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ABSTRACT  
Groundwater contamination is one of the 

most serious environmental problems in many 

parts of the world today. For the remediation of 

dissolved phase contaminant in groundwater, the 

pump and treat method is found to be a 

successful remediation technique. Developing an 

efficient and robust methods for identifying the 

most cost effective ways to solve groundwater 

pollution remediation problems using pump and 

treat method is very important because of the 

large construction and operating costs involved. 

In this study an attempt has been made to use 

evolutionary approach (Elitist genetic algorithm 

(EGA) and finite element model (FEM)) to solve 

the non-linear and very complex pump and treat 

groundwater pollution remediation problem. The 

model couples elitist genetic algorithm, a global 

search technique, with FEM for coupled flow and 

solute transport model to optimize the pump and 

treat groundwater pollution problem. This paper 

presents a simulation optimization model to 

obtain optimal pumping rates to cleanup a 

confined aquifer. A coupled FEM model has been 

developed for flow and solute transport 

simulation, which is embedded with the elitist 

genetic algorithm to assess the optimal pumping 

pattern for different scenarios for the 

remediation of contaminated groundwater. Using 

the FEM-EGA model, the optimal pumping 

pattern for the abstraction wells is obtained to 

minimize the total lift costs of groundwater along 

with the treatment cost. The coupled FEM-EGA 

model has been applied for the decontamination 

of a hypothetical confined aquifer to demonstrate 

the effectiveness of the proposed technique. The 

model is applied to determine the minimum 

pumping rates needed to remediate an existing 

contaminant plume. The study found that an 

optimal pumping policy for aquifer 

decontamination using pump and treat method 

can be established by applying the present FEM-

EGA model. 

 

Keywords: Pump and treat, Finite element method, 

Simulation–optimization, Aquifer reclamation, 
Elitist genetic algorithm. 

 

 

 

I. INTRODUCTION  
World's growing industrialization and 

planned irrigation of large agricultural fields have 

caused deterioration of groundwater quality. With 

the growing recognition of the importance of 

groundwater resources, efforts are increasing to 
prevent, reduce, and abate groundwater pollution. As 

a result, during the last decade, much attention has 

been focused on remediation of contaminated 

aquifers. Pump and treat is one of the established 

techniques for restoring the contaminated aquifers. 

The technique involves locating adequate number of 

pumping wells in a polluted aquifer where 

contaminants are removed with the pumped out 

groundwater. Various treatment technologies are 

used for the removal of contaminants and cleanup 

strategies. Depending on the site conditions, some 
times the treated water is injected back in to the 

aquifer. Many researchers found that the combined 

use of simulation and optimization techniques can be 

a powerful tool in designing and planning strategies 

for the optimal management of groundwater 

remediation by pump and treat method. Different 

optimization techniques have been employed in the 

groundwater remediation design involving linear 

programming [1], nonlinear programming [2-4] and 

dynamic programming [5] methods. Application of 

optimization techniques can identify site specific 

remediation plans that are substantially less 
expensive than those identified by the conventional 

trial and error methods. Mixed integer programming 

was also used to optimal design of air stripping 

treatment process [4]. 

 

Bear and Sun [6] developed design for 

optimal remediation by pump and treat. The 

objective was to minimize the total cost including 

fixed and operating costs by pumping and injection 

rates at five potential wells. Two–level hierarchical 

optimization model was  used to optimization of 
pumping /injection rates[6]. At the basic level, well 

locations and pumping and injection rates are sought 

so as to maximize mass removal of contaminants. At 

the upper level, the number of wells for pumping / 

injection is optimized, so as to minimize the cost, 

taking maximum contaminant level as a constraint. 

Recently the applications of combinatorial search 

algorithms, such as genetic algorithms (gas) have 

been used in the groundwater management to 
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identify the cost effective solutions to pump and 

treat groundwater remediation design. Genetic 

algorithms are heuristic programming methods 

capable of locating near global solutions for 

complex problems [7]. A number of researchers 

have applied genetic algorithms in the recent past to 

solve groundwater pollution remediation problems 
[8-19]. 

