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ABSTRACT 
Cloud Computing has been predicted as 

the next-generation architecture of IT Enterprise. 

In additional to traditional solutions, where the IT 

services are under proper physical, logical and 

personnel controls, Cloud Computing moves the 

application software and databases to the large 

data centers, where the management of data has 

many security challenges To Overcome this, in 

this paper we focused on data security in cloud 

computing, which has always been an important 

aspect of quality of service. To ensure the 

correctness of users' data in the cloud, we propose 

an effective and flexible distributed scheme with 

two salient features, opposing to its predecessors. 

By utilizing the homomorphic token with 

distributed verification of erasure-coded data, our 

scheme achieves the integration of storage 

correctness insurance and data error localization, 

i.e., the identification of misbehaving g server(s). 

Unlike most prior works, the new scheme further 

supports secure and efficient dynamic operations 

on data base, including data update, delete and 

insert. Extensive security and performance 

analysis shows that the proposed scheme is highly 

efficient and resilient against Byzantine failure, 

malicious data modification attack, and even it 

avoids server colluding attacks.  
 

Keywords - Cloud Computing, Security, 

Distributed scheme, homomorphic token, 

distributed verification. 

 

I.   INTRODUCTION 
Several trends are opening up the era of 

Cloud Computing, which is an Internet-based 

development and use of computer technology. The 

ever cheaper and more powerful processors, together 

with the software as a service (SaaS) computing 

archi-tecture, are transforming data centers into pools 

of computing service on a huge scale. The increasing 

network bandwidth and reliable yet flexible network 

connections make it even possi ble that users can now 

subscribe high quality services from data and 

software that reside solely on remote data centers. 

Moving data into the cloud offers great convenience 

to users since they don't have to care about the 

complexities of direct hardware management. The 

pioneer of Cloud Com-puting vendors, Amazon 

Simple Storage Service (S3) and Amazon Elastic 

Compute Cloud (EC2) [1] are both well known  

 

 

examples. While these internet-based online services 

do provide huge amounts of storage space and 

customizable computing resources, this computing 

platform shift, however, is eliminating the 

responsibility of local machines for data maintenance 

at the same time. As a result, users are at the mercy 

of their cloud service providers for the availability 

and integrity of their data. Recent downtime of 

Amazon's S3 is such an example [2]. 

From the perspective of data security, which 

has always been an important aspect of quality of 

service, Cloud Com-puting inevitably poses new 

challenging security threats for number of reasons. 

Firstly, traditional cryptographic primitives for the 

purpose of data security protection can not be directly 

adopted due to the users' loss control of data under 

Cloud Computing. Therefore, verification of correct 

data storage in the cloud must be conducted without 

explicit knowledge of the whole data. Considering 

various kinds of data for each user stored in the cloud 

and the demand of long term continuous assurance of 

their data safety, the problem of verifying correctness 

of data storage in the cloud becomes even more 

challenging. Secondly, Cloud Computing is not just a 

third party data warehouse. The data stored in the 

cloud may be frequently updated by the users, 

including insertion, deletion, modification, 

appending, reordering, etc. To ens ure storage 

correctness under dynamic data update is hence of 

paramount importance. However, this dynamic 

feature also makes traditional integrity insurance 

techniques futile and entails new solutions. Last but 

not the least, the deployment of Cloud Computing is 

powered by data centers running in a simultaneous, 

cooperated and distributed manner. Individual user's 

data is redundantly stored in multiple physical loca-

tions to further reduce the data integrity threats. 

Therefore, distributed protocols for storage 

correctness assurance will be of most importance in 

achieving a robust and secure cloud data storage 

system in the real world. However, such important 

area remains to be fully explored in the literature. 

