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Abstract  

Fingerprint verification is an important 

biometric technique for personal identification. 

In this paper, we describe the design and 

implementation of a prototype automatic 

identity-authentication system that uses 

fingerprints to authenticate the identity of an 

individual. We have developed an improved 

minutiae-extraction al-gorithm that is faster and 

more accurate than our earlier algorithm [58]. 

An alignment-based minutiae-matching 

algorithm has been proposed. This algorithm is 

capable of finding the correspondences between 

input minutiae and the stored template without 

resorting to exhaustive search and has the ability 

to compensate adaptively for the nonlinear 

deformations and inexact transformations 

between an input and a template. To establish an 

objective assessment of our system, both the 

Michigan State University and the National 

Institute of Standards and Technology NIST 9 

fingerprint data bases have been used to estimate 

the performance numbers. The experimental 

results reveal that our system can achieve a good 

performance on these data bases. We also have 

demonstrated that our system satisfies the 

response-time requirement. A complete 

authentication procedure, on average, takes 

about 1.4 seconds on a Sun ULTRA 1 

workstation (it is expected to run as fast or faster 

on a 200 HMz Pentium [7]). 

 

Keywords: Biometrics, dynamicprogramming, 

fingerprint iden-tification, matching, minutiae, 
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I.     INTRODUCTION 
There are two types of systems that help 

automatically establish the identity of a person: 1) 

authentication (verifica-tion) systems and 2) 

identification systems. In a verification system, a 

person desired to be identified submits an identity 

claim to the system, usually via a magnetic stripe 

card, login name, smart card, etc., and the system 

either rejects or accepts the submitted claim of 

identity (Am I who I claim I am?). In an 

identification system, the system establishes a 

subject's identity (or fails if the subject is not 
enrolled in the system data base) without the 

subject's having to claim an identity (Who am I?). 

The topic of this paper is a verification system 

based on fingerprints, and the terms verification, 

authentication, and identification are used in a 

loose sense and synonymously. 

 

Accurate automatic personal identification 

is becoming more and more important to the 
operation of our increas-ingly electronically 

interconnected information society [13], [20], [53]. 

Traditional automatic personal identification 

technologies to verify the identity of a person, which 

use ªsomething that you know,º such as a personal 

identifica-tion number (PIN), or ªsomething that you 

have,º such as an identification (ID) card, key, etc., 

are no longer considered reliable enough to satisfy 

the security requirements of electronic transactions. 

All of these techniques suffer from a common 

problem of inability to differentiate between an 
authorized person and an impostor who fraudulently 

acquires the access privilege of the authorized 

person [53]. Biometrics is a technology that 

(uniquely) identifies a per-son based on his 

physiological or behavioral characteristics. It relies 

on ªsomething that you areº to make personal 

identification and therefore can inherently 

differentiate be-tween an authorized person and a 

fraudulent impostor [13], [20], [53]. Although 

biometrics cannot be used to establish an absolute 

ªyes/noº personal identification like some of the 
traditional technologies, it can be used to achieve a 

ªpositive identificationº with a very high level of 

confidence, such as an error rate of 0.001%  

 

A.  Overview  of  Biometrics 

Theoretically, any human physiological or 

behavioral characteristic can be used to make a 

personal identification as long as it satisfies the 

following requirements [13]: 

1) universality, which means that every person 

should have the characteristic;  

2) uniqueness, which indicates that no two 
persons should be the same in terms of the 

characteristic;  

3) permanence, which means that the 

characteristic should be invariant with time;  

4) collectability, which indicates that the 

characteristic can be measured quantitatively.  

In practice, there 

aresomeotherimportantrequirements  
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1) performance, which refers to the achievable 

identification accuracy, the resource requirements to 

achieve an acceptable identification accuracy, and 

the working or environmental factors that affect the 

identification accuracy; 

2) acceptability, which indicates to what extent 

people are willing to accept the biometric system; 
3) circumvention, which refers to how easy it is to 

fool the system by fraudulent techniques. Biometrics 

is a rapidly evolving technology that has been 

widely used in forensics, such as criminal 

identification and prison security, and has the 

potential to be widely adopted in a very broad range 

of civilian applications  

1) banking security, such as electronic fund 

transfers, ATM security, check cashing.

transactions;2) physical access control, such as 

airport access control; 3) information system 

security, such as access to data bases via login 

privileges; 

4) government benefits distribution, such as 

welfare disbursement programs [49]; 

5) customs and immigration, such as the 

Immigration and Naturalization Service Passenger 

Accelerated Service System (INSPASS) which 

permits faster immigration procedures based on 
hand geometry  

6) national ID systems, which provide a unique ID 

to the citizens and integrate different government 

services [31]; 

7) voter and driver registration, providing 

registration facilities for voters and drivers. 

