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Abstract 

This paper presents an architecture of 

the lifting based  running 3-D discrete wavelet 

transform (DWT), which is a powerful image and 

video compression algorithm. The proposed 

design is one of the first lifting based complete 3-

DDWT architectures without group of pictures 

restriction. The new computing technique based 

on analysis of lifting signal flow graph minimizes 

the storage requirement. This architecture enjoys 

reduced memory referencing and related low 

power consumption, low latency, and high 

throughput compared to those of earlier reported 

works. Further, the digital data can be retrieved 

using Inverse Discrete Wavelet Transform 

(IDWT). The images need to be retrieved without 

loosing of information. The proposed 

architecture has been successfully implemented 

on Xilinx Spartan series field-programmable gate 

array, offering a speed of 40 MHz, making it 

suitable for realtime compression even with large 

frame dimensions. Moreover, the architecture is 

fully scalable beyond the present coherent 

Daubechies filterbank (9, 7). 

 

Index Terms—Discrete wavelet transform, image 

compression, lifting, video, IDWT, VLSI 

architecture. 
 

I. Introduction 
STILL  IMAGE compression technique 

based on 2-D discrete wavelet transform (DWT) has 

already gained superiority over traditional JPEG 

based on discrete cosine transform and is 

standardized in forms like JPEG2000 [1]. Quite 

similarly, the application of its 3-D superset, i.e., 3-

D-DWT on video, outperforms the current 
predictive coding standards, like H.261-3, MPEG1-

2,4 by rendering the quality features like better peak 

signal-to-noise ratio (PSNR), absence of blocky 

artifacts in low bit rates. Furthermore, it has the 

added provisions of highly scalable compression, 

which is mostly coveted in modern communications 

over heterogeneous channels like the Internet [2]. 

Successful application of 3-D-DWT has been 

reported in the literature in emerging fields like  

medical image compression [3], hyper-spectral and 

space image compression [4], etc. Software-based 
approaches are experimented to combat the huge 

computational complexity and memory requirement  

 

associated with 3-D-DWT realization [5], [6]. 

Though the processor speed of modern computers 

soars high at the order of GHz, data fetching and 

communicating with external memories consume 

several T states, making the computation quite 

slower at the end. As the speeds of the peripherals 
are still far behind the modern processors, it causes 

more problems. 

 

Nowadays, most of the applications require 

real-time DWT engines with large computing 

potentiality for which a fast and dedicated very-

large-scale integration (VLSI) architecture appears 

to be the best possible solution. While it ensures 

high resource utilization, that too in cost effective 

platforms like field programmable gate array 

(FPGA), designing such architecture does offer 
some flexibilities like speeding up the computation 

by adopting more pipelined structures and parallel 

processing, possibilities of reduced memory 

consumptions through better task scheduling or low-

power and portability features. 

        

To overcome one of the toughest problems 

associated with 3-D-DWT architectures—viz., the 

memory requirement, block based [7], [8] or scan-

based architectures [9]–[11] with independent group 

of pictures (GOP) transform have been reported. 

However, blocking degrades the PSNR quality 
while the independent GOPs introduce annoying 

jerks in video playback due to PSNR drop at 

transform boundaries [12]. Alternatively, some 

successful scan-based running transform 

architectures with convolution filtering have been 

reported in [13], [14] avoiding these limitations. 

  

This paper fulfills the requirement herewith 

presenting a scan-based complete 3-D architecture 

having infinite GOP. Among the transform 

components involved in three dimensions, the 
column and temporal directional transforms are 

characteristically parallel in nature (for a row-wise 

scan). The novelty of this paper lies in introducing 

an ingenious analysis of signal flow graph (SFG), 

which subsequently shows a newer methodology for 

computing those parallel transform components with 

reduced storage overhead. Synchronous data flow 

and memory arrangements in conjunction with 

decimated addressing schemes are proposed 
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afterward for incorporating this methodology in 

hardware. Thus, the designed processor has a 

minimum memory requirement and  much smaller 

hardware budget with a two-fold throughput and 

half computing time, latency or memory referencing 

compared to those of [12], [17]. With a single adder 

in its critical path, the processor achieves a high 
speed, which is a fruitful effect of pipelining and 

incorporation of flipping scheme. Inside the 

processor, the treatments of the signals at the 

boundary are done with the mirror extensions 

proposed in [1]. 

 

Section II summarizes the theory of 

flipping as latest modification on lifting. The 

proposed architecture along with the analyzed SFG 

is illustrated in Section III. Section IV discusses the 

issues related to implementation along with the 

obtained results after mapping the design in re-
configurable Xilinx FPGAs. Besides, a performance 

comparison with other related works is also 

furnished in this section. Finally, the paper is 

concluded in Section V. 

