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ABSTRACT 
We present a new reseeding-mixing method 

to extend the system period length and to enhance 

the statistical properties of a chaos-based logistic 

map pseudo random number generator (PRNG). 

The reseeding method removes the short periods 

of the digitized logistic map and the mixing 

method extends the system period length to 2
253

 by 

“XOring” with a DX generator. Here we also 

present the method to increase the randomization 

by changing the initial pattern periodically. 

 

1. INTRODUCTION 
The understanding of random numbers and 

how a number is defined to be random is essential to 

the understanding of this paper. In a statistical sense, 

there is no such thing a single random number. This 

is because it is impossible to perform any statistical 

tests on a single number. Instead it is better to define 

a sequence of numbers to be random, or speak of a 

number chosen from a random sequence of numbers. 

[Knuth] 

A random number can be defined as a 

number from an independent set of numbers which 

is the output of a natural event and has a very high 

degree of uncertainty. The next number generated is 

completely independent from all previous numbers 

generated and is selected purely by chance. The set 

of numbers produced will have a given distribution 

[Knuth]. Here, it is assumed that all random 

sequences have a uniform distribution between zero, 

and one, excluding which is written as [0,1) 

mathematically. All possible numbers in this range 

has an equal probability of being selected. 

Randomness is easier understood as the outcome of 

some natural process or event. A true random 

number generator has an infinite period and given 

the same input parameters, will never produce the 

same output. 

Secondly, a pseudo random number can be 

defined as a number from a set of numbers, which  

is the output of a mathematical function, which tries 

to “mimic” a true random number. This therefore 

makes them completely deterministic [Jansson]. 

Poor PRNG’s have been an issue since the 

release of IBM’s RANDU generator in the early 

1960’s.  

 

II .Random Numbers 

The need for true random numbers is 

needed in many applications, this has resulted in  

 

specialized hardware being built to produce a 

sequence of true random numbers instead of using a 

software method of producing random like number 

sequences. 

There are many natural occurring events 

that exhibit true random behaviour. The world of 

quantum physics is characterized by purely random 

events as well as natural decay of radioactive 

material are just two examples of many, truly 

random events. These processes, although very good 

sources of random data, are not practical for many 

computing needs. There are however more practical 

ways of generating true random data sequences. 

 One such method is by allowing a current 

to flow thought a resistor. Thermal agitation of free 

electrons causes small voltage fluctuations. It is this 

random noise that circuit designers try to minimise 

as much as possible [Ghausi]. If the amplitude of the 

voltage fluctuations across the resistor are made 

large enough to use practically, a true random 

number generator could be constructed [Connor]. 

This can be used, together with a comparator and a 

microprocessor to feed a sequence of “random” bits 

into the PC via the COM port. This sequence of bits 

will of course have to be tested statistically to make 

sure that it does actually exhibit random properties. 

Another possible way to generate random data is to 

connect an antenna to an amplifier and measure the 

noise picked up. This is very similar to measuring 

the noise from a resistor, except that the sequence 

collected will have to be analyzed using Fourier 

analysis to check that there are no dominating 

frequencies in the data. This does however have its 

drawbacks 

. 

A.  Pseudo Random Numbers 

Obtaining random numbers from a physical 

source can often be impractical in many applications 

such as portable web applications. This led to the 

development of a mathematical method to create a 

sequence of numbers that could mimic true random 

numbers. Because a mathematical source is not a 

true source of random numbers, it is called a pseudo 

random number. This is due to the mathematical 

function being completely deterministic and hence, 

non-random. In the 1940’s von Neuman developed 

the first mathematical algorithm to create random 
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numbers. This was known as the middle-square 

method, and while it could produce seemingly 

random number sequences, it quickly proved to be a 

very poor source of pseudo random numbers. These 

methods of producing pseudo random numbers are 

known as pseudo random number generators or 

PRNG for short. 

 

B. Current Prngs 

The first reliable PRNG algorithm was 

proposed by D. H. Lehmer in 1949, called the Linear 

Congruential Generator (or Linear Congruential 

Method, LCM). This method has been one of the 

most well known and widely used methods for 

generating random sequences. However, this method 

is not without flaws. It is well know that the 

sequence generated forms a lattice structure in 3-

space. 3-space are three sets of coordinates (3-tuple) 

plotted against three sets of axis. This concept can be 

extended to 4,5… n-space.  

 

III. Qualities of Prng Must Possess 
A good PRNG can be designed and built 

following a few simple guide lines. This however 

does not make the actual task of designed such an 

algorithm a menial task.  

These six characteristics are as follows: 

--Since processing power is not limited to the extent 

as it was a few decades ago, PRNG algorithms must 

still be short and efficient. This will allow pseudo 

random numbers to be generated in only a few clock 

cycles to allow the processor to continue with the 

main calling function or program [Jansson, Atreya]. 

