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Abstract 
In this paper, an adaptive neuro-control 

systemwith two levels is proposed for the motion 

control of anonholonomic mobile robot. In the 

first level, a PD controller is designed to generate 

linear and angular velocities, necessary to tracka 

reference trajectory. In the second level, a neural 

network converts the desired velocities, provided 

by the first level, intoa torque control. The 

advantage of the control approach is that, no 

knowledge about the dynamic model is required, 

and no synaptic weight changing is needed in 

presence of robot’s parameter’s variation (mass 

or inertia).By introducing appropriate 

Lyapunovfunctions asymptotic stability of state 

variables and stability of system is guaranteed. 

The tracking performance of neural controller 

under disturbances is compared with PD 

controller. Sinusoidal trajectory and lamniscate 

trajectories are considered for this comparison.

  

Keywords— Direct Adaptive Control, RBF 

Networks, Trajectory tracking, Set point 

tracking, Lyapunov stability 

 

I. INTRODUCTION 
Navigation control of mobile robots has 

been studied by many authors in the last decade, 
since they are increasingly used in wide range of 

applications. At the beginning, the research effort 

was focused only on the kinematic model, assuming 

that there is perfect velocity tracking [1]. Later on, 

the research has been conducted to design navigation 

controllers, including also the dynamics of the robot 

[2], [3]. Taking into account the specific robot 

dynamics is more realistic, because the assumption 

“perfect velocity tracking” does not hold in practice. 

Furthermore, during the robot motion, the robot 

parameters may change due to surface friction, 
additional load, among others. Therefore, it is 

desirable to develop a robust navigation control, 

which has the following capabilities: i) ability to 

successfully handle estimation errors and noise in 

sensor signals, ii) “perfect” velocity tracking, and iii) 

adaptation ability, in presence of time varying 

parameters in the dynamical model.  

Artificial neural networks are one of the 

most popular intelligent techniques widely applied in 

engineering. Their ability to handle complex input-

output mapping, without detailed analytical model, 

and robustness for noise environment make them an 
ideal choice for real implementations.  

 

 

The robot studied in this research is a kind of a 

simplenonholonomic mechanical system. 

Nonholonomic property is seen inmany mechanical 

and robotic systems, particularly thoseusing velocity 

inputs. Smaller control space compared 

withconfiguration space (lesser control signals than 

independentcontrolling variables) causes conditional 

controllability ofthese systems. So the feasible 

trajectory is limited. Thismeans that a mobile robot 

with parallel wheels can’t movelaterally. 

Nonholonomic constraint is a differential equationon 
the base of state variables, it’s not integrable. 

Rolling butnot sliding is a source of this constraint. 

The control strategy proposed on this paper 

addressesthe dynamic compensation of mobile 

robotsand only requires information about the robot 

localization.The problem statement is presented 

onsection 2 and the kinematic and dynamic model 

ofthe considered robot, on section 3 and 4. Neural 

controller design as well as the main control 

systemdesign is presented on section 5 and 6. Some 

results and final considerations are also presented on 
section 6. 

 

II. PROBLEM STATEMENT 
The dynamics of a mobile robot is time 

variant and changes with disturbances. The dynamic 

model is composed of two consecutive part; 

kinematic model and equations of linear and angular 

torques. By transforming dynamic error equationsof 

kinematic model to mobile coordinates, the 
trackingproblem changes to stabilization. In the 

trajectory tracking problem, the robot mustreach and 

follow a trajectory in the Cartesian spacestarting 

from a given initial configuration.The trajectory 

tracking problem is simpler than thestabilisation 

problem because there is no need to controlthe robot 

orientation: it is automatically compensatedas the 

robot follows the trajectory, provided that the 

specified trajectory respects the non-

holonomicconstraints of the robot. Controller is 

designed in twoconsecutive parts: in the first part 

kinematic stabilization isdone using simple PD 
control laws, in the second one, direct adaptive 

control using RBF Networks has been used for 

exponentialstabilization of linear and angular 

velocities. Uncertainties inthe parameters of 

dynamic model (mass and inertia) havebeen 

compensated using model reference adaptive 

control. 
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III. KINEMATIC CONTROL 
In this paper the mobile robot with 

differential driveis used(Fig. 1). The robot has two 

driving wheels mounted on thesame axis and a free 

front wheel. The two driving wheels 
areindependently driven by two actuators to achieve 

both thetransition and orientation. The position of 

the mobile robot inthe global frame {X,O,Y} can be 

defined by the position of  themass center of the 

mobile robot system, denoted by C, oralternatively 

by position A, which is the center of mobile 

robotgear, and the angle between robot local frame 

 𝑥𝑚,𝐶, 𝑦𝑚  andglobal frame. 