Currently, there are mainly nine different biometric 

techniques that are either widely used or under 

investigation,including face, fingerprint, hand 

geometry, hand vein, iris, retinal pattern, signature, 

voice print, and facial thermograms 
Although each of these techniques, to a 

certain extent, satisfies the above requirements and 

has been used inpractical systems [13], [18], [20], 

[53] or has the potential to become a valid 

biometric technique [53], not many ofthem are 

acceptable (in a court of law) as indisputable 

evidence of identity. For example, despite the fact 

thatextensive studies have been conducted on 

automatic face recognition and that a number of 

face-recognition systemsare available [3], [62], 

[70], it has not yet been proven that 1) face can be 

used reliably to establish/verify identity and 2) a 
biometric system that uses only face can achieve an 

acceptable identification accuracy in a practical 

environment. Without any other information about 

the people in Fig. 1, it will be extremely difficult 

for both a human and a face-recognition system to 

conclude that the different faces shown in Fig. 1 

are disguised versions of the same person. So far, 

the only legally acceptable, readily automated, and 

mature biometric technique is the automatic 

fingerprintidentification technique, which has been 

used and accepted in forensics since the early 
1970’s [42]. Although signatures also are legally 

acceptable biometrics, they rank a distant second to 

fingerprints due to issues involved with accuracy, 

forgery, and behavioral variability. Currently, the 

world market for biometric systems is estimated at 

approximately $112 million. Automatic fingerprint-

identification systems intended mainly for forensic 

applications account for approximately $100 

million. The biometric systems intended for 

civilian applications are growing rapidly. For 

example, by the year 1999, the world market for 

biometric systemsused for physical access control 

alone is expected to expand to $100 million [53]. 

 

  

No metric is sufficiently adequate to give 

a reliable and convincing indication of the 

identification accuracy of a biometric system. A 
decision made by a biometric system is either a 

―genuine individual‖ type of decision or an 

―impostor‖ type of decision, which can be 

represented by two statistical distributions, called 

genuine distribution and impostor distribution, 

respectively. For each type of decision, there are 

two possible decision outcomes, true or false. 

Therefore, there are a total of four possible 

outcomes: 1) a genuine individual is accepted, 2) a 

genuine individual is rejected, 3) an impostor is 

rejected, and 4) an impostor is accepted. Outcomes 

1) and 3) are correct, whereas 2) and 4) are 
incorrect. In principle, we can use the false 

(impostor) acceptance rate (FAR), the false 

(genuine individual) reject rate (FRR), and the 

equal error rate (EER)2 to indicate the 

identification accuracy of a biometric system [18], 

[19], [53]. In practice, these performance metrics 

can only be estimated from empirical data, and the 

estimates of the performance are very data 

dependent. Therefore, they are meaningful only for 

a specific data base in a specific test environment. 

For example, the performance of a biometric 
system claimed by its manufacturer had an FRR of 

0.3% and an FAR of 0.1%. An independent test by 
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the Sandia National Laboratory found that the same 

system had an FRR of 25% with an unknown FAR 

[10]. 

 

B. History of Fingerprints 

Fingerprints are graphical flow-like ridges 

present on human fingers (see Fig. 2). Their 
formations depend on the initial conditions of the 

embryonic mesoderm from which they develop. 

Humans have used fingerprints as a means of 

identification for a very long time [42]. Modern 

fingerprint techniques were initiated in the late 

sixteenth 

century [25], [53]. In 1684, English plant 

morphologist N. 

 

 
 

 
 

Fig. 2. Fingerprints and a fingerprint classification 

schema of six categories: (a) arch, (b) tented 

arch, (c) right loop, (d) left loop, (e) whorl, and (f) 

twinloop. Critical points in a fingerprint, called 

core and delta, are marked on (c). 

