
Deepika Gurajapu, D.Nagesh / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1067-1071

1067 | P a g e

FPGA IMPLEMENTATION OF NON-LINEAR PRNG USING

RESEEDING- MIXING METHOD

 Deepika Gurajapu, D.Nagesh,
 M.Tech (student), Pragati Engineering College, Surampalem

 Assistant professor, Pragati engineering college, Surampalem

ABSTRACT
We present a new reseeding-mixing method

to extend the system period length and to enhance

the statistical properties of a chaos-based logistic

map pseudo random number generator (PRNG).

The reseeding method removes the short periods

of the digitized logistic map and the mixing

method extends the system period length to 2
253

 by

“XOring” with a DX generator. Here we also

present the method to increase the randomization

by changing the initial pattern periodically.

1. INTRODUCTION
The understanding of random numbers and

how a number is defined to be random is essential to

the understanding of this paper. In a statistical sense,

there is no such thing a single random number. This

is because it is impossible to perform any statistical

tests on a single number. Instead it is better to define

a sequence of numbers to be random, or speak of a

number chosen from a random sequence of numbers.

[Knuth]

A random number can be defined as a

number from an independent set of numbers which

is the output of a natural event and has a very high

degree of uncertainty. The next number generated is

completely independent from all previous numbers

generated and is selected purely by chance. The set

of numbers produced will have a given distribution

[Knuth]. Here, it is assumed that all random

sequences have a uniform distribution between zero,

and one, excluding which is written as [0,1)

mathematically. All possible numbers in this range

has an equal probability of being selected.

Randomness is easier understood as the outcome of

some natural process or event. A true random

number generator has an infinite period and given

the same input parameters, will never produce the

same output.

Secondly, a pseudo random number can be

defined as a number from a set of numbers, which

is the output of a mathematical function, which tries

to “mimic” a true random number. This therefore

makes them completely deterministic [Jansson].

Poor PRNG’s have been an issue since the

release of IBM’s RANDU generator in the early

1960’s.

II .Random Numbers

The need for true random numbers is

needed in many applications, this has resulted in

specialized hardware being built to produce a

sequence of true random numbers instead of using a

software method of producing random like number

sequences.

There are many natural occurring events

that exhibit true random behaviour. The world of

quantum physics is characterized by purely random

events as well as natural decay of radioactive

material are just two examples of many, truly

random events. These processes, although very good

sources of random data, are not practical for many

computing needs. There are however more practical

ways of generating true random data sequences.

 One such method is by allowing a current

to flow thought a resistor. Thermal agitation of free

electrons causes small voltage fluctuations. It is this

random noise that circuit designers try to minimise

as much as possible [Ghausi]. If the amplitude of the

voltage fluctuations across the resistor are made

large enough to use practically, a true random

number generator could be constructed [Connor].

This can be used, together with a comparator and a

microprocessor to feed a sequence of “random” bits

into the PC via the COM port. This sequence of bits

will of course have to be tested statistically to make

sure that it does actually exhibit random properties.

Another possible way to generate random data is to

connect an antenna to an amplifier and measure the

noise picked up. This is very similar to measuring

the noise from a resistor, except that the sequence

collected will have to be analyzed using Fourier

analysis to check that there are no dominating

frequencies in the data. This does however have its

drawbacks

.

A. Pseudo Random Numbers

Obtaining random numbers from a physical

source can often be impractical in many applications

such as portable web applications. This led to the

development of a mathematical method to create a

sequence of numbers that could mimic true random

numbers. Because a mathematical source is not a

true source of random numbers, it is called a pseudo

random number. This is due to the mathematical

function being completely deterministic and hence,

non-random. In the 1940’s von Neuman developed

the first mathematical algorithm to create random

Deepika Gurajapu, D.Nagesh / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1067-1071

1068 | P a g e

numbers. This was known as the middle-square

method, and while it could produce seemingly

random number sequences, it quickly proved to be a

very poor source of pseudo random numbers. These

methods of producing pseudo random numbers are

known as pseudo random number generators or

PRNG for short.