 

A. Kinematic model 

Kinematic equations [9] of the two wheeled 

mobile robot are: 

 

 
𝑥 
𝑦

𝜃 
  =  

cos⁡(𝜃) 0
sin⁡(𝜃) 0

 0          1

  
𝑣
𝜔
 ,                                  (1) 

 

And 
𝑣
𝜔
 =  

𝑟     𝑟
𝑟

𝐷
−

𝑟

𝐷

  
𝑣𝑅

𝑣𝐿
 ,                                     (2) 

 

 
Fig.1  The representation of a nonholonomic mobile 

robot 

Where 𝑥 and 𝑦 are coordinates of the center 

of mobile robotgear, 𝜃is the angle that represents the 

orientation of thevehicle, 𝑣  and 𝜔  are linear and 

angular velocities of thevehicle, 𝑣𝑅  and 𝑣𝐿 are 

velocities of right and left wheels, 𝑟  is awheel 

diameter and 𝐷is the mobile robot base length.Inputs 

of kinematic model of mobile robot are velocities of 

right and left wheels 𝑣𝑅and  𝑣𝐿. 

The mainfeature of this model for wheeled 

mobile robots isthe presence of nonholonomic 

constraints, due to therolling without slipping 

condition between the wheelsand the ground.The 

nonholonomic constraints imposethat the system 

generalized velocities cannot assume independent 
values. 

In order to reduce the model complexity [5], 

one couldrewrite it in terms of the robot linear and 

angular displacement,𝑠 and𝜃, so that 𝑠 = 𝑣and 𝜃 =
𝜔. One could easily design a control system basedon 

the block diagram on Fig. 2, if s  and 𝜃  are 

measurableand 𝑠𝑟𝑒𝑓  and 𝜃𝑟𝑒𝑓 are defined. This 

controllercan be based on any of the classic design 

techniquesfor linear systems where the controller 

receives the error signal and generates the input to 

the plant (a PD,for example). 

 

 
Fig. 2 Kinematic Control system block diagram 

 

As the design of such a controller is simple, 
thismodel has been used for the control system 

design, despite of two problems that still hold: the 

linear displacementsalong a trajectory is practically 

unmeasurableand 𝑠𝑟𝑒𝑓 is meaningless. However, 

these problemscan be contoured, as will be shown 

on the nextsection. 

 

B. Kinematic controller design 

The robot stabilisation problem can be 

divided into two different control problems: robot 
positioning control and robot orientating control. 

The robot positioningcontrol must assure the 

achievement of a desiredposition ( 𝑥𝑟𝑒𝑓 ; 𝑦𝑟𝑒𝑓 ), 

regardless of the robot orientation.The robot 

orientating control must assurethe achievement of 

the desired position and orientation(𝑥𝑟𝑒𝑓 ; 𝑦𝑟𝑒𝑓 ; 𝜃𝑟𝑒𝑓 ). 

In this paper we only consider the positioning 

control. 
Fig. 3 illustrates the positioning problem, 

where∆𝑙 is the distance between the robot and the 

desired reference(𝑥𝑟𝑒𝑓 ;𝑦𝑟𝑒𝑓 ), in the Cartesian space. 

The robotpositioning control problem will be solved 

if we assure  ∆𝑙 → 0. This is not trivial since the 

𝑙variable does not appear in the model of equation 1. 

 
Fig. 3Robot positioning problem 
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To overcome this problem, we can define two 

newvariables, ∆λand  ϕ . ∆λ ¸ is the distance to R, 

thenearest point from the desired reference that lies 

onthe robot orientation line;  ϕis the angle of the 

vectorthat binds the robot position to the desired 

reference.We can also define∆ϕ as the difference 

between the𝜙 angle and the robot orientation:∆𝜙 =
𝜙 − 𝜃.We can now easily conclude that: 

∆𝑙 =
𝛥𝜆

𝑐𝑜𝑠⁡(𝛥𝜙)
                      (3) 

So, if ∆𝜆 → 0 and ∆𝜙 → 0then∆𝑙 → 0. That 

is,if we design a control system that assures the ¸ 

and∆λ and ∆ϕ converges to zero, then the desired 

reference,xref and yref is achieved. Thus, the robot 
positioningcontrol problem can be solved by 

applying any controlstrategy that assures such 

convergence. 