Grew published a paper reporting his 

systematic study onthe ridge, furrow, and pore 

structure in fingerprints, which isbelieved to be the 

first scientific paper on fingerprints [42].Since 

then, a number of researchers have invested a 
hugeamount of effort in studying fingerprints. In 

1788, a detaileddescription of the anatomical 

formations of fingerprints wasmade by Mayer [16], 

in which a number of fingerprintridge 

characteristics were identified. Starting from 1809, 

T.Bewick began to use his fingerprint as his 

trademark, whichis believed to be one of the most 

important contributions inthe early scientific study 

of fingerprint identification [42].Purkinje proposed 

the first fingerprint classification schemein 1823, 

which classified fingerprints into nine 
categoriesaccording to the ridge configurations 

[42]. H. Fauld, in1880, first scientifically suggested 

the individuality anduniqueness of fingerprints. At 

the same time, Herschelasserted that he had 

practiced fingerprint identification 

forapproximately 20 years [42]. This discovery 

established thefoundation of modern fingerprint 

identification. In the latenineteenth century, Sir F. 

Galton conducted an extensive 

study of fingerprints [42]  

 

C. Design of a Fingerprint-Verification System 

An automatic fingerprint identity 

authentication systemhas four main design 

components: acquisition, representation(template), 

feature extraction, and matching.1) Acquisition: 

There are two primary methods of capturing a 

fingerprint image: inked (off-line) and live 

scan(ink-less). An inked fingerprint image is 

typically acquiredin the following way: a trained 

professional3 obtains animpression of an inked 

finger on a paper, and the impression is then 

scanned using a flat-bed document scanner. The 
livescanfingerprint is a collective term for a 

fingerprint imagedirectly obtained from the finger 

without the intermediatestep of getting an 

impression on a paper. Acquisition ofinked 

fingerprints is cumbersome; in the context of 

anidentity-authentication system, it is both 

infeasible and socially unacceptable for identity 

verification.4 The mostpopular technology to 

obtain a live-scan fingerprint image is based on the 

optical frustrated total internal reflection(FTIR) 

concept [28]. When a finger is placed on one side 
of a glass platen (prism), ridges of the finger are in 

contactwith the platen while the valleys of the 

finger are not. The rest of the imaging system 

essentially consists of anassembly of a light 

emitting diode (LED) light source and a charge-

couple device (CCD) placed on the other side ofthe 

glass platen. The laser light source illuminates the 

glass at a certain angle, and the camera is placed 

such that it cancapture the laser light reflected from 

the glass. The light that is incident on the plate at 

the glass surface touched bythe ridges is randomly 

scattered, while the light incident at the glass 
surface corresponding to valleys suffers 

totalinternal reflection, resulting in a corresponding 

fingerprint image on the imaging plane of the 

CCD.A number of other live-scan imaging methods 

are nowavailable, based on ultrasound total internal 

reflection [61],optical total internal reflection of 

edge-lit holograms [21], thermal sensing of the 

temperature differential (across theridges and 

valleys) [41], sensing of differential capacitance 

[47], and noncontact three-dimensional scanning 

[44]. ) Representation (Template): Which machine-
readable representation completely captures the 

invariant anddiscriminatory information in a 

fingerprint image? This representation issue 

constitutes the essence of 

fingerprintverificationdesign and has far-reaching 

implications on the design of the rest of the system. 

The unprocessed grayscalevalues of the fingerprint 
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images are not invariant over the time of 

capture.Representations based on the entire gray-

scale profile ofa fingerprint image are prevalent 

among the verificationsystems using optical 

matching [4], [50]. The utility ofthe systems using 

such representation schemes, however,may be 

limited due to factors like brightness 
variations,image-quality variations, scars, and large 

global distortionspresent in the fingerprint image 

because these systems areessentially resorting to 

template-matching strategies for 

verification.Further, in many verification 

applications, terserrepresentations are desirable, 

which preclude representationsthat involve the 

entire gray-scale profile fingerprintimages. Some 

system designers attempt to circumvent 

thisproblem by restricting that the representation is 

derivedfrom a small (but consistent) part of the 

finger [50]. If thissame representation is also being 
used for identificationapplications, however, then 

the resulting systems mightstand a risk of 

restricting the number of unique identitiesthat 

could be handled simply because of the fact that 

thenumber of distinguishable templates is limited. 

On theother hand, an image-based representation 

makes fewerassumptions about the application 

domain (fingerprints) andtherefore has the potential 

to be robust to wider varieties offingerprint images. 

For instance, it is extremely difficult toextract a 

landmark-based representation from a 
(degenerate)finger devoid of any ridge structure. 

