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ABSTRACT 
  In this paper, homotopy perturbation method is 

applied to solve non-linear Fredholm integro-

differential equations of fractional order. 

Examples are presented to illustrate the ability of 

the method. The results reveal that the proposed 

methods very effective and simple and show that 

this method can be applied to the non-fractional 

cases. 
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I.   INTRODUCTION 
 The generalization of the concept of derivative 

𝐷𝛼𝑓(𝑥) to non-integer values of a goes to the 
beginning of the theory of differential calculus. In 

fact, Leibniz, in his correspondence with Bernoulli, 

L’Hopital and Wallis (1695), had several notes about 

the calculation of  𝐷
1

2 𝑓(𝑥). Nevertheless, the 

development of the theory of fractional derivatives 

and integrals is due to Euler, Liouville and Abel 

(1823). However, during the last 10 years fractional 

calculus starts to attract much more attention of 

physicists and mathematicians. It was found that 

various; especially interdisciplinary applications can 

be elegantly modeled with the help of the fractional 

derivatives. For example, the nonlinear oscillation of 
earthquake can be modeled with fractional 

derivatives [3], and the fluid-dynamic traffic model 

with fractional derivatives caneliminate the 

deficiency arising from the assumption of continuum 

traffic flow [4]. In the fields of physics and 

chemistry, fractional derivatives and integrals are 

presently associated with the application of fractals in 

the modeling of electro-chemical reactions, 

irreversibility and electro magnetism [10], heat 

conduction in materials with memory and radiation 

problems. Many mathematical formulations of 
mentioned phenomena contain nonlinear integro-

differential equations with fractional order. Nonlinear 

phenomena are also of fundamental importance in 

various fields of science and engineering. The   

nonlinear models of real-life problems are still 

difficult to be solved either numerically or 

theoretically. There has recently been much attention  

 

 

 

devoted to the search for better and more efficient 

solution methods for determining a solution, 
approximate or exact, analytical or numerical, to 

nonlinear models. So the aim of this work is to 

present a numerical method (Homotopy-perturbation 

method) for approximating  the solution of a 

nonlinear fractional integro-differential equation of 

the second kind: 

𝐷𝛼𝑓 𝑥 − 𝜆 𝑘 𝑥, 𝑡 
1

0

𝐹 𝑓 𝑡  𝑑𝑡

= 𝑔(𝑥)                                                                             (1) 

Where  𝐹(𝑓 𝑡 ) =  𝑓 𝑡  𝑞                 𝑞 > 1 

With these supplementary conditions: 

 

𝑓(𝑖) 0 = 𝛿𝑖 , 𝑖 = 0,1,… , 𝑟 − 1,
𝑟 − 1 < 𝛼 ≤ 𝑟     ,   𝑟
∈ 𝑁                                                   (2) 

Where,𝑔 ∈ 𝐿2([0, 1)), 𝑘 ∈ 𝐿2([0,1)2) are known 

functions, f(x) is the unknown function, 𝐷𝛼 is the 

Caputo fractional differentiation operator and q is a 

positive integer. There are several techniques for 

solving such equations like Adomian decomposition 

method [7, 9], collocation method [8], CAS wavelet 

method [2] and differential transform method [1]. 
Most of the methods have been utilized in linear 

problems and a few numbers of works have 

considered nonlinear problems. In this paper, 

homotopy perturbation method is applied to solve 

non-linear Fredholm integro-differential equations of 

fractional order. 

 

II. FRACTIONAL CALCULUS 
There are several definitions of a fractional derivative 

of order 𝛼> 0. The two most commonly used 

definitions are the Riemann–Liouville and Caputo. 

Definition1.2.The Riemann-Liouville fractional 

integral operator of order α ≥ 0 is defined as 

 

𝐽𝛼𝑓 𝑥 

=
1

Γ(𝛼)
 (𝑥 − 𝑡)𝛼−1𝑓 𝑡 𝑑𝑡,   𝛼 > 0, 𝑥

𝑥

0

> 0,                                                                                     3  
𝐽0𝑓 𝑥 = 𝑓(𝑥) 

 

IIt has the following properties: 
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𝐽𝛼𝑥𝛾 =
Γ 𝛾 + 1 

Γ 𝛼 + 𝛾 + 1 
𝑥𝛼+𝛾  ,    

   𝛾 > −1,                                               (4)     
Definition2.2.The Caputo definition of fractal 

derivative operator is given by 

  

𝐷𝛼𝑓 𝑥 = 𝐽𝑚−𝛼𝐷𝑚𝑓 𝑥 

=
1

Γ(𝑚 − 𝛼)
  𝑥

𝑥

0

− 𝑡 𝑚−𝛼−1𝑓 𝑚 (𝑡)𝑑𝑡,                                                (5) 
 