--Since PRNG’s are of the form of a mathematical 

function, it is noted that they will, at some stage, 

begin to repeat themselves [Park]. It is this period of 

a PRNG that must be as long as possible [Jansson, 

Atreya]. 

---There are statistical tests in use that can test the 

possibility of randomness with high levels of 

accuracy. The sequence produced from a PRNG 

should be checked against these tests, and pass them 

[Jansson]. 

--By analysing the outputs of a PRNG, it should not 

be possible to predict the next number that will be 

generated [Atreya]. 

--A random number sequence, in its binary 

representation, must have, on average, an equal 

amount of 1’s and 0’s. Furthermore, there must be 

no noticeable patterns in the bit string. [Atreya]. 

--A PRNG must be seeded with a value, and given 

the same value, the same sequence of numbers must 

be produced (this is especially important for Monte 

Carlo simulations discussed later). For systems 

where the PRNG must behave in a more random 

manner, the seed must not be known or must not be 

able to be calculated. In this aspect, it is important 

that the seed contain a high level on entropy.  

 

A.  Selecting A Seed 

Selecting a seed number for a PRNG can be 

a very important process in the correct operation of a 

PRNG. In some applications it is acceptable to use a 

predefined seeding value or, for example the time of 

day. In security applications, this method of seeding 

a PRNG is not so simple. If the seeding value can be 

discovered, the entire security of an application can 

be broken . 

This technique is known as delayed 

coordinates and can be explained as a comb being 

passed through a set of numbers to pick out, or 

identify, any patterns in the data. This can be 

extended to as many dimensions as one likes also 

known as n-dimensional space. Three dimensions 

are used so that it is easy to plot on set of three axes. 

An extra dimension is possible in the form of 

displaying time data. This will show how the 

sequence is being generated and whether there is 

some pattern in the generation process. Also, by 

modifying the lag it is possible to find dependencies 

in the data that is not immediately obvious. Another 

very similar method as the one above is to check 

how dependent a number in a sequence is from its 

predecessor  

 

B. Construction And Testing Of A Hardware 

RNG  

The use of a physical device to generate 

random numbers can possibly be one of the most 

secure methods of generating random numbers for 

computational needs. It is not, however, suited for 

all applications. Monte Carlo experiments, for 

example, should not be performed using a physical 

random number generator. This is due to the fact that 

the same sequence of numbers can never be obtained 

again which will result in an experiment never being 

replicated exactly. This will have major implications 

when results need to be verified by colleagues. 

Instead, a good PRNG should be used with very 

good statistical properties. But for purposes of 

security and cryptography, the use of a physical 

device is desirable. This is because a hardware 

device, if properly constructed, will have a high 

degree of entropy.  

 

C. PRNGs for Simulations 

The output sequence of random numbers is produced 

in the following manner. 

                  Xi+1 = aXi + c(mod n) 

 

D. Linear Feedback Shift Register 

Linear feedback shift register (LFSR) is 

composed of a register of n memory elements, each 

of them is capable of storing one bit, and having one 

input and one output; and a clock which controls the 

shift operation (the °ow of data between these 

elements) and the feedback operation. At each time 

unit the content of element 0 is output, the content of 

each element i is moved to element i+1, and the new 
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content of element n+1 is the output of the feedback 

function. 

The feedback function is xor of the content 

of a fixed subset of the register elements. This subset 

(also called a tap sequence) is represented by a 

polynomial of the form 

 
 

If element is used as input to the feedback 

function (i.e., c0 = 1), the LFSR is said to be non-

singular. If the LFSR is non-singular and the 

polynomial is a primitive polynomial, and the initial 

content of the register is not all zero, then the LFSR 

produces output with the maximum possible period 

2n+1. [21] (H16:2) listsof primitive polynomials 

modulo 2. 

 

E.  Generalized Feedback Shift Register 

Generalized feedback shift register (GFSR) 

[15] is a refinement of LFSR. It is non-singular, the 

polynomial is primitive, and its degree is 3 (a 

trinomial). Among GFSR'sadvantages are: better 

distribution, long period, and speed. 

 

F. Reseeding Technique 

Reseeding technique is widely used in 

LFSR for test pattern generation [26], [27] and in 

CB-PRNG for period extension. Cernák [13] 

presented a reseeding method either to perturb the 

state value or the system parameter of digitized 

logistic map (LGM) for removing the short periods 

of a CB-PRNG. In 1998, Sang et al. applied a 

different reseeding method in perturbing a CB-

PRNG to extend its period length up to 3.362x10
29

 

and the lower bound of the reseeded system can be 

calculated. Li et al. [16] discovered that the 

reseeding technique not only removes the short 

periods but also improves the statistical properties of 

CB-PRNG. Recently, these merits of reseeding were 

confirmed by exhaustive simulation [28] in a 32-b 

implementation of a CB-PRNG.  