In this paper, we propose an effective and 

flexible distribut ed scheme with explicit dynamic 

data support to ensure the correctness of users' data in 

the cloud. We rely on erasure-correcting code in the 

file distribution preparation to prov ide redundancies 

and guarantee the data dependability. This con-

struction drastically reduces the communication and 

storage overhead as compared to the traditional 
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replication-based file distribution techniques. By 

utilizing the homomorphic token with distributed 

verification of erasure-coded data, our sc heme 

achieves the storage correctness insurance as well as 

data error localization: whenever data corruption has 

been detected during the storage correctness 

verification, our scheme can almost guarantee the 

simultaneous localization of data errors, i.e., the 

identification of the misbehaving server(s) 

Our work is among the first few ones in this field to 

consider distributed data storage in Cloud 

Computing. Our contribution can be summarized as 

the following three aspect. 

 

1) Compared to many of its predecessors, which only 

provide binary results about the storage state across 

the distributed servers, the challenge-response 

protocol in our work further provides the localization 

of data error.  

2) Unlike most prior works for ensuring remote data 

integrity, the new scheme supports secure and 

efficient dynamic opera-tions on data blocks, 

including: update, delete and append.  

3) Extensive security and performance analysis 

shows that the proposed scheme is highly efficient 

and resilient agains t Byzantine failure, malicious 

data modification attack, and even server colluding 

attacks.  

The rest of the paper is organized as follows. 

Section II introduces the system model, adversary 

model, our design goal and notations. Then we 

provide the detailed description of our scheme in 

Section III and IV. Section V gives the security 

analysis and performance evaluations, followed by 

Section VI which overviews the related work. 

Finally, Section VII gives the concluding remark of 

the whole paper. 

 

II. PROBLEM  STATEMENT  
A. System  Model  

A representative network architecture for 

cloud data storage is illustrated in Figure 1. Three 

different network entities can be identified as 

follows: 

• User: users, who have data to be stored in the 

cloud and rely on the cloud for data computation, 

consist of both individual consumers and 

organizations.  

• Cloud Service Provider (CSP): a CSP, who has 

signif-icant resources and expertise in building 

and managing distributed cloud storage servers, 

owns and operates live Cloud Computing 

systems.  

• Third Party Auditor (TPA): an optional TPA, 

who has expertise and capabilities that users may 

not have, is trusted to assess and expose risk of 

cloud storage services on behalf of the users 

upon request.  

 
In cloud data storage, a user stores his data 

through a CSP into a set of cloud servers, which are 

running in a simulta-neous, cooperated and 

distributed manner. Data redundancy can be 

employed with technique of erasure-correcting code 

to further tolerate faults or server crash as user's data 

grows in size and importance. Thereafter, for 

application purposes, the user interacts with the cloud 

servers via CSP to access or retrieve his data. In some 

cases, the user may need to perform block level 

operations on his data. The most general forms of 

these operations we are considering are block update, 

delete, insert and append. As users no longer possess 

their data locally, it is of critical importance to assure 

users that their data are being correctly stored and 

maintained. That is, users should be equipped with 

security means so that they can make continuous 

correctness assurance of their stored data even 

without the existence of local copies. In case that 

users do not necessarily have the time, feasibility or 

resources to monitor their data, they can delegate the 

tasks to an optional trusted TPA of their respective 

choices. 

 

B.   Adversary  Model 

Security threats faced by cloud data storage 

can come from two different sources. On the one 

hand, a CSP can be self-interested, untrusted and 

possibly malicious. Not only does it desire to move 

data that has not been or is rarely accessed to a lower 

tier of storage than agreed for monetary reasons, but 

it may also attempt to hide a data loss incident due to 

management errors, Byzantine failures and so on. On 

the other hand, there may also exist an economically-

motivated adversary, who has the capability to 

compromise a number of cloud data storage servers 

in different time intervals and subsequently is able to 

modify or delete users' data while remaining 

undetected by CSPs for a certain period. Specifically, 

we consider two types of adversary with differ ent 

levels of capability in this paper: 

Weak Adversary: The adversary is interested 

in corrupting the user's data files stored on individual 

servers. Once a server is comprised, an adversary can 

pollute the original data files b y modifying or 

introducing its own fraudulent data to prevent the 

original data from being retrieved by the user. 