Where, m − 1 ≤ α ≤ m,  m∈N, x >0. It has the 

following two basic properties: 

 

𝐷𝛼𝐽𝛼𝑓 𝑥 = 𝑓 𝑥 , 
𝐽𝛼𝐷𝛼𝑓 𝑥 
= 𝑓 𝑥 

−  𝑓 𝑘 (0+)
𝑥𝑘

𝑘!
,

𝑚−1

𝑘=0

𝑥 > 0                                                                       (6) 

 

 

III. HOMOTOPY PERTURBATION METHOD 

FOR SOLVING EQ. (1) 
To illustrate the basic concept of homotopy 

perturbation method, consider the following non-

linear functional equation: 

 

𝐴 𝑈 = 𝑓 𝑟                                                                 (7) 

With the following boundary conditions: 

 

 𝑈,
𝜕𝑈

𝜕𝑛
 = 0,             𝑟 ∈ Γ 

Where A is a general functional operator, B is a 

boundary operator, f(r) is a known analytic function, 

and Γ is the boundary of the domain Ω. Generally 

speaking the operator A can be decomposed into two 
parts L and N, where L is a linear and N is a non-

linear operator. Eq. (7), therefore, can be rewritten as 

the following: 

 

𝐿 𝑈 + 𝑁 𝑈 − 𝑓 𝑟 = 0 

 

We construct a homotopy  𝑉 𝑟, 𝑝 : Ω ×  0,1 → 𝑅, 
which satisfies 

𝐻 𝑉, 𝑝 =  1 − 𝑝  𝐿 𝑉 − 𝐿 𝑈0  
+ 𝑝 𝐴 𝑉 − 𝑓 𝑟  = 0,
𝑝 ∈  0,1 , 𝑟 ∈ Ω                     (8) 

Or   

𝐻 𝑉, 𝑝 = 𝐿 𝑉 − 𝐿 𝑈0 + 𝑝𝐿 𝑈0 
+ 𝑝 𝑁 𝑉 − 𝑓 𝑟  = 0 

Where, 𝑢0 is an initial approximation for the solution 

of Eq. (7).In this method, we use the homotopy 

parameter p to expand 
 

𝑉 = 𝑉0 + 𝑝𝑉1 + 𝑝2𝑉2 + ⋯ 
 

The solution, usually an approximation to the 

solution, will be obtained by taking the limit as p 

tends to 1, 

              𝑈 = lim
𝑝→1

𝑉 = 𝑉0 + 𝑉1 + 𝑉2

+ ⋯                                                           (9) 

To illustrate the homotopy perturbation method, for 

nonlinear Ferdholm integro-differential equations of 

fractional order, we consider 
 

 1 − 𝑝  𝐷𝛼𝑓𝑖 𝑥  

+ 𝑝  𝐷𝛼𝑓𝑖 𝑥 − 𝑔𝑖 𝑥 − 𝜆 𝑘 𝑥, 𝑡 
1

0

[𝑓𝑖 𝑡 ]
𝑞𝑑𝑡 

= 0                                                                                  10  
Or  

𝐷𝛼𝑓𝑖 𝑥 = 𝑝 𝑔𝑖 𝑥 

+ 𝜆 𝑘 𝑥, 𝑡 
1

0

[𝑓𝑖 𝑡 ]
𝑞𝑑𝑡      (11) 

 P is an embedding parameter which changes from 

zero to unity. Using the parameter p, we expand the 

solution of the Eq. (1) in the following form: 

𝑓𝑖 𝑡 = 𝑓0 + 𝑝𝑓1 + 𝑝2𝑓2 + ⋯.                                (12) 
Substituting (12) into (11) and collecting the terms 

with the same powers of p, we obtain a series of 

equations of the form: 

𝑝0:     𝐷𝛼𝑓0 = 0                                                          (13) 

𝑝1:     𝐷𝛼𝑓1 = 𝑔 𝑥 + 𝜆 𝑘 𝑥, 𝑡 
1

0

 𝑓0 𝑡  
𝑞𝑑𝑡     (14) 

𝑝2:     𝐷𝛼𝑓2 = 𝜆 𝑘 𝑥, 𝑡 
1

0

 𝑓1 𝑡  
𝑞𝑑𝑡                   (15) 

. 

. 

It is obvious that these equations can be easily solved 

by applying the operator  𝐽𝛼 , the inverse of the 

operator𝐷𝛼 , which is defined by (3). Hence, the 

components 𝑓𝑖(i = 0, 1, 2 , ...) of the HPM solution 

can be determined. That is, by setting p = 1. In (11) 

we can entirely determine the HPM series 

solutions, 𝑓 𝑥 =  𝑓𝑖 𝑥 .∞
𝑘=0  

 

IV. APPLICATIONS 
In this section, in order to illustrate the method, we 

solve two examples and then we will compare the 

obtained results with the exact solutions.  