Typically, automatic fingerprint identification and 

authentication systems rely on representingthe two 

most prominent structures5: ridge endings and 

ridge bifurcations. Fig. 3 shows examples of 

ridgeendings and ridge bifurcations. These two 

structures are background-foreground duals of each 

other, and pressurevariations could convert one 

type of structure into the other. Therefore, many 

common representation schemesdo not distinguish 

between ridge endings and bifurcations. Both the 

structures are treated equivalently and 
arecollectively called minutiae. The simplest of the 

minutiaebased representations constitute a list of 

points defined bytheir spatial coordinates with 

respect to a fixed imagecentric coordinate system. 

Typically, though, these minimalminutiae-based 

representations are further enhanced by tagging 

each minutiae (or each combination of minutiae 

subset,e.g., pairs, triplets) with additional features. 

For instance, each minutiae could be associated 

with the orientation of theridge at that minutiae; or 

each pair of the minutiae could beassociated with 
the ridge count: the number of ridges visitedduring 

the linear traversal between the two minutiae. 

TheAmerican National Standards Institute–

National Institute ofStandards and Technology 

(NIST) standard representationof a fingerprint is 

based on minutiae and includes minutiaelocation 

and orientation [2]. The minutiae-based 

representationmight also include one or more 

global attributes likeorientation of the finger, 

locations of core or delta,6 andfingerprint class. 

Our representation is minutiae based, and each 

minutiais described by its location ( coordinates) 

and theorientation. We also store a short segment 

of the ridgeassociated with each minutia. 
 

3) Feature Extraction: A feature extractor finds 

the ridgeendings and ridge bifurcations from the 

input fingerprint images. If ridges can be perfectly 

located in an input fingerprint image, then minutiae 

extraction is just a trivial task of extracting singular 

points in a thinned ridgemap. In practice, however, 

it is not always possible to obtain a perfect ridge 

map. The performance of currentlyavailable 

minutiae-extraction algorithms depends heavily on 

the quality of input fingerprint images.  

 
4) Matching: Given two (test and reference) 

representations,the matching module determines 

whether the prints are impressions of the same 

finger. The matching phasetypically defines a 

metric of the similarity between two fingerprint 

representations. The matching stage also definesa 

threshold to decide whether a given pair of 

representationsare of the same finger (mated pair) 

or not.In the case of the minutiae-based 

representations, the fingerprint-verification 

problem may be reduced to a pointpattern matching 
(minutiae pattern matching) problem. In 

the ideal case, if 1) the correspondence between the 

templateminutiae pattern and input minutiae pattern 

is known, 

2) there are no deformations such as translation, 

rotation,and deformations between them, and 3) 

each minutia present in a fingerprint image is 

exactly localized, thenfingerprint verification is 

only a trivial task of counting the number of 

spatially matching pairs between the two 

images.Determining whether two representations of 

a finger extracted from its two impressions, 
possibly separated bya long duration of time, are 

indeed representing the same finger is an extremely 

difficult problem. Fig. 4 illustratesthe difficulty 

with an example of two images of the same finger. 

The difficulty can be attributed to two 

primaryreasons. First, if the test and reference 

representations are indeed mated pairs, the 

correspondence between the test andreference 

minutiae inthetwo representations isnot 

known.Second, the imaging system presents a 

number of peculiarand challenging situations, some 
of which are unique to afingerprint image capture 

scenario.1) Inconsistent contact: the act of sensing 

distorts thefinger. Determined by the pressure and 

contact of the finger on the glass platen, the three-

dimensional shapeof the finger gets mapped onto 

the two-dimensional surface of the glass platen. 

Typically, this mappingfunction is uncontrolled 
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and results in different inconsistently mapped 

fingerprint images across theimpressions.2) 

Nonuniform contact: The ridge structure of a 

fingerwould be completely captured if ridges of the 

part of the finger being imaged are in complete 

opticalcontact with the glass platen. However, the 

dryness of 

 
                           (a) 

 
                         (b) 

Fig. 4. Two different fingerprint impressions of the 

same finger.To know the correspondence between 

the minutiae of these two 

fingerprint images, all of the minutiae must be 

precisely localizedand the deformations must be 

recovered. 