 

                   II. Theoretical Framework 

         As the DWT intrinsically constitutes a pair of  

filtering operations, a unified representation of the 

polyphase matrix is introduced as follows [16]: 

 

           (1)             
                

where h(z) and g(z) stand for the transfer 

functions for the lowpass and highpass filterbanks, 

respectively, and all suffixes e and o in the literature 

correspond to even and odd terms, respectively. 

Thus, the transform is symbolized with the equation 

 

(  λ(z)  γ(z)  )  =  ( xe(z)  𝑧−1xo(z) ) P(z) 

 
with λ(z) and γ(z) signifying the filtered lowpass and 

highpass parts of the input x(z). 

 

The lifting scheme [15], [16] factorizes the 

polyphase representation into a cascade of upper and 

lower triangular matrices and a scaling matrix which 

subsequently return a set of linear algebraic 

equations in the time domain bringing forth the 

possibility of a pipelined processor. Several other 

advantages of lifting are mentioned in [16]. 

 

For instance, the common Daubechies (9, 7) 
filterbank can be factorized as 

 

         P(z) =   1 𝛼(1 + 𝑧−1

0 1
  

1 0
𝛽(1 +  𝑧) 1

  

 

                                               

 1 𝛾(1 + 𝑧−1

0 1
  

1 0
𝛿(1 +  𝑧) 1

  
𝜁 0
0 (1/𝜁)

         

(3) 

 

The related algebraic equations are 
 

 
 

where α = −1.586134342, β = 
−0.05298011854, γ = 

0.8829110762, δ = 0.4435068522, and δ = 

1.149604398 [16], and also 0 ≤ i ≤ −1, L is the data 

length. 

      As a fruitful result, the processing speed 

increases significantly when the flipped equations 

are mapped into hardware. 

      Following the modification on SFG, the final 

equations for flipping are 

 

 
 

where A = (1/α) = −0.630463, B = (1/16αβ) 

=   743750, C = (1/32βγ) = −0.668067, D = (1/4γδ) 

= 0.638443, K0 = (64αβγδ) = 2.590697 and K1 = 

(32αβγ/δ) = 1.929981 (up to six fractional digits) 

and also 0 ≤ i ≤ L − 1, L is the data length [18]. 
 

To handle the truncation of the signals at  

oundaries, mirror extension is utilized by 

incorporating corresponding changes into (5) at the 

start and stop of frame sequences and at the 

individual frame boundaries as well as for the 3-D 

transforms. 

Now, during the computation of 3-D 

wavelets, the order of spatial and temporal 

transform components involved can be interchanged 

where both the arrangements conform to the 

definition of 3-D-DWT. However, first temporal 
and then spatial (t + 2-D) transform suffer from 

certain limitations with 
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spatial scalability or spatio-temporal decomposition 

structure [2] which restrict its future extensions. 

Thus, during the design of the present system, first 

spatial and then temporal (2-D + t) decomposition 

are chosen though in due requirement, the reverse 

method can be equally mapped into hardware 

without any difficulty. 
  

III. Proposed Architecture 
A. Working Principle 

Fig. 1 presents the proposed scan-based 1 

level 3-D wavelet transform architecture with a 

block level illustration of principal functional 

modules. Clearly from the figure, the proposed 

architecture does the spatial transform first, 

followed by its temporal counterpart. The following 

two parts in this section give a detailed view about 
hand-in-hand working of 

the different functional blocks to realize those two 

transform components. 

 

The following sections discuss the detailed 

design of principal working modules in the 

architecture. 

 

 

 
 

Fig. 2. Spatio-temporal wavelet decomposition with 

proposed architecture. (a) Original frame sequence. 

(b) After 1 level spatial transform. (c) Lowpass 

frames after the temporal transform. (d) Highpass 

frames after the temporal transform. 

 

 
 

Fig. 3. (a) Architecture of RPE with (b) illustration 

of a generic P/U module 

 

 
 

Fig. 4. Two snapshots of RMEM with a model 

image size of 8 × 8. 

 

B. RPE and the RMEM 

Among all the micro-architectures for 

different submodules, which transform the input 

video in three directions, the RPE module is the 
simplest. As described in Fig. 3, it is a 

straightforward implementation of (5) with 

pipelining applied to speed up the operations. 

Scanned with a dual clock, the incoming pixels are 

separated into successive duos of odd and even ones 

at the SPLITTER stage and move forward in 

parallel throughout the pipeline. The required 

datapath operations of lifting are performed upon 

these pixels at consecutive Predict (Pi), Update (Ui), 

and Shift (Si) stages of the RPE (as depicted in Fig. 