The block diagram in Fig. 2 suggests that 

the systemcan be controlled using linear and angular 

references, sref  and  θref , respectively. We will 

generatethese references in order to ensure the 

converge of∆𝜆and𝛥𝜙to zero, as required by equation 

3. In otherwords, we want 𝑒𝑠 = ∆𝜆¸ and 𝑒𝜃 = ∆𝜙. 
Thus, if thecontroller assures the errors convergence 

to zero, therobot positioning control problem is 

solved.To make  𝑒𝜃 = ∆𝜙 ,we just need to 

define  𝜃𝑟𝑒𝑓 = 𝜙 ,so  𝑒𝜃 = 𝜃𝑟𝑒𝑓 − 𝜃 = 𝜙 − 𝜃 = ∆𝜙 . 

For this, we make: 

𝜃𝑟𝑒𝑓 = 𝑡𝑎𝑛−1  
𝑦𝑟𝑒𝑓 − 𝑦

𝑥𝑟𝑒𝑓 − 𝑥
 = 𝑡𝑎𝑛−1  

Δ𝑦𝑟𝑒𝑓

Δ𝑥𝑟𝑒𝑓

        (4) 

To calculate 𝑒𝑠 is generally not very simple, 

because 𝑠  output signal cannot be measured and 

wecannot easily calculate a suitable value for 𝑠𝑟𝑒𝑓 . 

Butif we define the 𝑅 point in Fig. 3 as the 

referencepoint for the 𝑠 controller, only in this case 

it is truethat 𝑒𝑠 = 𝑠𝑟𝑒𝑓 − 𝑠 = ∆𝜆. So: 

 

            𝑒𝑠 = Δ𝜆 = Δ𝑙 . cos Δ𝜙 =                            (5) 

  Δ𝑥𝑟𝑒𝑓  
2

+  Δ𝑦𝑟𝑒𝑓  
2
. 𝑐𝑜𝑠  𝑡𝑎𝑛−1  

Δ𝑦𝑟𝑒𝑓

Δ𝑥𝑟𝑒𝑓

− 𝜃   

 

The complete robot positioning controller, 
based on the diagram of Fig. 2 and the equations 4 

and 5, is presented on Fig. 4. It can be used as a 

stand-alonerobot control system if the problem is 

just to drive torobot to a given position (𝑥𝑟𝑒𝑓 ;𝑦𝑟𝑒𝑓 ), 

regardless of the final robot orientation. 

 

Controller        

𝑢 =   
𝑣𝑑

𝜔𝑑
 =  

𝑘𝑠𝑒𝑠 + 𝑘𝑠𝑑𝑒 𝑠
𝑘𝜃𝑒𝜃 + 𝑘𝜃𝑑 𝑒 𝜃

             (6) 

 

 
Fig. 4Robot positioning controller 

 

C. Set point tracking 

On Fig. 5 a simulation of the robot 

stabilization control problem is shown, where the 

initial position of robot is different and the desired 

position is fixed. A simple PD controller has been 
implemented as positioning controller. 

Fig. 6 shows the linear and angular errors 

convergenceto zero, thus, assuring the achievement 

ofthe control objective. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Fig. 5 Robot stabilization for different initial 

conditions  
 

 
Fig. 6 Linear and angular errors  

 

IV. DYNAMIC CONTROL 
In this section, a dynamic model of 

anonholonomic mobile robot with motor torques will 

be derived first.  

Different initial positions 

Target position 
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A. Dynamic model 

The dynamic equations of motion can be 

expressed as [10] 

              𝐴𝜃 𝑅 + 𝐵𝜃 𝐿 = 𝜏𝑅 − 𝐾1𝜃 𝑅                              (7) 

              𝐵𝜃 𝑅 + 𝐴𝜃 𝐿 = 𝜏𝐿 − 𝐾1𝜃 𝐿                              (8) 

Where 

              𝐴 =  
𝑀𝑟2

4
+

 𝐼𝐴 + 𝑀𝑑2 𝑟2

4𝑅2
+ 𝐼0  

 

                     𝐵 =  
𝑀𝑟2

4
−

 𝐼𝐴 + 𝑀𝑑2 𝑟2

4𝑅2
  9  

Here M is the mass of the entire vehicle, 𝐼𝐴 

is the moment of inertia of the entire vehicle 

considering point A,𝐼0is the moment of inertia of the 

rotor/wheel and 
dθR

𝑑𝑡 and 
dθL

𝑑𝑡  are angular 

velocities of the right and left 

wheelrespectively. τR , τL are right and left wheel 

motor torques.
K1

A
= 0.5. 