 

3) Irreproducible contact: manual work, 

accidents, etc.inflict injuries to the finger, thereby 

changing the ridge structure of the finger either 
permanently orsemipermanently. This may 

introduce additional spurious minutiae.4) Feature 

extraction artifacts: The feature 

extractionalgorithm is imperfect and introduces 

measurement errors. Various image-processing 

operations mightintroduce inconsistent biases to 

perturb the location and orientation estimates of the 

reported minutiaefrom their gray-scale 

counterparts. 5) Sensing act: the act of sensing 

itself adds noise to theimage. For example, residues 

are leftover from theprevious fingerprint capture. A 

typical finger-imagingsystem distorts the image of 

the object being sensed due to imperfect imaging 

conditions. In the FTIRsensing scheme, for 

example, there is a geometric distortion because the 

image plane is not parallel tothe glass platen.In 

light of the operational environments mentioned 

above,the design of the matching algorithms needs 
to establish andcharacterize a realistic model of the 

variations among therepresentations of mated pairs. 

This model should includethe properties of interest 

listed below. a) The finger may be placed at 

different locations on theglass platen, resulting in a 

(global) translation of the minutiae from the test 

representation from those inthe reference 

representation.b) The finger may be placed in 

different orientations onthe glass platen, resulting 

in a (global) rotation of theminutiae from the test 

representation from that of thereference 

representation.c) The finger may exert a different 
(average) downwardnormal pressure on the glass 

platen, resulting in a(global) spatial scaling of the 

minutiae from the testrepresentation from those in 

the reference representation.d) The finger may 

exert a different (average) shear forceon the glass 

platen, resulting in a (global) sheartransformation 

(characterized by a shear direction andmagnitude) 

of the minutiae from the test representationfrom 

those in the reference representation.e) Spurious 

minutiae may be present in both the reference and 

the test representations.f) Genuine minutiae may be 
absent in the reference or test representations.g) 

Minutiae may be locally perturbed from their 

―true‖location, and the perturbation may be 

different foreach individual minutiae. (Further, the 

magnitude ofsuch perturbation is assumed to be 

small and within a fixed number of pixels.)h) The 

individual perturbations among the 

correspondingminutiae could be relatively large 

(with respectto ridge spacings), but the 

perturbations among pairsof the minutiae are 

spatially linear.i) Theindividual perturbations 

among the correspondingminutiae could be 
relatively 

 
Fig. 5. Aligned ridge structures of mated pairs. 

Note that the best alignment in one part (top left)of 

the image results in a large displacements between 

the corresponding minutiae in the otherregions 

(bottom right). 
large (with respect to ridge spacings), but 

the perturbations among pairs ofthe minutiae are 
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spatially nonlinear.j) Only a (ridge) connectivity 

preserving transformationcould characterize the 

relationship between the testand reference 

representations [73].A matcher may rely on one or 

more of these assumptions,resulting in a wide 

spectrum of behavior. At the oneend of the 

spectrum, we have the ―Euclidean‖ matchers,which 
allow only rigid transformations among the testand 

reference representations. At the other extreme, 

wehave a ―topological‖ matcher, which may allow 

the mostgeneral transformations, including, say, 

order reversals.7The choice of assumptions often 

represents verificationperformance tradeoffs. Only 

a highly constrained systemwith not too demanding 

accuracies could get away with restrictive 

assumptions. A number of the matchers in 

theliterature assume similarity transformation 

[assumptions a),b), and c)]; they tolerate both 

spurious minutiae as wellas missing genuine 
minutiae. ―Elastic‖ matchers in theliterature 

accommodate a small bounded local perturbationof 

minutiae from their true location but cannot handle 

largedisplacements of the minutiae from their true 

locations [59].Fig. 5 illustrates a typical situation of 

aligned ridgestructures of mated pairs. Note that 

the best alignment inone part (top left) of the image 

may result in a large amountof displacements 

between the corresponding minutiae in theother 

regions (bottom right). In addition, observe that 

thedistortion is nonlinear: given distortions at two 
arbitrarylocations on the finger, it is not possible to 

predict thedistortion at all of the intervening points 

on the linejoining the two points. In the authors’ 

opinion, a good matcher needs to accommodate not 

only global similaritytransformations [assumptions 

a), b), and c)] but also shear transformation 

[assumption d)] and linear [assumption h)] 

 

 
Fig. 6. Architecture of the automatic identity-

authentication system. 

And nonlinear [assumption i)] differential 

distortions. Inour experience, assumption j) is too 

general a model to characterize the impressions of a 

finger, and its inclusioninto the matcher design 

may compromise efficiency and discriminatory 

power of the matcher. In addition, the 

matchersbased on such assumptions need to use 

connectivityinformation, which is notoriously 

difficult to extract fromfingerprint images of poor 
quality.  