3) which finally produces pairs of highpass and 

lowpass pixels available from the ports OUT EVEN 
and OUT ODD in a streamlined fashion or manner. 

 

These pixels, prior to column processing, 

are temporarily put in RMEM which generate the 

synchronized dataflow to store as well as feed the 

coefficients to CPE. After processing the initial two 

rows of a frame the transformed coefficients 

completely fill up the memory locations as 

illustrated in snapshot 1 of Fig. 4. At the very next 

clock cycle, two new pixels viz., l(2,0) and h(2,0), 

arrive from RPE and they are placed at the locations 
of R1 and R3 (refer to snapshot 2), which are just 

left vacant as stored data, namely, l(0,0) and l(1,0) 

are read out at the commencement of column 

processing. Subsequent locations are similarly 

refreshed till all the coefficients from row 2 are 

stored in those two RAMs. Similarly, during 

processing of the next row, RAMs R2 and R4 

undergo a series of memory refreshments as the 

locations previously containing h0 and h1 

coefficient blocks are attributed to the storage of 

coefficients of h3 and i3, available from RPE. Thus, 

a periodic pattern can be identified among the 
refreshed RAM pairs, which are further given in a 

tabular form in Fig. 4 against the processed rows. 

The proposed memory arrangement is free from any 

such scenario where the RAM resources would be 

unnecessarily occupied with stale data which are not 

to be used for future computation. 

 

C. Analysis of SFG to Facilitate Parallel 

Computation 

The problems associated with designing 

architectures for column and temporal directional 
transforms are however critical. In a setup where 

video frames are scanned row-wise and processed 

coefficients from RPE are spaced contiguously in 

rows, the column processor has to wait for an entire 

row to get another input sample for processing and 

the temporal processor needs to hold back for the 

entire frame before it can proceed with the next 
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computation step. Like many other signal processing 

architectures, the 3-D-DWT processor thus 

inherently carries a huge memory and latency 

overhead in its working principle. Clearly, a 

pipelined design like RPE does not fit in for column 

and temporal processing and parallel architectures 

are mostly sought to address this issue. The overall 
advantage of any DWT processor lies in addressing 

these performance bottlenecks successfully. 

 

The SFG of lifting, shown in Fig. 5, holds 

the key for analyzing data dependence inside any 

DWT processor. Each input and output sample to 

this SFG denotes a block of data. For row 

processing, these blocks refer to image pixels 

adjacently spaced in rows. However, for column 

transform, each of these blocks signifies a group of 

processed l and h band coefficients of size N/2. 

Similarly, for temporal transform they relate to 2-D 
transformed individual frames of N2 pixels. Thus, 

when the row processor can freely ―sweep across‖ 

this graph producing a stream-lined output, an 

intelligent column or temporal processor must wait 

and partially finish the computation with available 

inputs before they proceed to the next step. The key 

for such parallel processing is to find an optimized 

basic step of computation which minimizes the 

latency together with memory overhead for overall 

architecture. 

A careful observation of SFG shown in 
Fig. 5(a)–(c), infers that the individual slices are the 

most distinguished representation of the aforesaid 

basic computation steps. Highlighted in blue, the 

predict and update calculations inside each such 

 

 
 

Fig. 5. Data-dependence analysis of SFG for parallel 

computation. (a) SFG during computation of slice 1. 

(b) SFG during computation of slice 2. (c) SFG 

during computation of slice 3. (d) Explanation of 

color code. 

 

slice can be perfectly represented as the 
function of two input samples from previous slice 

(colored in green), one input block from current 

slice (shown in red) and computed predict and 

update coefficient blocks from previous slice 

(highlighted in  pink). Since slice 0 holds only input 

samples, computation should commence with slice 

1. Following the sequence in Fig. 5(a)–(c), the 

computation can henceforth continue for successive 

slices until the termination of SFG which happens at 

the end of each frame of column processing or at the 

termination of video sequence for temporal 

processing. A pair of output sample blocks 
(highlighted in brown) from each individual slice 

are the natural outcomes of this computation. 

       

The present architecture successfully 

implements this slicewise computing strategy 

carefully preserving the critical latency and memory 

requirement with the help of some unique memory 

arrangement techniques. Explained in Fig. 5(d), the 

individual group of memory blocks is handled 

differently during the column transform of l and h 

bands and temporal transform. While for the l band 
processing, the computation starts with input 

coefficient block in red reaching on-the-go from 

RPE and the green ones being fed from RMEM, 

during the h band processing all three of them are 

read from RMEM. For the temporal transform, the 

frame from the current slice is actually stored in 

SMEM and read back at half rate. The intermediate 

coefficients in pink are stored in CMEM and 

TMEM, respectively. 