Strong Adversary: This is the worst case scenario, in 

which we assume that the adversary can compromise 

all the storage servers so that he can intentionally 

modify the data files as long as they are internally 
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consistent. In fact, this is equivalent to the case where 

all servers are colluding together to hide a data loss 

or corruption incident. 

C.   Design  Goals 

To ensure the security and dependability for 

cloud data storage under the aforementioned 

adversary model, we aim to design efficient 

mechanisms for dynamic data verification and 

operation and achieve the following goals: (1) 

Storage correctness: to ensure users that their data are 

indeed stored appropriately and kept intact all the 

time in the cloud. (2) Fast localization of data error: 

to effectively locate the mal-functioning server when 

data corruption has been detected. (3) Dynamic data 

support: to maintain the same level of storage 

correctness assurance even if users modify, delete or 

append their data files in the cloud. (4) 

Dependability: to enhance d ata availability against 

Byzantine failures, malicious data modifi-cation and 

server colluding attacks, i.e. minimizing the effect 

brought by data errors or server failures. (5) 

Lightweight: to enable users to perform storage 

correctness checks with minimum overhead. 

D. Notation  and  Preliminaries  

 

• F  –  the  data  file  to  be  stored.  We  assume  that F  can  be 

 denoted  as  a  matrix  of  m  equal-sized  data  vectors,  each 

 consisting of l blocks. Data blocks are all well represented 

 as  elements  in  Galois  Field  GF (2
p
 )  for  p  =  8  or  16. 

• A – The dispersal matrix used for Reed-

Solomon coding.  

• G  –  The  encoded  file  matrix,  which  

includes  a  set  of  

 n  =  m + k  vectors,  each  consisting  of  l  blocks.  

• fkey (·) – pseudorandom function (PRF), which is defined 

 as  f  :  {0, 1}∗ × key  → GF (2
p
).  

• φkey (·)   –   pseudorandom   permutation   (PRP),   which is 

defined  as   φ :  {0, 1}
log

2
(l)

  × key  → {0, 1}
log

2 
(l)

. 

 

• ver – a version number bound with the index for 

individ-ual blocks, which records the times the block 

has been  

modified. Initially we assume   ver  is 0 for all data 

blocks. 

• s
ver

ij – the seed for PRF, which depends on the 

file name, block index i, the server position j as well 

as the optional block version number ver.  

 

III. ENSURING  CLOUD  DATA  

STORAGE 
In cloud data storage system, users store their 

data in the cloud and no longer possess the data 

locally. Thus, the correctness and availability of the 

data files being stored o n the distributed cloud 

servers must be guaranteed. One of the key issues is 

to effectively detect any unauthorized data modifi ca-

tion and corruption, possibly due to server 

compromise and/or random Byzantine failures. 

Besides, in the distributed case when such 

inconsistencies are successfully detected, to fin d 

which server the data error lies in is also of great 

significan ce, since it can be the first step to fast 

recover the storage errors. 

Subsequently, it is also shown how to derive a 

challenge-response protocol for verifying the storage 

correctness as well as identifying misbehaving 

servers. Finally, the procedure for file retrieval and 

error recovery based on erasure-correcti ng code is 

outlined. 

A.   File  Distribution  Preparation 

It is well known that erasure-correcting code may be 

used to tolerate multiple failures in distributed 

storage systems.  