D. An Automatic Identity-Authentication 

SystemWe will introduce a prototype automatic 

identity authentication system, which is capable of 

automatically authenticatingthe identity of an 

individual using fingerprints. Currently, it is mainly 

intended for user authentication.For example, our 

system can be used to replace password 
authentication during the log-in session in a 

multiusercomputing environment. 

 

 II. MINUTIAE EXTRACTION 
Fingerprint authentication is based on the 

matching ofminutiae patterns. A reliable minutiae-

extraction algorithm is critical to the performance 

of an automatic identityauthenticationsystem using 

fingerprints. In our system, we have developed a 

minutiae-extraction algorithm thatis an improved 
version of the technique described in [58]. 

Experimental results show that this algorithm 

performsvery well in operation. The overall 

flowchart of this algorithm is depicted in Fig. 7. It 

mainly consists ofthree components: 1) orientation 

field estimation, 2) ridge extraction, and 3) 

minutiae extraction and postprocessing.In the 

following subsections, we will describe in detail 

our minutiae-extraction algorithm. We assume that 

theresolution of input fingerprint images is 500 

dots per inch. 

 

 

Fig. 7. Flowchart of the minutiae-extraction 

algorithm. 

  

A. Orientation Field Estimation  

The orientation field of a fingerprint 

image representsthe intrinsic nature of the 

fingerprint image. It plays a veryimportant role in 

fingerprint-image analysis. A number ofmethods 

have been proposed to estimate the orientationfield 

of fingerprint images [38], [40], [56]. In our 

system, anew hierarchical implementation of the 

algorithm proposedin [56] is used (Fig. 8). With 

this algorithm, a fairly smoothorientation-field 
estimate can be obtained. Fig. 9 shows 

theorientation field of a fingerprint image estimated 
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with ourhierarchical algorithm.After the orientation 

field of an input fingerprint image is estimated, a 

segmentation algorithm, which is based onthe local 

certainty level of the orientation field, is used to 

locate the region of interest within the input 

fingerprintimage. The certainty level of the 

orientation field at pixel is defined as follows: A. 
Orientation Field EstimationThe orientation field 

of a fingerprint image represents the intrinsic 

nature of the fingerprint image. It plays a 

veryimportant role in fingerprint-image analysis. A 

number of methods have been proposed to estimate 

the orientationfield of fingerprint images [38], [40], 

[56]. In our system, a new hierarchical 

implementation of the algorithm proposedin [56] is 

used (Fig. 8). With this algorithm, a fairly 

smoothorientation-field estimate can be obtained. 

Fig. 9 shows theorientation field of a fingerprint 

image estimated with ourhierarchical algorithm. 
 

III. MINUTIAE MATCHING 
Fingerprint matching has been approached 

from several different strategies, like image-based 

[4], [50] and ridgepattern matching of fingerprint 

representations. There also exist graph-based 

schemes [22], [23], [26], [27], [34], [36] for 

fingerprint matching. Our automatic 

fingerprintverification algorithm instead is based 
on point pattern 

 

  
 

(a) (b) 
 

 

 
      (c)     (d) 

 

 

  
(e)     (f) 

ithm on a fingerprint image (512 _ 512) captured 

with an inkless scanner. (a) Input 

 

image. (b) Orientation field superimposed on the 

input image. (c) Fingerprint region. (d) Extracted 

ridges. (e) Thinned ridge map. (f) Extracted 

minutiae and their orientations superimposed on 
the input image. 

 

matching (minutiae matching). The reason 

for this choice is our need to design a robust, 

simple, and fast verification 

 

algorithm and to keep a small template 

size. A number of point pattern matching 

algorithms have been proposed in the literature [1], 

[55], [63], [66], [69], [71]. A general point 

matching problem is essentially intractable. 

Features associated with points and their spatial 
properties, such as the relative distances between 

points, are widely used in these algorithms to 

reduce the exponential number of search paths. 

 

A. Alignment of Point Patterns 

Ideally, two sets of planar point patterns 

can be aligned completely by only two 

corresponding point pairs. A true alignment 

between two point patterns can be obtained by 

testing all possible corresponding point pairs and 

selecting the optimal one. Due to the presence of 
noise and  deformations, however, the input 

minutiae cannot always be aligned exactly with 

respect to those of the templates. To accurately 

recover pose transformations between two point 

patterns, a relatively large number of corresponding 

point  pairs need to be used. This leads to a 

prohibitively large number of possible 

correspondences to be tested. Therefore, an 

alignment by corresponding point pairs is not 

practical even though it is feasible. 