 

B. State space model 

Substitute θ R , θ L as ωR , ωL respectively in 

equations (7), (8) and convert these velocities into 

linear and angular velocities using equation (2). 

Then the state space model will become 

 𝑣 
𝜔 
 = 𝐴𝑋  

𝑣
𝜔
 + 𝐵𝑈  

𝜏𝑅

𝜏𝐿
                (10) 

Where 𝐴𝑋 , 𝐵𝑈are functions of parameters A and B. 

 

C. Feedback linearization 

The above model (equation 10) is similar to 

a general state space model of nonlinear system as 

follows 

𝑋 = 𝑓(𝑋) + 𝑔 𝑋 𝑈                          (11)                       

When the nonlinearities𝑓(𝑋) and 𝑔(𝑋)are 

completely known, feedback linearization can be 

used to design controller for a system, where the 

controller may have a form [8]:  

𝑈 =  𝑔−1(𝑋) −𝑓 𝑋 + 𝑋 𝑑 + 𝐾 𝑒   (12)                        

Here, 𝑒 =  𝑋𝑑 − 𝑋 where 𝑋𝑑 represents 

desired state vector. The above mentioned control 

law makes the closed loop error dynamics linear as 

well as stable thus the error converges to zero with 

time. 

But these nonlinear parameters are 

unknown in reality. So neural network models are 

used to estimate these functions and use it in control 

structure. 

 

V. NEURAL CONTROLLER  

Feedback linearization is a useful control 

design technique in control systems literature where 

a large class of nonlinear systems can be made linear 

by nonlinear state feedback. The controller can be 

proposed in such a way that the closed loop error 

dynamics become linear as well as stable. The main 

problem with this control scheme is that cancellation 

of the nonlinear dynamics depends upon the exact 

knowledge of system nonlinearities. When system 

nonlinearities are not known completely they can be 

approximated either by neural networks or by fuzzy 

systems. The controller then uses these estimates to 

linearize the system. The parameters of the 

controller are updated such that the output tracking 

error converges to zero with time while the closed 

loop stability is maintained. The design technique is 
popularly known as direct adaptive control technique. 

 

A. Function approximation 

The control problem becomes difficult 

when 𝑔(𝑋) is unkown because the fact that the 

approximation of 𝑔(𝑋)can be zero at times which 

makes controller unbounded. For simplicity, we 

have considered 𝑓(𝑋)  as unknown function and 

𝑔 𝑋 as known function. Radial basis function 

network (RBFN) is used to approximate 𝑓(𝑋). Fig. 7 

shows RBF network. The weight update law of the 

RBF network is derived such a way that the closed 

loop system is Lyapunov stable and the output 

tracking error converges to zero with time.  

In the equation (12), 𝑓(𝑋)  can be 

approximated as 𝑓  𝑋 = 𝑊 𝑇∅(𝑋)  using a radial 

basis function network. Then the control law 

𝑈 =  𝑔−1(𝑋) −𝑓 (𝑋) + 𝑋 𝑑 + 𝐾𝑒 will stabilize the 

system (equation 10) in the sense of Lyapunov 

provided 𝑊 is updated using the update 

law𝑊 = −𝐹∅𝑒𝑇 . Where ∅(𝑋) = 𝑒−
   𝑋−𝐶   

2

2𝜎
.
 

 

 
 

 

 

 

 

 

 

 

 

Fig. 7 Multi input-output RBF network  

 

B. Weight update law 
Let us assume that there exists an ideal weight 

𝑊 such that the original function 𝑓(𝑋)  can be 

represented as𝑓 𝑋 = 𝑊𝑇∅(𝑋). 

Control 𝑈in the system (equation 11) we get, 

𝑋 = 𝑓 𝑋 + 𝑔 𝑋 𝑔−1 𝑋 [−𝑓  𝑋 + 𝑋 𝑑 + 𝐾𝑒] 
    = 𝑊𝑇∅ − 𝑊 𝑇∅ + 𝑋 𝑑 + 𝐾𝑒                        (13) 

Defining 𝑊 = 𝑊 − 𝑊 then equation 13 will be  

𝑋 = 𝑊 𝑇∅ + 𝑋 𝑑 + 𝐾𝑒(14) 

𝑋 𝑑 − 𝑋 = 𝑒 = −𝑊 𝑇∅− 𝐾𝑒                   (15) 

Consider a Lyapunov function candidate 

𝑉 =
1

2
𝑒2 +

1

2
𝑊 𝑇𝐹−1𝑊 (16) 

Where F is a positive definite matrix. 