Example 4.1. Consider the following fractional 

nonlinear integro-differential equation: 

𝐷𝛼𝑓 𝑥 = 2 −
32

15
𝑥2 +  𝑥2𝑡2 𝑓 𝑡  2

1

0

𝑑𝑡,

0 ≤ 𝑥 < 1,     
0 < 𝛼 ≤ 1                                                               (16)     

With this supplementary condition 𝑓(0)  =  1. 
For   𝛼 = 1, we can get the exact solution  

𝑓 𝑥 = 1 + 2𝑥. 

For  𝛼 =
1

4
 , According to (11) we construct the 

following homotopy 
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𝐷
1

4 𝑓 𝑥 = 𝑝(𝑔 𝑥 +  𝑥2𝑡2 𝑓 𝑡  2𝑑𝑡)
1

0

        (17) 

Substituting (12) into (17) 

 

𝑝0   ∶    𝐷
1

4 𝑓0 𝑥 = 0 

𝑝1   ∶     𝐷
1

4 𝑓1 𝑥 = 𝑔 𝑥 +  𝑥2𝑡2[𝑓0 𝑡 ]
2𝑑𝑡

1

0

 

             𝑝2 :        𝐷
1

4 𝑓2 𝑥 =  𝑥2𝑡2[2𝑓0 𝑡 𝑓1 𝑡 ]𝑑𝑡
1

0

 

            𝑝3 ∶        𝐷
1

4 𝑓3 𝑥 =  𝑥2𝑡2[2𝑓0 𝑡 𝑓2 𝑡 + 𝑓1
2 𝑡 ]𝑑𝑡

1

0

 

𝑝4  ∶ 𝐷
1

4 𝑓4 𝑥 =  𝑥2𝑡2[2𝑓0 𝑡 𝑓3 𝑡 
1

0

+ 2𝑓2 𝑡 𝑓1 𝑡 ]𝑑𝑡 
. 

. 

. 

Consequently, by applying the operators 𝐽𝛼  to the 
above sets 

 

𝑓0 𝑥 = 1 

 

𝑓1 =
1154

523
𝑥

1
4 −

764 

541
𝑥

9
4  

 𝑓2(𝑥) =
893

1386
𝑥

9
4  

  𝑓3 𝑥 =
718

1169
𝑥

9
4  

 𝑓4 𝑥 =
317  

1250
𝑥

9
4  

. 

. 

. 

Therefore the approximations to the solutions of 

Example 4.1. For 𝛼 =
1

4
  will be determined as 

 

 𝑓 𝑥 =  𝑓𝑖 𝑥 = 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + ⋯
∞

𝑖=0

= 1 +
1154

523
 𝑥
4

 

The approximations to the solutions for 𝛼 =
1

2
 is 

 𝑓 𝑥 = 1 +
2821

1250
 𝑥
2

 . 

 Hence for 𝛼 =
3

4
 , 

 𝑓 𝑥 = 1 +
346

159
 𝑥34

.  

Fig. 1 shows the numerical results for 𝛼 =
1

4
.  

1

2
.  

3

4
. 

The comparisons show that as 1 , the 

approximate solutions tend to 𝑓(𝑥)  =  1 + 2𝑥, 

which is the exact solution of the equation in the case 

of  𝛼 = 1. 

 

 
 

 

 
 

 

 

Example 4.2. Consider the following nonlinear 

Fredholm integro-differential equation, of order 

𝛼 =
1

2
 

𝐷
1

2 𝑓 𝑥 = 𝑔 𝑥 +  𝑥𝑡 𝑓 𝑡  2𝑑𝑡
1

0

    

                                    0 ≤ 𝑥 < 1                                (18) 

Where, 𝑔 𝑥 =
1

Γ(
3

2
)
 𝑥 −

17

12
𝑥 with these 

supplementary conditions𝑓 0 = 1, with the exact 

solution, 𝑓 𝑥 =  1 + 𝑥 

According to (11) we construct the following 
homotopy: 

𝐷
1

2 𝑓 𝑥 = 𝑝(𝑔 𝑥 +  𝑥𝑡 𝑓 𝑡  2𝑑𝑡)
1

0

                (19) 

Substituting (12) into (18) 

𝑝0   ∶    𝐷
1

2 𝑓0 𝑥 = 0 

𝑝1   ∶     𝐷
1

2 𝑓1 𝑥 = 𝑔 𝑥 +  𝑥𝑡[𝑓0 𝑡 ]
2𝑑𝑡

1

0

 