        

 
 

Fig. 6. (a) Snapshot of CPE pipeline and (b) detailed 

P/U module. 

 

D. CPE 

The architecture of CPE, shown in Fig. 

6(a), is quite similar to that of RPE. Fig. 6(b) 

presents its inside details with a P/U module. 

However, the continuity of RPE pipeline is 
purposefully broken at several places creating a new 

set of input and output ports which contribute to the 
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aforesaid parallel computation. Among all the ports, 

IN 1-3 and OUT 

4-5 are connected to RMEM and SMEM 

respectively and help creating a streamlined 

dataflow from spatial processor to temporal 

processor, as depicted in the main architecture (refer 

to Fig. 1). The other ports, IN 4-6 and OUT 1-3 
from RPE are utilized to exchange intermediate 

coefficients with the six CMEM buffers which is the 

key to slice-wise computation. 

      

E. SMEM 

Once transformed spatially, the frames are 

directed to SMEM (refer to Fig. 1), which requires a 

minimum of two frame buffers for the data 

management. While the first two frames can be 

given room in those two frame buffers easily, 

complexity arises when the third frame arrives from 

SP and the computation is simultaneously started by 
the TP. While in every clock cycle, a pixel pair of 

frame 2 can be allocated into the vacant memory 

locations from where the two pixels of the frames 0 

and 1 have been read out for the computation, the 

temporal processing methodology demands an extra 

set of the read operation to be carried out; for 

collecting the corresponding pixels of frame 2 which 

act as the third set of input in computation of the 

first lifting step (refer to slice 1 in Fig. 5). 

 

 
 

    Fig. 7. Arrangement of SMEM frame buffers. 

 

Importantly, this second set of data cannot 

be provided online to the TP, as the frames are 

arriving at double rate and computation needs them 
at single clock. So, all that is needed is to read them 

back from memory with a half data rate. Thus, the 

memory arrangement of Fig. 7 is followed where 

port A of the dual port RAMs is used for reading 

older frames from memory as well as storing the 

newer ones in those locations when the Port B 

remains dedicated for the second set of read 

operations. Thus, the first kind of operations in 

effect refreshes the memory with the consecutive 

duos of frames 0, 1 and 2, 3 and so on, while the 

second operations are solely responsible for 

providing the additional pixels of frame 2i during 

computations involving slice i (i = 1, 2, 3, . . . ). 

 

As depicted in snapshot 1 of Fig. 8, the 
frames 0 and 1, being divided in parts L and H, 

where L and H signify the fact that those pixels 

emerge from the lowpass and highpass ports of 

CPE, initially arrange themselves in buffers of 

SMEM. Once the computation progresses, the pixels 

of the two frames are replaced with those of frame 2 

and as a matter of fact, the new frame gets 

decimated inside the RAMs as the pixels of the new 

frame are allocated to memory locations, just 

released off the older frames every time. Thus, as 

the computation of slice 2 is completed, the new 

frames 2 and 3 reposit themselves according to the 
topography described in snapshot 2 of that figure. 

The order of decimation increases as the 

computation moves ahead following a manner very 

similar to that of fast Fourier transform addressing. 

The pattern repeats itself after  log2(𝑁2) cycles. 
Fig. 9 helps us 

 

 
 

Fig. 8. Two snapshots of the SMEM. 

 

 
 

Fig. 9. Addressing pattern in SMEM. RAMs 

illustrated for a memory depth of 8. 
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Fig. 10. Snapshot of the TP. to visualize the 

addressing pattern for a sample RAM depth of 8. 

 
The dual port BlockRAMs of Xilinx 

FPGA, which is used as target platform for the 

proposed architecture, provides the facility of ―read 

before write‖ operations in the same clock cycle at 

the memory locations. Utilizing it, simultaneous 

read and write operations are performed by an 

address in port A through the channels DIA and 

DOA, according to the requirements. The address in 

port B follows the same practice, only changing at a 

half speed, as they simultaneously pick up two 

pixels from the RAM pairs in a clock cycle which 
are further multiplexed to feed INT 2 of TP at single 

clock rate. 

 

F. Latency and Complete Memory Requirement 

Following the SFG of lifting (refer to Fig. 

5), the minimum number of inputs required for 

computing a wavelet coefficient is restricted to five. 