B. Current Prngs

The first reliable PRNG algorithm was

proposed by D. H. Lehmer in 1949, called the Linear

Congruential Generator (or Linear Congruential

Method, LCM). This method has been one of the

most well known and widely used methods for

generating random sequences. However, this method

is not without flaws. It is well know that the

sequence generated forms a lattice structure in 3-

space. 3-space are three sets of coordinates (3-tuple)

plotted against three sets of axis. This concept can be

extended to 4,5… n-space.

III. Qualities of Prng Must Possess
A good PRNG can be designed and built

following a few simple guide lines. This however

does not make the actual task of designed such an

algorithm a menial task.

These six characteristics are as follows:

--Since processing power is not limited to the extent

as it was a few decades ago, PRNG algorithms must

still be short and efficient. This will allow pseudo

random numbers to be generated in only a few clock

cycles to allow the processor to continue with the

main calling function or program [Jansson, Atreya].

--Since PRNG’s are of the form of a mathematical

function, it is noted that they will, at some stage,

begin to repeat themselves [Park]. It is this period of

a PRNG that must be as long as possible [Jansson,

Atreya].

---There are statistical tests in use that can test the

possibility of randomness with high levels of

accuracy. The sequence produced from a PRNG

should be checked against these tests, and pass them

[Jansson].

--By analysing the outputs of a PRNG, it should not

be possible to predict the next number that will be

generated [Atreya].

--A random number sequence, in its binary

representation, must have, on average, an equal

amount of 1’s and 0’s. Furthermore, there must be

no noticeable patterns in the bit string. [Atreya].

--A PRNG must be seeded with a value, and given

the same value, the same sequence of numbers must

be produced (this is especially important for Monte

Carlo simulations discussed later). For systems

where the PRNG must behave in a more random

manner, the seed must not be known or must not be

able to be calculated. In this aspect, it is important

that the seed contain a high level on entropy.

A. Selecting A Seed

Selecting a seed number for a PRNG can be

a very important process in the correct operation of a

PRNG. In some applications it is acceptable to use a

predefined seeding value or, for example the time of

day. In security applications, this method of seeding

a PRNG is not so simple. If the seeding value can be

discovered, the entire security of an application can

be broken .

This technique is known as delayed

coordinates and can be explained as a comb being

passed through a set of numbers to pick out, or

identify, any patterns in the data. This can be

extended to as many dimensions as one likes also

known as n-dimensional space. Three dimensions

are used so that it is easy to plot on set of three axes.

An extra dimension is possible in the form of

displaying time data. This will show how the

sequence is being generated and whether there is

some pattern in the generation process. Also, by

modifying the lag it is possible to find dependencies

in the data that is not immediately obvious. Another

very similar method as the one above is to check

how dependent a number in a sequence is from its

predecessor

B. Construction And Testing Of A Hardware

RNG

The use of a physical device to generate

random numbers can possibly be one of the most

secure methods of generating random numbers for

computational needs. It is not, however, suited for

all applications. Monte Carlo experiments, for

example, should not be performed using a physical

random number generator. This is due to the fact that

the same sequence of numbers can never be obtained

again which will result in an experiment never being

replicated exactly. This will have major implications

when results need to be verified by colleagues.

Instead, a good PRNG should be used with very

good statistical properties. But for purposes of

security and cryptography, the use of a physical

device is desirable. This is because a hardware

device, if properly constructed, will have a high

degree of entropy.

C. PRNGs for Simulations

The output sequence of random numbers is produced

in the following manner.

 Xi+1 = aXi + c(mod n)

D. Linear Feedback Shift Register

Linear feedback shift register (LFSR) is

composed of a register of n memory elements, each

of them is capable of storing one bit, and having one

input and one output; and a clock which controls the

shift operation (the °ow of data between these

elements) and the feedback operation. At each time

unit the content of element 0 is output, the content of

each element i is moved to element i+1, and the new

Deepika Gurajapu, D.Nagesh / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1067-1071

1069 | P a g e

content of element n+1 is the output of the feedback

function.