𝑝2   ∶     𝐷
1

2 𝑓2 𝑥 =  𝑥𝑡[2𝑓0 𝑡 𝑓1 𝑡 ]𝑑𝑡
1

0

 

𝑝3   ∶     𝐷
1

2 𝑓3 𝑥 =  𝑥𝑡[2𝑓0 𝑡 𝑓2 𝑡 + 𝑓1
2 𝑡 ]𝑑𝑡

1

0

 

𝑝4  ∶   𝐷
1

2 𝑓4 𝑥 =  𝑥𝑡[2𝑓0 𝑡 𝑓3 𝑡 
1

0

+ 2𝑓2 𝑡 𝑓1 𝑡 ]𝑑𝑡 
. 

. 

. 

Consequently, by applying the operators 𝐽𝛼 to the 

above sets 

𝑓0 𝑥 = 1 

 

𝑓1 = 𝑥 −
1379 

2000
𝑥

3
2  

 

  𝑓2 (𝑥) =
41

200
𝑥

3
2  
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  𝑓3 𝑥 =
617

5269
𝑥

3
2  

 𝑓4 𝑥 =
471  

6173
𝑥

3
2  

. 

. 

. 

Therefore  the approximations to the solutions of 

Example 4.2.  Will be determined as 

𝑓 𝑥 =  𝑓𝑖 𝑥 = 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + ⋯
∞

𝑖=0

= 1 + 𝑥 

And hence,𝑓 𝑥 = 1 + 𝑥, which are the exact 

solution. 

Example 4.3. Consider the following nonlinear 

Fredholm integro-differential equation, of order 

𝛼 =
3

4
 

 

𝐷
3

4 𝑓 𝑥 =
8

5Γ  
5

4
 
𝑥

5
4 −

15

8
𝑥

+  𝑥𝑡 𝑓 𝑡  3𝑑𝑡
1

0

      

                                                  0 ≤ 𝑥 < 1          (20) 

 

With these supplementary Condition 𝑓 0 = 1, with 

the exact solution, 𝑓 𝑥 =  1 + 𝑥2 
According to (11) we construct the following 

homotopy: 

𝐷
3

4 𝑓 𝑥 

= 𝑝(𝑔 𝑥 +  𝑥𝑡 𝑓 𝑡  3𝑑𝑡)
1

0

                                (21) 

Substituting (12) into (21) 

𝑝0   ∶    𝐷
3

4 𝑓0 𝑥 = 0 

𝑝1   ∶     𝐷
3

4 𝑓1 𝑥 = 𝑔 𝑥 +  𝑥𝑡[𝑓0 𝑡 ]
3𝑑𝑡

1

0

 

𝑝2   ∶     𝐷
3

4 𝑓2 𝑥 =  𝑥𝑡[3𝑓0 𝑡 
2𝑓1 𝑡 ]𝑑𝑡

1

0

 

𝑝3  ∶   𝐷
3

4 𝑓3 𝑥 =  𝑥𝑡[3𝑓0 𝑡 
2𝑓2 𝑡 

1

0

+ 3𝑓0 𝑡 𝑓1 𝑡 
2]𝑑𝑡 

𝑝4 ∶   𝐷
3

4 𝑓4 𝑥 =  𝑥𝑡[3𝑓0 𝑡 
2𝑓3 𝑡 + 6𝑓0 𝑡 

1

0

+ 𝑓1 𝑡 + 𝑓2 𝑡 + 𝑓3
2(𝑡)]𝑑𝑡 

. 

. 

. 

Consequently, by applying the operators 𝐽𝛼 to the 

above sets 

𝑓0 𝑥 = 1 

 

𝑓1 = 𝑥2 −
2137 

2500
𝑥

7
4  

 

   𝑓2(𝑥) =
203

479
𝑥

7
4  

   𝑓3 𝑥 =
232

921
𝑥

7
4  

 𝑓4 𝑥 =
779  

5000
𝑥

7
4  

. 

. 

. 

 

Therefore  the approximations to the solutions of 

Example 4.3.  Will be determined as 

𝑓 𝑥 =  𝑓𝑖 𝑥 = 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + ⋯
∞

𝑖=0

= 1 + 𝑥2 

And hence 𝑓 𝑥 = 1 + 𝑥2, which are the exact 
solution. 

V. CONCLUSION 
This paper presents the use of the He’s homotopy 

perturbation method, for non-linear  ferdholm 

integro-differential equations of fractional order. We 

usually derive very good approximations to the 

solutions. It can be concluded that the He’s homotopy 

perturbation method is a powerful and efficient 
technique infinding very good solutions for this kind 

of equations. 
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