Thus, with the provision of the fifth input to arrive 

online during the computation, the CPE and TP, 

respectively, need a minimum wait time of four 

rows (2N clock cycles) and four frames (2𝑁2 
cycles) to produce the first output from the 

architecture, thereby resulting in a total parametric 
latency of T clock cycles, where 

 

T = 2𝑁2 + 2N + LatencyRPE + LatencyCPE + 
LatencyTP . (6) 

 

The extra terms arise due to the pipelined 

design of each computing unit. The memory 

requirement for five frames and ten N/2 length line 

buffers is 5𝑁2 + 5N. 
                                                                                                                                           

IV. Implementation Results and Discussions 
A. Multipliers and Datapath Precisions 

After the details of the architecture and the 
data management principles have been thoroughly 

chalked out, the issues related to mapping the design 

into a reconfigurable device are of prime interest. 

These include the precision of the multipliers in the 

architecture. 

Being irrational numbers, the flipping 

coefficients corresponding to (4) are not ideally 

realizable in architecture with the hardware 

multipliers. Instead, those numbers could be 

considered up to a finite precision during designing. 

However, the impacts of this limited precision are 

experienced with lowered PSNR values and 

subsequent degradation of the quality of reproduced 

video during the decompression. Additionally, the 

precision of the data samples right after each 
multiplier affects the PSNR in a quite similar way. 

 

B. Implementation Results 

The architecture has been mapped into 

Xilinx programmable device (FPGA) XC4VFX140 

with speed grade of 12 through the Xilinx ISE 7.1i 

tool. A uniform wordlength of 17 bits has been 

maintained throughout the processor to afford 

sufficient data depth. After pipelining the 

multipliers, the critical path for the processor 

consists of single adder, making it quite fast. A fast 

counter based controller was designed which 
handles all the address generation and other 

switching operations at the high speed of main data-

path. Such controllers are programmable and can 

synchronize the control signal generation according 

to different video frame sizes. So other than 

standard N × N, they can handle standard quarter 

common intermediate format or common 

intermediate format or various different aspect 

ratios. The adders from the library and device dual 

port block RAMs have been utilized as the principal 

resources for the designed processor. Simulation is 
performed by ModelSim XE III 6.0a, which yields a 

set of end results completely matching the results 

from MATLAB 7.0.0, where a model of the 

hardware is created. 

The overall design report can be formulated as 

 

Custom frame size                        256×256 

Group of frames (GOP)                Infinite 

Maximum clock frequency           321 MHz 

Throughput                                   Two results/cycle 

Initial latency              2N2 + 2Nψ + 47 clock cycles 

Number of occupied slices            1776 (2%) 
Total number four input 

LUTs                                              2188 (1%) 

Number of block RAMs               350 (63%). 

 

C. Inverse discrete wavelet transform 

The inverse DWT (IDWT) is the 

computational reverse. The lowest low-pass and 

highpass data-streams are up-sampled (ie. a zero is 

placed between each data-word) and then filtered 

using filters related to the decomposition filters. The 

two resulting streams are simply added together to 
form the low-pass result of the previous level of 

processing. This can be combined with the high-

pass result in a similar fashion to produce further 

levels, the process continuing until the original data-

stream is reconstructed. 
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Fig: Simulation Result of IDWT  Block with Final 

Pixel Values 

         

Figure shows the final pixel value of the 

original image calculated and hence they are given 

out serially. Thus the pixel values given at the input 
of the DWT block is compared and verified with the 

final output pixel vales from the IDWT block. 

 

V. Conclusion 
The applications of 3-D wavelet based 

coding are opening new vistas in video and other 

multidimensional signal compression and 

processing. The prominent needs in these diversified 

application areas are efficient 3-D-DWT engines 
with good computing power which draws the 

attention of the dedicated VLSI architectures as the 

best possible solution. Though the researches of 2-

D-DWT architectures are progressing quite fast, 

fewer approaches are reported in the literatures 

designing their 3-D counterpart. 

This paper has presented a lifting based 3-

D-DWT architecture with running transform, 

possibly the first of its kind. The main flavors of the 

design are minimized storage requirement and 

memory referencing, low latency and power 
consumption and increased throughput, which 

become evident when they are compared with those 

of existing ones. Having single adder in its critical 

path, the mapped processor achieves a high speed of 

321 MHz, offering large computing potentials which 

opens up new vista for real-time video processing 

applications. 

Compared to the original 3-D-DWT 

transform, successful application of motion 

compensations before temporal transform has been 

reported in the literature [2] as a good alternative for 

predictive coding. It is worth mentioning that the 
present design is fully scalable to those future 

modifications and can be accepted as an 

introductory step toward those future 3-D wavelet 

computing machines. 
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