 

Algorithm 1 Token Pre-computation 

1: procedure  
 

2: Choose parameters l, n and function f, φ;  

3: Choose the number t of tokens;  

4: Choose the number r of indices per 

verification;  

5: Generate master key Kprp  and challenge kchal;  

6: for vector G
(j)

 , j ← 1, n do  

7: for round i← 1, t do  

8: Derive α  = f 
k
ch

al 

(i) and k
(i)

 from K P 

RP 

.  

 i   prp      

 (j)  r q (j)      

9: Compute vi = 
P

q=1 αi ∗ G 

 (i) 

(q)] 

  

 
[φ

kprp   

10: end for  
 

11: end for  
12: Store all the vis locally.  

13: end procedure 
 

In cloud data storage, we rely on this 

technique to disperse the data file F redundantly 

across a set of n = m + k distributed servers. A (m + 

k, k) Reed-Solomon erasure-correcting code is used 

to create k redundancy parity vectors from m data 

vectors in such a way that the original m data vectors 

can be reconstructed from any m out of the m + k 

data and parity vectors. By placing each of the m + k 

vectors on a different server, the original data file can 

survive the failure of any k of the m + k servers 

without any data loss, with a space overhead of k/m. 

For support of efficient sequential I/O to the original 

file, our file layout is systematic, i.e., the unmodified 

m data file vectors together with k parity vectors is 

distributed across m + k different servers. 

B.  Challenge Token Precomputation  

In order to achieve assurance of data storage 

correctness and data error localization 

simultaneously, our scheme entirely relies on the pre-

computed verification tokens. The main ide a is as 

follows: before file distribution the user pre-compute 

s a certain number of short verification tokens on 

individual ve ctor G
(j)

 (j ∈ {1, . . . , n}), each token 

covering a random subset of data blocks. Later, when 



Annamaneni Samatha, Nimmala Jeevan Reddy, P.Pradeep Kumar / International Journal of 

Engineering Research and Applications (IJERA) ISSN: 2248-9622   www.ijera.com  

  Vol. 2, Issue 5, September- October 2012, pp.1050-1055 

1053 | P a g e  

the user wants to make sure the storage correctness 

for the data in the cloud, he challenges the cloud 

servers with a set of randomly generated block 

indices. Upon receiving challenge, each cloud server 

computes a short ―signature‖ over the specified 

blocks and returns the m to the user. The values of 

these signatures should match the corresponding 

tokens pre-computed by the user. Meanwhile, as all 

servers operate over the same subset of the indices, 

the requested response values for integrity check 

must also be a valid codeword determined by secret 

matrix P. 

 

Algorithm 2 Correctness Verification and Error 

Localization 

 

1) procedure CHALLENGE(i)  

2) Recompute αi  = fkchal (i) and kprp
(i)

  from KP 

RP ;  

 

3) Send {αi, kprp
(i)

} to all the cloud servers;  

4) Receive from servers:  

{R
(j)

 
Pr     

α
q
 ∗ G

(j)
         (q)]|1 ≤ j ≤ n}  

i q=1   i [φk(i)=  

prp 
5: for (j ← m + 1, n) do 

6: R
(j)

 ← R
(j)

 −
Pr

q=1 fkj (sIq ,j )·α
q

i , Iq = φk(i) (q) prp 

7: end for  
8: if ((Ri

(1)
 , . . . , Ri

(m)
) · P==(Ri

(m+1)
, . . . , Ri

(n)
)) 

then  
 

9: Accept and ready for the next challenge.  

 

10: else  
11: for (j ← 1, n) do  

12: if (Ri
(j)

 ! =vi
(j)

 ) then  

13: return server j is misbehaving. 

 

14: end if  
 

15: end for  
 

16: end if  
 

17: end procedure  
 

D.  File Retrieval and Error Recovery 

Since our layout of file matrix is systematic, 

the user can reconstruct the original file by 

downloading the data vector s assurance is a 

probabilistic one. However, by choosing system 

param-eters (e.g., r, l, t) appropriately and conducting 

enough times of verification, we can guarantee the 

successful file retriev al with high probability. On the 

other hand, whenever the data corruption is detected, 

the comparison of pre-computed tokens and received 

response values can guarantee the identificati on of 

misbehaving server(s), again with high probability, 

which will be discussed shortly. Therefore, the user 

can always ask servers to send back blocks of the r 

rows specified in the challenge and regenerate the 

correct blocks by erasure correction, shown in 

Algorithm 3, as long as there are at most k 

misbehaving servers are identified. The newly 

recovered blocks can then be redistributed to the 

misbehaving servers to maintain the correctness of 

storage. 