The feedback function is xor of the content

of a fixed subset of the register elements. This subset

(also called a tap sequence) is represented by a

polynomial of the form

If element is used as input to the feedback

function (i.e., c0 = 1), the LFSR is said to be non-

singular. If the LFSR is non-singular and the

polynomial is a primitive polynomial, and the initial

content of the register is not all zero, then the LFSR

produces output with the maximum possible period

2n+1. [21] (H16:2) listsof primitive polynomials

modulo 2.

E. Generalized Feedback Shift Register

Generalized feedback shift register (GFSR)

[15] is a refinement of LFSR. It is non-singular, the

polynomial is primitive, and its degree is 3 (a

trinomial). Among GFSR'sadvantages are: better

distribution, long period, and speed.

F. Reseeding Technique

Reseeding technique is widely used in

LFSR for test pattern generation [26], [27] and in

CB-PRNG for period extension. Cernák [13]

presented a reseeding method either to perturb the

state value or the system parameter of digitized

logistic map (LGM) for removing the short periods

of a CB-PRNG. In 1998, Sang et al. applied a

different reseeding method in perturbing a CB-

PRNG to extend its period length up to 3.362x10
29

and the lower bound of the reseeded system can be

calculated. Li et al. [16] discovered that the

reseeding technique not only removes the short

periods but also improves the statistical properties of

CB-PRNG. Recently, these merits of reseeding were

confirmed by exhaustive simulation [28] in a 32-b

implementation of a CB-PRNG.

IV. Proposed RM-PRNG
Fig. 1 shows the schematic diagram of the

RM-PRNG, which is composed of three modules:

Nonlinear Module, Reseeding Module, and Vector

Mixing Module. In a 32-b implementation, the

Nonlinear Module has a controlled 32-b state

register and a Next-State construction circuitry. The

controlled register stores the state value which can

be set to Seed1 by the Start command. The Next-

State construction circuitry produces the next state

value according to the recursive formula. For each

generated state value, the reseeding control unit

(RCU) in the Reseeding Module compares the

values for checking the fixed point

condition,

and increases the reseeding counter (RC) at the same

time. The RC will be reset and the reseeding

operation will be activated when either the fixed

point condition is detected or the RC reaches the

reseeding period ��. When reseeding is activated,

the state register will be loaded through the

reseeding multiplexer (RMux) with a value

described in Section III-B. Otherwise, the value of

__�_ is directly loaded into the state register. The

output of the proposed RM-PRNG is obtained by

mixing Xt+1 with the output Yt+1 from an auxiliary

linear generator

(ALG) in the Vector Mixing Module according to

the rule given in Section III-C.

A. Nonlinear Module

We use the LGM as the next-state

construction function in the Nonlinear Module so

that

(1)

. Choosing a value 4 for not only makes the LG

Mchaotic but also simplifies the implementation of

(1) to merely left-shifting the product by 2 b.

However, the state size decreases from 32 to 31 b,

because the dynamics (1) are the same. This is

equivalent to a degradation of resolution by 1 b. In

addition, fixed as well as short periods exist when

the LGM is digitized. From exhaustive runs for all of

the seeds, we obtain all other periods for the 32-b

LGM without reseeding. They are given in Table I

with the longest period (18 675) and the set of short

listed separately along with their total occurrences.

Clearly, the performance of a CB-PRNG using only

Deepika Gurajapu, D.Nagesh / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1067-1071

1070 | P a g e

the Nonlinear Module is unsatisfactory. To solve the

fixed points and short-period problem, a Reseeding

Module is in order.