Differentiating equation (16), 

𝑉 = 𝑒𝑒 + 𝑊 𝑇𝐹−1𝑊                                  (17) 

Substituting 𝑒  from equation (15) into equation 

(17) 

 

 

 

 

 

 

 

 

 

 

 

 

 

X 
 

V 

E 

C 

T 

O 

R 

𝑓 (𝑋) 

 
V 

E 

C 

T 

O 

R 

W 

Φ(X) 



D Narendra Kumar, S LalithaKumari
 
, Veeravasantarao D / International Journal of 

Engineering Research and Applications (IJERA) ISSN: 2248-9622   www.ijera.com  

  Vol. 2, Issue 5, September- October 2012, pp.1376-1382 

1380 | P a g e  

𝑉 = 𝑒 −𝑊 𝑇∅− 𝐾𝑒 + 𝑊 𝑇𝐹−1𝑊           (18) 

Since W is constant, we can write𝑊  = 𝑊 − 𝑊  =

−𝑊  . Thus, 

𝑉 = −𝐾𝑒2 − 𝑊 𝑇∅𝑒 − 𝑊 𝑇𝐹−1𝑊   

= −𝐾𝑒2 − 𝑊 𝑇  ∅𝑒 + 𝐹−1𝑊   (19)       

Equating the second term of equation (19) to 0, 

we get 

∅𝑒 + 𝐹−1𝑊  = 0 

Or, 𝑊  = 𝐹∅𝑒𝑇(20) 
Using update law (equation 20), equation 19 

becomes, 

𝑉 = −𝐾𝑒2(21) 

Since 𝑉 > 0and 𝑉 ≤ 0, this shows the stability in 

the sense of Lyapunov so that 𝑒 and 𝑊 (hence𝑊 ) are 

bounded.  

So the weight update law is  

𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 + 𝐹∅𝑒𝑇 (22) 
 

VI. MAIN BLOCK DIAGRAM  

The block diagram of overall controller [7] 
structure is shown in Fig. 8. The errors determined 

between desired trajectory positions and robot actual 

positions are used to determine the desired velocities 

using kinematic control discussed in section III. 

These desired velocities are compared with actual 

wheel velocities and use the errors to generate left 

and right wheel torques for the two motors using the 

control law discussed in section V. Here the 

state 𝑋 =  
𝑣
𝜔
 , control input is 𝑈 =  

𝜏𝑅

𝜏𝐿
  and the 

nonlinearities are𝑓 𝑋 = 𝐴𝑋𝑋 𝑎𝑛𝑑 𝑔 𝑋 = 𝐵𝑈 . And 

the error is 𝑒 =  
𝑣𝑑 − 𝑣
𝜔𝑑 − 𝜔 . 

 

 

 

 

 

 

 
 

 

 

Fig. 8 Main block diagram of mobile robot  

 

A. Trajectory tracking 

The effectiveness of the neural network 

controller is demonstrated in the case of tracking of 

a lamniscate curve. The trajectory tracking problem 

for a mobile robot is based on a virtual reference 

robot that has to be tracked. The overall system is 
designed and implemented within Matlab 

environment. The geometric parameters of mobile 

robot are assumed as r = 0.08m, D = 0.4m, d = 0.1m. 

M=5kg, Ia = 0.05, m0=0.1kg and I0=0.0005.  The 

initial position of robot is  𝑥0 𝑦0 𝜃0 =
 1 3 300  and the initial robot velocities 

are  𝑣, 𝜔 =  0.1, 1 . PD controller gains for 

kinematic control are𝑘𝑠 = 0.21, 𝑘𝜃 = 0.6 𝑎𝑛𝑑 𝑘𝑠𝑑 =
𝑘𝜃𝑑 = 0.01. We used 6 hidden neurons and set the 

gain matrix as  𝐾 =  1.5   0; 0  1.5 . The initial 

values of learning rate, weights, centers and sigma 

are tuned such a way that it provides good tracking 
performance.  