 

IV.  PROVIDING DYNAMIC DATA 

OPERATION SUPPORT 
So far, we assumed that F represents static 

or archived data. This model may fit some 

application scenarios, such as libraries and scientific 

datasets. However, in cloud data storage, there are 

many potential scenarios where data stored in the 

cloud is dynamic, like electronic documents, photos, 

or log files etc. Therefore, it is crucial to consider the 

dynamic case, where a user may wish to perform 

various block-level 

 

Algorithm 3 Error Recovery 

 

1: procedure  
 

% Assume the block corruptions have been 

detected among  

 

% the specified  r rows;  

 

% Assume s ≤ k servers have been identified 

misbehaving  

2: Download r rows of blocks from servers;  

3: Treat s servers as erasures and recover the 

blocks.  

 

4: Resend the recovered blocks to corresponding 

servers.  

 

5: end procedure  
 

operations of update, delete and append to 

modify the data fil e while maintaining the storage 

correctness assurance. 

In this section, we will show how our scheme can 

explicitly and efficiently handle dynamic data 

operations for cloud data storage. 

 

A. Update Operation 

In cloud data storage, sometimes the user 

may need to modify some data block(s) stored in the 

cloud, from its current value fij to a new one, fij + fij . 

We refer this operation as data update. Due to the 

linear property of Reed-Solomon code, a user can 

perform the update operation and generate the 

updated parity blocks by using fij only, without 

involving any other unchanged blocks. 

 

B.  Delete Operation 

Sometimes, after being stored in the cloud, certain 

data 
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blocks may need to be deleted. The delete operation 

we are considering is a general one, in which user 

replaces the data block with zero or some special 

reserved data symbol. From this point of view, the 

delete operation is actually a special case of the data 

update operation, where the original data blocks can 

be replaced with zeros or some predetermined 

special blocks. Therefore, we can rely on the update 

procedure to support delete operation, i.e., by setting 

fij in F to be − fij . Also, all the affected tokens have 

to be modified and the updated parity information 

has to be blinded using the same method specified in 

update operation. 

 

C.  Append Operation 

In some cases, the user may want to 

increase the size of his stored data by adding blocks 

at the end of the data file, which we refer as data 

append. We anticipate that the most frequent append 

operation in cloud data storage is bulk append, in 

which the user needs to upload a large number of 

blocks (not a single block) at one time. 

 

D.  Insert Operation 

An insert operation to the data file refers to 

an append operation at the desired index position 

while maintaining the same data block structure for 

the whole data file, i.e., inser ting a block F [j] 

corresponds to shifting all blocks starting with index 

j + 1 by one slot. An insert operation may affect 

many rows in the logical data file matrix F, and a 

substantial number of computations are required to 

renumber all the subsequent blocks as well as re-

compute the challenge-response tokens. Therefore, 

an efficient insert operation is difficult to supp ort 

and thus we leave it for our future work. 

 

V.  SECURITY ANALYSIS AND 

PERFORMANCE EVALUATION 
In this section, we analyze our proposed 

scheme in terms of security and efficiency. Our 

security analysis focuses on the adversary model 

defined in Section II. We also evaluate the efficiency 

of our scheme via implementation of both file 

distribution preparation and verification token 

precomputation. 

 

A. Security Strength Against Weak Adversary  

Detection Probability against data 

modification: In our in each correctness verification 

for the calculation of requested token. We will show 

that this ―sampling‖ strategy on selecte d rows 

instead of all can greatly reduce scheme, servers are 

required to operate on specified rows the 

computational overhead on the server, while 

maintaining the detection of the data corruption with 

high probability. 