 

B. Aligned Point Pattern Matching 
If two identical point patterns are exactly 

aligned with each other, then each pair of 

corresponding points are completely coincident. In 

such a case, point pattern matching can be simply 

achieved by counting the number of overlapping 

pairs. In practice, however, such a situation is not 

encountered. On the one hand, the error in 

determining and localizing minutiae hinders the 

alignment algorithm to recover the relative pose 

transformation exactly, while on the other hand, 

our alignment scheme described in Fig. 13 does not 
model the nonlinear deformation of fingerprints, 

which is an inherent property of fingerprint 

impressions. 
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IV. EXPERIMENTAL RESULTS 
A. Feature-Extraction Performance 

It is very difficult to assess the 

performance of featureextraction algorithms 

independently. Accuracy of the extracted minutiae 
was subjectively confirmed in two ways. Visual 

inspection of a large number of typical 

minutiaeextraction results showed that our 

algorithm rarely missed minutiae in fingerprint 

images of reasonable quality. 

 

B. System Performance 

We have tested our system on the MSU 

fingerprint data base. It contains ten images (640 

480) per finger from 70 individuals for a total of 

700 fingerprint images, which were captured with a 

scanner manufactured by Digital Biometrics. When 
these fingerprint images were captured, no 

restrictions on the position and orientation of 

fingers were imposed. 

 
(a)                                         (b) 

 
(c)      
   (d) 

 

 

Fig. 15. Results of applying the matching algorithm 

to an input minutiae set and a template. (a) Input 

minutiae set. (b) Template minutiae set. (c) 

Alignment result based on the minutiae marked 

with green circles. (d) Matching result where 

template minutiae and their correspondences are 

connected by green lines. 

 

C. Matching Scores 
We first evaluated the matching scores of 

correct and incorrect matches. In test 1, each 

fingerprint in the MSU fingerprint data base was 

matched with all the other fingerprints in the data 

base. A matching was labeled correct if the 

matched fingerprint was from the same finger, and 

incorrect otherwise. A total of 489 300 (700x 699) 

matchings were performed. 

 

D. Authentication Test 

In test 1, for each individual, we randomly 

selected three fingerprint images that passed the 

quality check as the template minutiae patterns for 
the individual and inserted them into the system 

data base. The major reason why weuse three 

fingerprint templates is that a significant number of 

acquired fingerprint images from the same finger in 

the MSU data base do not have a sufficient amount 

of common region of interest due to the 

unrestricted acquisition process. 

 

V. SUMMARY AND CONCLUSIONS 
We have introduced an automatic identity- 

authentication system using fingerprints. The 

implemented minutiaeextraction algorithm is much 

more accurate and faster than our previous feature-

extraction algorithm [58]. The proposed alignment-

based elastic matching algorithm is capable of 

finding the correspondences between minutiae 

without resorting to an exhaustive search. The 

system types of inputs. It should not be confused 

with a practical system. In practice, a number of 

mechanisms need to be developed besides the 

minutiae extraction and minutiae matching. 
A biometric system based solely on a single 

biometric feature may not be able to meet the 

practical performance requirement in all aspects. 

By integrating two or more biometric features, 

overall verification performance may be improved. 

For example, it is well known that fingerprint 

verification tends to have a larger false reject rate 

due to the reasons discussed above, but it has a 

very low false accept rate. On the other hand, face 

recognition is not reliable in establishing the true 

identity but it is efficient in searching a large data 
base to find the top matches. By combining 

fingerprint matching and face recognition, the false 

reject rate may be reduced without sacrificing the 

false accept rate, and the system may then be able 

to operate in the identification mode. Currently, we 

are investigating a decision-fusion schema to 

integrate fingerprint and face.  

The expected error rate of a deployed 

biometric system is usually a very small number ( 

1%). To estimate such a small number reliably and 

accurately, large representative data sets that satisfy 

the two requirements mentioned in Section I are 
needed. Generally, under the assumption of 

statistical independence, the number of tests 

conducted should be larger than ten divided by the 

error rate [24]. Currently, we are evaluating the 

system on a large data set of live-scan fingerprint 

images. 
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