B. Reseeding Module

The removal of the fixed points by the

reseeding mechanism is obvious. When the fixed

point condition is detected or the reseeding period is

reached, the value loaded to the state register will be

perturbed away from in the RCU by the fixed pattern

according to the formula where subscripts ,i ,j are

the bit-index, L is integer. In order to minimize the

degradation of the statistical properties of chaos

dynamics, the magnitude of the perturbation of the

fixed pattern should be small compared Here, we set

L=5 so that the maximum relative perturbation is

only (2
5
-1)/2

32
 and the degradation can be ignored

[15]. Clearly, the effectiveness of removing short-

periods depends on the reseeding period as well as

the reseeding pattern . However, choosing the

optimal reseeding period and the reseeding pattern is

nontrivial. Nevertheless, several guidelines to

choose a suitable combination had been proposed

and discussed in our previous work [28]. First, the

reseeding period should avoid being the values or

the multiples of the short periods of the unperturbed

digitized LGM. Otherwise, if the 5 LSBs of equal to

when the reseeding procedure is activated. Then no

effective reseeding will be realized and the system

will be trapped in the short-period cycle. Hence,

prime numbers should be used as the reseeding

period candidates. Although the average period of

the reseeded PRNG has increased more than 100

times relative to that of the non reseeded

counterpart, the period can in fact be extended

tremendously in the Vector Mixing Module

described below.

 Simulated output.

Area Utilization Report

Flow summary report

CONCLUSIONS
The proposed one is a hardware

implementation of RM-PRNG to offer long periods

and high throughput rate while adhering to

established statistical standards for PRNGs. The

reseeding mechanism solves the short-period

problem originated from the digitization of the

chaotic map, while mixing a CB-PRNG with a long-

period DX generator extends the period length to the

theoretically calculated value greater than .

Replacing a hardware-demanding CB-PRNG with a

hardware-efficient MRG, the hardware cost is

reduced and the hardware efficiency achieves 0.538

Mb/s-gate. In addition, the high throughput rate (

6.4 Gb/s) is attained because RM-PRNG can

generate multiple random bits in an iteration

REFERANCES:
[1] J. E. Gentle, Random Number Generation

and Monte Carlo Methods, 2nd ed. New

York: Springer-Verlag, 2003.

Deepika Gurajapu, D.Nagesh / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1067-1071

1071 | P a g e

[2] M. P. Kennedy, R. Rovatti, and G. Setti,

Chaotic Electronics in

Telecommunications. Boca Raton, FL:

CRC, 2000.

[3] D. Knuth, The Art of Computer

Programming, 2nd ed. Reading, MA:

Addison-Wesley, 1981.

[4] A. Klapper and M. Goresky, “Feedback

shift registers, 2-adic span, and combiners

with memory,” J. Cryptology, vol. 10, pp.

111–147, 1997.

[5] D. H. Lehmer, “Mathematical methods in

large-scale computing units,” in Proc. 2nd

Symp. Large Scale Digital Comput.

Machinery, Cambridge, MA, 1951, pp.

141–146, Harvard Univ. Press.

[6] P. C. Wu, “Multiplicative, congruential

random-number generators with multiplier

�� �� and modulus � __,” ACM Trans.

Math. Software, vol. 23, pp. 255–265,

1997.

[7] L. Y. Deng and H. Xu, “A system of high-

dimensional, efficient, longcycle and

portable uniform random number

generators,” ACM Trans. Model Comput.

Simul., vol. 13, no. 4, pp. 299–309, Oct. 1,

2003.

[8] L. Y. Deng, “Efficient and portable

multiple recursive generators of large

order,” ACM Trans. Modeling Comput.

Simul., vol. 15, no. 1, pp. 1–13, Jan. 2005.

[9] L. Blum, M. Blum, and M. Shub, “A simple

unpredictable pseudorandom number

generator,” SIAM J. Comput., vol. 15, pp.

364–383, 1986.

[10] B. M. Gammel, R. Goettfert, and O.

Kniffler, “An NLFSR-based stream

cipher,” in Proc. IEEE Int. Symp. Circuits

Syst., 2006, pp. 2917–2920.

[11] D. Mukhopadhyay,D. R. Chowdhury, and

C. Rebeiro, “Theory of composing non-

linear machines with predictable cyclic

structures,” in Proc. 8th Int. Conf. Cellular

Autom. Res. Ind., 2008, pp. 210–219,

Springer.

[12] D. Mukhopadhyay, “Group properties of

non-linear cellular automata,” J. Cellular

Autom., vol. 5, no. 1, pp. 139–155, Oct.

2009.

[13] J. Cermak, “Digital generators of chaos,”

Phys Lett. A, vol. 214, no.3–4, pp. 151–160,

1996. [14] T. Sang, R.Wang, and Y.Yan,

“Perturbance-based algorithm to expand

cycle length of chaotic