 

B.  Security Strength Against Strong Adversary 

In this section, we analyze the security 

strength of our schemes against server colluding 

attack and explain why blind-ing the parity blocks 

can help improve the security strength of our 

proposed scheme. 

Recall that in the file distribution 

preparation, the redun-dancy parity vectors are 

calculated via multiplying the file matrix F by P, 

where P is the secret parity generation matrix we 

later rely on for storage correctness assurance. If we 

disperse all the generated vectors directly after token 

precomputation, i.e., without blinding, malicious 

servers that collaborate can reconstruct the secret P 

matrix easily: they can pick blocks from the same 

rows among the data and parity vectors to establish a 

set of m · k linear equations and solve for the m · k 

entries of the parit generation matrix P. Once they 

have the knowledge of P, those malicious servers 

can consequently modify any part of the data blocks 

and calculate the corresponding parity blocks, and 

vice versa, making their codeword relationship 

always consistent. Therefore, our stor-age 

correctness challenge scheme would be 

undermined—even if those modified blocks are 

covered by the specified rows, the storage 

correctness check equation would always hold. 

 

C.  Performance Evaluation 

1)File Distribution Preparation: We implemented 

the gen-eration of parity vectors for our scheme 

under field GF (2
8
). Our experiment is conducted 

using C on a system with an Intel Core 2 processor 

running at 1.86 GHz, 2048 MB of RAM, and a 7200 

RPM Western Digital 250 GB Serial ATA drive 

with an 8 MB buffer. We consider two sets of 

different parameters for the (m + k, m) Reed-

Solomon encoding. Table I shows the average 

encoding cost over 10 trials for an 8 GB file. 

2) Challenge Token Pre-computation: Although in 

our scheme the number of verification token t is a 

fixed priori determined before file distribution, we 

can overcome this issue by choosing sufficient large 

t in practice.

 

VI.  RELATED WORK 
Juels et al. [3] described a formal ―proof of 

retrievability ‖ (POR) model for ensuring the remote 

data integrity. Their scheme combines spot-cheking 

and error-correcting code to ensure both possession 

and retrievability of files on archiv e service systems. 

Shacham et al. [4] built on this model and 

constructed a random linear function based 

homomorphic authenticator which enables unlimited 

number of queries and requires less communication 

overhead. Bowers et al. [5] pro-posed an improved 

framework for POR protocols that general-izes both 

Juels and Shacham's work. Later in their subsequent 

work, Bowers et al. [10] extended POR model to 

distributed systems. However, all these schemes are 

focusing on static data. The effectiveness of their 

schemes rests primarily on the preprocessing steps 
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that the user conducts before outsourcing the data file 

F . Any change to the contents of F, even few bits, 

must propagate through the error-correcting code, 

thus introducing significant computation and 

communicatio n complexity. 

 

VII.  CONCLUSION 
In this paper, we investigated the problem of 

data security in cloud data storage, which is 

essentially a distribute storage system. To ensure the 

correctness of users' data in cloud data storage, we 

proposed an effective and flexible distribu ted 

scheme with explicit dynamic data support, including 

block update, delete, and append. We rely on erasure-

correcting code in the file distribution preparation to 

provide redundancy parity vectors and guarantee the 

data dependability. By utilizing the homomorphic 

token with distributed verification of erasure - coded 

data, our scheme achieves the integration of storage 

cor-rectness insurance and data error localization, 

i.e., whenever data corruption has been detected 

during the storage correct-ness verification across the 

distributed servers, we can alm ost guarantee the 

simultaneous identification of the misbehavi ng 

server(s). Through detailed security and performance 

analysis, we show that our scheme is highly efficient 

and resilient to Byzantine failure, malicious data 

modification attack, and even server colluding 

attacks. 
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