 

 
Fig. 9Tracking the lemniscate trajectory  

The simulation results obtained by neural 

networkcontroller are shown in Figs. 9-11. Results 

achieved in Figs. 9-10 demonstrate the good position 

tracking performance. Fig. 11 shows that the error in 

velocities is almost zero whereas a slight error 

observed in displacement. It clearly shows that the 

PD kinematic controller performance affects the 
overall tracking performance.  

The velocities generated from torque 

control are exactly matched with the values obtained 

from the kinematic control such that it tracks the 

trajectory (Fig. 10). Theproposed neural controller 

also ensures small values of the controlinput torques 

for obtaining the reference position trajectories (Fig. 

10). Our simulations proved that motor torque of 

1Nm/sec is sufficient to drive the robot motion. This 

mean that smaller power ofDC motors is requested. 

 

 
Fig. 10Inputs to the robot 

 

 
𝑣𝑑 = 𝑘𝑠𝑒𝑠 + 𝑘𝑠𝑑𝑒 𝑠
𝜔𝑑 = 𝑘𝜃𝑒𝜃 + 𝑘𝜃𝑑𝑒 𝜃

  
PD Controller 

 

𝑔−1(𝑋) −𝑓 (𝑋)

+ 𝑋 𝑑 + 𝐾𝑒  

Neural 
Controller (U= 
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Fig. 11 displacement, angular and velocity errors 

 

B. Neural controller performance with 

disturbances 

This test is performed to analyze control 
performance when any disturbance occurred on the 

robot. We have chosen sinusoidal trajectory for this 

purpose as to prove neural controller performance 

improves when time increases. We applied sudden 

forces on robot at two different time instants and 

observed robot come back to the desired trajectory. 

The neural controller performance is compared with 

the classical PD controller. The dynamic PD 

controller  𝜏𝑅  = 𝑘𝑤𝑟  𝑒𝑣  +  𝑘𝑤𝑟𝑑 𝑒𝑣 , 𝜏𝐿  =
𝑘𝑤𝑙 𝑒𝑤 + 𝑘𝑤𝑙𝑑𝑒𝑤gains which are used to generate 

torques from the velocity errorsare𝑘𝑤𝑟 = 0.8, 𝑘𝑤𝑙 =
0.2 𝑎𝑛𝑑 𝑘𝑤𝑟𝑑 = 0.53, 𝑘𝑤𝑙𝑑 = 0.01 . The total run 

time is 150sec and two high forces (equal to 10 and 
15 Nm/sec) are appliedat 75sec and 50sec. Fig. 12 

shows that the neural controller is able to stabilize 

the robot quickly and makes the robot move in the 

desired path smoothly compared to PD 

controller.From Fig. 13, we can say that the neural 

controller generated torques is smooth and low.  

 

 
Fig. 12Tracking performance when sudden forces 

applied 

 

 
Fig. 13Left and right wheel motor torques 

 

C. Neural controller performance with 

convergence 

As the neural control structure is adaptive, 
the weights are automatically adjusted using update 

law such that it tracks the trajectory though any 

changes happen to dynamics. So the velocity error 

keeps on reducing with the time and hence the 

tracking performance improves.  If the control 

structure uses previous saturated weights as initial 

weights for the next time reboot of robotmakes the 

error further decreases to lower values. Whereas this 

is not possible in case of PD controller as the gains 

are fixed for a particular dynamics and external 

environments. Fig. 14 shows that in case of neural 

controller, the RMS error in X, Y coordinates 
decreases faster with time than a PD controller. 

𝑅𝑀𝑆 𝐸𝑟𝑟𝑜𝑟 =    
𝑒𝑥
𝑖 2

+𝑒𝑦
𝑖 2

𝑁

𝑁
𝑖=1 , where N is 

number of iterations.𝑒𝑥
𝑖 , 𝑒𝑦

𝑖 are𝑖𝑡𝑕 iteration errors in 

𝑥, 𝑦 coordinates. 

 

 
Fig. 14 RMS error with number of iterations (or w.r.t 

time) 

 

CONCLUSIONS 
In this paper, we presented a simple method 

of controlling velocities to achieve desired trajectory 

by converting 𝑥, 𝑦, 𝜃  into linear displacement (𝑆) 

Disturbances 

Sudden forces 
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and 𝜃which takes care of nonholonomic constraints. 

We also proposed direct adaptive control method 

using RBF networks to generate motor torques such 

that the velocities generated from kinematic control 

are achieved. We observed that neural controller 

performance is better than better than PD controller 

when disturbances occurred. It also converges faster 
than PD.  
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