 

IV. Proposed RM-PRNG 
Fig. 1 shows the schematic diagram of the 

RM-PRNG, which is composed of three modules: 

Nonlinear Module, Reseeding Module, and Vector 

Mixing Module. In a 32-b implementation, the 

Nonlinear Module has a controlled 32-b state 

register and a Next-State construction circuitry. The 

controlled register stores the state value which can 

be set to Seed1 by the Start command. The Next-

State construction circuitry produces the next state 

value  according to the recursive formula. For each 

generated state value, the reseeding control unit 

(RCU) in the Reseeding Module compares the 

values  for checking the fixed point 

condition,

 
and increases the reseeding counter (RC) at the same 

time. The RC will be reset and the reseeding 

operation will be activated when either the fixed 

point condition is detected or the RC reaches the 

reseeding period ��. When reseeding is activated, 

the state register will be loaded through the 

reseeding multiplexer (RMux) with a value 

described in Section III-B. Otherwise, the value of 

__�_ is directly loaded into the state register. The 

output of the proposed RM-PRNG is obtained by 

mixing Xt+1 with the output Yt+1 from an auxiliary 

linear generator 

(ALG) in the Vector Mixing Module according to 

the rule given in Section III-C. 

 

A. Nonlinear Module 

We use the LGM as the next-state 

construction function in the Nonlinear Module so 

that 

(1) 

. Choosing a value 4 for not only makes the LG 

Mchaotic but also simplifies the implementation of 

(1) to merely left-shifting the product   by 2 b. 

However, the state size decreases from 32 to 31 b, 

because the dynamics  (1) are the same. This is 

equivalent to a degradation of resolution by 1 b. In 

addition, fixed as well as short periods exist when 

the LGM is digitized. From exhaustive runs for all of 

the  seeds, we obtain all other periods for the 32-b 

LGM  without reseeding. They are given in Table I 

with the longest period (18 675) and the set of short 

listed separately along with their total occurrences. 

Clearly, the performance of a CB-PRNG using only 
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the Nonlinear Module is unsatisfactory. To solve the 

fixed points and short-period problem, a Reseeding 

Module is in order. 

 

B. Reseeding Module 

The removal of the fixed points by the 

reseeding mechanism is obvious. When the fixed 

point condition is detected or the reseeding period is 

reached, the value loaded to the state register will be 

perturbed away from in the RCU by the fixed pattern  

according to the formula  where subscripts ,i ,j are 

the bit-index, L is integer. In order to minimize the 

degradation of the statistical properties of chaos 

dynamics, the magnitude of the perturbation of the 

fixed pattern  should be small compared Here, we set 

L=5 so that the maximum relative perturbation is 

only (2
5
-1)/2

32
 and the degradation can be ignored 

[15]. Clearly, the effectiveness of removing short-

periods depends on the reseeding period as well as 

the reseeding pattern . However, choosing the 

optimal reseeding period and the reseeding pattern is 

nontrivial. Nevertheless, several guidelines to 

choose a suitable combination   had been proposed 

and discussed in our previous work [28]. First, the 

reseeding period should avoid being the values or 

the multiples of the short periods  of the unperturbed 

digitized LGM. Otherwise, if the 5 LSBs of equal to  

when the reseeding procedure is activated. Then no 

effective reseeding will be realized and the system 

will be trapped in the short-period cycle. Hence, 

prime numbers should be used as the reseeding 

period candidates. Although the average period of 

the reseeded PRNG has increased more than 100 

times relative to that of the non reseeded 

counterpart, the period can in fact be extended 

tremendously in the Vector Mixing Module 

described below. 

 
 

 
                               Simulated output. 

 

Area Utilization Report 

 
Flow summary report 

 

CONCLUSIONS  
The proposed one is a hardware 

implementation of RM-PRNG to offer long periods 

and high throughput rate while adhering to 

established statistical standards for PRNGs. The 

reseeding mechanism solves the short-period 

problem originated from the digitization of the 

chaotic map, while mixing a CB-PRNG with a long-

period DX generator extends the period length to the 

theoretically calculated value greater than . 

Replacing a hardware-demanding CB-PRNG with a 

hardware-efficient MRG, the hardware cost is 

reduced and the hardware efficiency achieves 0.538 

Mb/s-gate. In addition, the high throughput rate (  

6.4 Gb/s) is attained because RM-PRNG can 

generate multiple random bits in an iteration 
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