Ritzel and Eheart [8] applied GA to solve a 

multiple objective groundwater pollution 

containment problem. They used the response matrix 

approach. Vector evaluated genetic algorithm and 

Pareto genetic algorithms have been used for 

maximization of reliability and minimization of 

costs. The Pareto algorithm was shown to be 

superior to the vector evaluated genetic algorithm. 

Genetic algorithms have been used to determine the 

yield from a homogeneous, isotropic, unconfined 

aquifer and also, to determine the minimum cost of 
pump and treat remediation system to remove the 

contaminant plume from the aquifer using air 

stripping treatment technology [9].  

 

Wand and Zheng [10] developed a new 

simulation optimization model developed for the 

optimal design of groundwater remediation systems 

under a variety of field conditions. The model has 

been applied to a typical two-dimensional pump and 

treat example with one and three management 

periods and also to a large-scale three-dimensional 
field problem to determine the minimum pumping 

needed to contain an existing contaminant plume 

[10]. Progressive Genetic algorithms were used to 

optimize the remediation design, while defining the 

locations and pumping and injection rates of the 

specified wells as continuous variables [20]. The 

proposed model considers only the operating cost of 

pumping and injection. But the pumping and 

injection rates are not time varying. Real-coded 

genetic algorithm are also applied for groundwater 

bioremediation[21].  

 
Integrated Genetic algorithm and 

constrained differential dynamic programming were 

used to optimize the total remediation cost[20]. But 

the decision variables only involve determining time 

varying pumping rates from extraction wells and 

their locations. FEM is well established as a 

simulation tool for groundwater flow and solute 

transport [22-26].  

 

Many of the research works revealed that 

the high cost of groundwater pollution remediation 
can be substantially reduced by simulation 

optimization techniques. Most of the groundwater 

pollution remediation optimization problems are 

non-convex, discrete and discontinuous in nature 

and GA has been found to be very suitable to solve 

these problems. GA uses the random search schemes 

inspired by biological evolution [7]. The present 

study develops an optimal planning model for 

cleanup of contaminated aquifer using pump and 

treats method. This study integrates the elitist 

genetic algorithm and finite element model to solve 

the highly nonlinear groundwater remediation 

systems problem. The proposed model considers the 

operating cost of pumping wells and subsequent 
treatment of pumped out contaminated groundwater.  

Minimizing the total cost to meet the water quality 

constraints, and the model computes the optimal 

pumping rate to restore the aquifer.   

 

In the present problem, the genetic 

algorithm is chosen as optimization tool. GAs are 

adaptive methods which may be used to solve search 

and optimization problems. GA is robust iterative 

search methods that are based on Darwin evolution 

and survival of the fittest [7, 31]. The fact that GAs 

have  a number of advantages  over mathematical 
programming techniques traditionally used for 

optimization, including (1) decision variables  are 

represented as  a  discrete set of possible values, (2) 

the ability to find  near global optimal solutions , and 

(3) the generation of  a range of  good solutions in 

addition to one leading  solution. Consequently, GAs 

is used as the optimization technique for the 

proposed research. The GA technique and 

mechanism selected as a part of proposed approach 

are binary coding of the decision variables, roulette 

wheel selection, uniform crossover, bitwise mutation 
and elitism technique.   In the present study, a 

simulation-optimization model has been developed 

by embedding the features of the finite element 

method (FEM) with elitist genetic algorithm (EGA) 

for the assessment of optimal pumping rate for 

aquifer remediation using pump and treat method. 

The developed model is applied to a hypothetical 

problem to study the effectiveness of the proposed 

technique and it can be used to solve similar real 

field problems.   

