, G. De Micheli, and

M. Hans, ―Energy-efficient design of

battery-powered embedded systems,‖ in Int.

Symp. Low-Power Electronics Design,

1999, pp. 212–217.
[17] F. Catthoor, S. Wuytack, E. De Greef, F.

Balasa, L. Nachtergaele, and A.

Vanduoppelle, Custom Memory

Management Methodology: Explo- ration

of Memory Organization for Embedded

Multimedia System De-sign. New York:

Kluwer, 1998.

[18] M. Pedram and Q. Wu, ―Battery-powered

digital CMOS design,‖ in Proc. Design,

Automation Test Europe Conf., 1999, pp.

17–23.
[19] H. Mehta, R. M. Owens, M. J. Irvin, R.

Chen, and D. Ghosh, ―Tech- niques for

low energy software,‖ in Proc. Int. Symp.

Low Power Elec- tronics Design, 1997, pp.

72–75.

[20] M. Kandemir, N. Vijaykrishnan, M.

Irwin, and W. Ye, ―Influence of compiler

optimizations on system power,‖ in Proc.

27th Int. Symp. Com- puter Architecture,

2000, pp. 35–41.

http://www.oem.com.au/manu/pcbmodel.html