 

II. GROUNDWATER FLOW AND MASS 

TRANSPORT SIMULATION  
The FEM formulation for flow and solute 

transport followed by genetic algorithm approach is 

considered in this study. The governing equation 

describing the flow in a two dimensional 

heterogeneous confined aquifer can be written as 
[26]     
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Subject to the initial condition of  

)0,y,x(h   = )y,x(h0  y,x            (2) 

and the boundary conditions  

)t,y,x(h   = )t,y,x(H 1y,x              (3) 
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where )t,y,x(h = piezometric head (m); )y,x(T =  

transimissivity (m2/d); S  = storage coefficient; y,x  

=  horizontal space variables (m); wQ  = source or 

sink function   ( wQ  source, wQ = Sink) (m3/d/m2); 

t  = time in days;  = the flow region;  = 

boundary region  (  21 ); 
n


 = normal 

derivative; )y,x(h0  =  initial head in the flow 

domain  (m); )t,y,x(H  = known head value of the 

boundary head (m)  and  )t,y,x(q  =  known inflow 

rate ( m3/d/m). 

 

The governing partial differential equation 

describing the physical processes of convection and 
hydrodynamic dispersion is basically obtained from 

the principle of conservation of mass [27]. The 

partial differential equation for transport of total 

dissolved solids (TDS) or a single chemical 

constituent in groundwater, considering advection 

dispersion and fluid sources/sinks can be given 

[24,28] as follows:  
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where xV   and yV = seepage velocity  in x  and y  

principal axis direction; xxD , yyD   = components 

of dispersion coefficient tensor[L2T-1]; C = 

Dissolved concentration [ML-3];   = porosity 

(dimensionless); w  = elemental recharge rate with 

solute concentration 
'c ; n  = elemental porosity; b  

= aquifer thickness under the element; R = 

Retardation factor: 0C = concentration  of solute in 

injected water into aquifer; W = rate of water 

injected per unit time per unit aquifer volume (T-1) ;  

Q  =  volume rate of water extracted per unit aquifer 

volume.  
The initial condition for the transport problem is  

 f)0,y,x(C  )y,x(                                       (6) 

and the boundary conditions are  

1g)t,y,x(C      1)y,x(             (7)  

2g)t,y,x(
n

C





                                                   (8) 

where 1 = boundary sections of the flow region  ; 

f = a  given function in  ; 1g = given function 

along   1 , which is known solute concentration. 

2g  = concentration gradient normal to the 

boundary 2 ; n = unit normal vector. 

 

For numerical analysis, the finite element 

method is selected because of its relative flexibility 

to discretize a prototype system which represents 
boundaries accurately. The finite element method 

(FEM) approximates the governing partial 

differential equation by integral approach. In the 

present study, two-dimensional linear triangular 

elements are used for spatial discritization and 

Galerkin approach [29] is used for finite element 

approximation. In the FEM, the head variable in 

equation (1) is initially approximated as   



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                 (9) 

where Lh  = unknown head; LN =  known 

basis function at node L ; )t,y,x(h


= trial solution; 

NP= total number of nodes in the problem domain. 

A set of simultaneous equations is obtained when 

residuals weighted by each of the basis function are 

forced to be zero and integrated over the entire 

domain. Applying the finite element formulation for 

equation (1) gives 
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Equation (10) can further be written as the 

summation of individual elements as  
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N .The details of interpolation 

function for linear triangular elements are given 

among others by [29]. 

For an element eq(11) can be written in matrix form  

as 
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 where I = k,j,i  are three nodes of 

triangular elements  and G, P, F are the element 

matrices known as conductance , storage  matrices 

or recharge vectors respectively.   

Summation of elemental matrix equation (12) for all 

the elements lying within the flow region gives the 

global matrix as   
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Applying the implicit finite difference scheme for 

the 
t

h




 term in time domain   for equation (13) 

gives  
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The subscripts t  and tt   represent the 

groundwater head values at present and next time 

steps. By rearranging the terms of equation (14), the 

general form of the equation can be given as[25] 

 ]G[t]P[    tth   = 

   

 ]G[t)1(]P[    th +  tF)1(t  +   ttF                                                                         

                                                                              (15) 

where t = time step size;   th  and   tth   are 

groundwater head vector at the time  t  and 

tt  respectively ; = Relaxation factor which 

depends on the type of finite difference scheme 

used. In the present study Crank-Nicholson scheme 

with   = 0.5 is used. These global matrices can be 

constructed using the element matrices of different 

shapes based on discritization of the domain. The set 

of linear simultaneous equations represent by eq (15) 

are solved to obtain the groundwater head 
distribution at all nodal points of the flow domain 

using Choleski‟s method for the given initial and 

boundary conditions, recharge and  pumping rates, 

transsmissivity, and storage coefficient values. After 

getting the nodal head values, the time step is 

incremented and the solution proceeds in the same 

manner by updating the time matrices and 

recomputing the nodal head values. From the 

obtained nodal head values, the velocity vectors in 

x  and y directions can be calculated using Darcy‟s 

law. For solving transport simulation, applying 

Gelarkin‟s FEM to solve partial differential equation 

(5), final set of implicit equations can be given as 

(similar to eq 15) 

 ]D[t]S[    ttC   = 

  ]D[t)1(]S[    tC +  tF)1(t  +   ttF                                                                         

                                                                 (16) 

where  S  = sorption matrix;  D  = advection–

dispersion matrix;  F  = flux matrix;  C  = nodal 

concentration column matrix and the subscripts t  

and  t+ t  indicates the concentration at present and 

forward time step  respectively. Solution of eq (16) 
with the initial and boundary conditions gives the 

solute concentration distribution in the flow region 

for various time steps. 

 

III. ELITIST GA OPTIMIZATION 

MODEL FORMULATION  
Genetic algorithm is a Global search 

procedure based on the mechanics of natural 

selection and natural genetics, which combines an 

artificial survival of the fittest with genetic operators 

abstracted from the nature [7]. In this paper, elitist 

genetic algorithm is used as optimization tool. The 

EGA procedure consists of three main operators: 

selection, crossover and mutation Elitism ensures 

that the fitness of the best solution in a population 

doesn‟t deteriorate as generation advances Genetic 

algorithm converge the global optimal solution of 

some functions in the presence of elitism In order to 
preserve and use previously best solutions in the 

subsequent generations an elite preserving operator 

is often recommended [30]. In addition to overall 

increase in performance, there is another advantage 

of using such elitism. In an elitist GA, the statistics 

of the population best solutions cannot degrade with 

generations. There exists a number of ways to 

introduce elitism. In the present study, the best %  

of the population from the current population is 

directly copied to next generation. The rest (100 -  ) 

% of the new population is created by usual genetic 
operations applied on the entire current population 

including the chosen % elite members. In this way 

the best solutions of the current population is not 

only get passed from one generation to another, but 

they also participate with other members of the 

population in creating other population members. 
The general scheme for the elitist GA is explained 

below [31]. 

 

1. The implementation of GA starts with a randomly 

generated set of decision variables. The initial 

population is generated randomly with a random 

seed satisfying the bounds and sensitivity 

requirement of the decision variables. The 

population is formed by certain number of encoded 

strings in which each string has values of „0‟s and 

„1‟s, each of which represents a possible solution. 
The total length of the string (i.e., the number of 

binary digits) associated with each string is the total 

number of binary digits used to represent each 

substring. The length of the substring is usually 

determined according to the desired solution 

accuracy. 

2. The fitness of each string in the population is 

evaluated based on the objective function and 

constraints. Various constraints are checked during 

the objective function evaluation stage. The amount 

of any constraint violation is multiplied by weight 

factor and added to the fitness value as a penalty.  
The multiplier is added to scale up the penalty, so 

that it will have a significant, but not excessive 

impact on the objective function. 

3.  This stage selects an interim population of strings 

representing possible solutions via a stochastic 

selection process. The selected better fitness strings 
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are arranged randomly to form mating pool on which 

further operations like crossover mutation are 

performed. Reproduction is implemented in this 

study using the Roulette wheel approach [7]. In 

roulette wheel selection, the string with the higher 

fitness value represents a large range in the 

cumulative probability values and it has higher 
probability of being selected for reproduction. 

Therefore, the algorithm can converge to a set of 

chromosomes with higher fitness values. 

4.  Crossover involves random coupling of the newly 

reproduced strings, and each pair of strings partially 

exchanges information. Crossover aims to exchange 

gene information so as to produce new offspring 

strings that preserve the best material from the 

parent strings. The end result of crossover is the 

creation of a new population which has the same 

size as the old population, and which consists  of 

mostly child strings whose parents no longer exist 
and a minority of parents luckily enough to enter the 

new population unaltered. 

5.  Mutation restores lost or unexplored genetic 

material to the population to prevent the GA from 

prematurely converging to a local minimum. 

Mutation is performed by flipping the values of „0‟ 

and „1‟ of the bit that is selected. A new population 

is formed after mutation. The new population is 

evaluated according to the fitness, i.e., objective 

function. 

6. The best %  of the population from the current 

population is directly copied to next generation. The 

rest (100-  ) % of the new population is created by 

usual genetic operations applied on the entire current 

population including the chosen % elite members. 

7.  The next step is to choose the appropriate 

stopping criterion. The stopping criterion is based on 
the change of either objective function or optimized 

parameters. If the user defined stopping criterion is 

met or when the maximum allowed number of 

generations is reached, the procedure stops, 

otherwise it goes back to reproduction stage to 

perform another cycle of reproduction, crossover, 

and mutation until a stopping criterion met.  

 

 

IV. INTEGRATION OF FEM-ELITISTGA 

SIMULATION–OPTIMIZATION 

APPROACH  
To clean up the contaminated aquifer by 

pump and treat, pumping rates are to be optimized to 

achieve the minimum specified concentration levels 
within the system after a particular period. Here a 

coupled FEM-EGA model is developed to find out 

the optimal pumping rates in the pump and treat 

method. A binary coded genetic algorithm is 

embedded with the flow and transport FEM model 

described earlier, where pumping rates are defined 

as continuous decision variables. In the optimization 

formulation, three constraints were considered, 

which include concentration constraints, constraint 

for extraction rates and also constraints for nodal 

head distribution.   

In the present study, the objective is to minimize the 

total cost of groundwater lift and the treatment cost 

for a fixed remediation period to achieve a desired 

level of cleanup standards.  The appropriate 
objective function for this remediation is considered 

as, 

    f =  
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where,  f = objective function for minimization of 

the system cost; iQ
= pumping rate from the well; 

 = pump efficiency; 
gl

ih
= ground level at well i; 

ih
 = piezometric head at well i; 1a

= cost coefficient 

for total energy unit in kWhr (INR 20.0/kWhr); 2a
= 

cost coefficient for treatment (INR 10.0 /m3); t  = 

duration of pumping; 


= unit weight of water; 

)ih
gl
i

h( 
= groundwater lift at well i  and INR = 

Indian national Rupees (1US$ = INR 47/- 

approximately); and NP number of pumping wells. 

 

Constraints to the problem are specified as Subject 

to  

 
 CC i      Ni ......1    

 maximin hhh 
;   Ni ......1     

  max,iimin,i QQQ 
     NPi ......1  

where, i  is the node number; N is the total number 

of nodes of the flow domain;. 
C is  specified limit 

of concentration in the region; and iQ
= Pumping 

rate at well at i. Decision variables  for the pump and 

treat  remediation system include the pumping rates 

for the wells and the state variables are the hydraulic 

head and solute concentration which are dependent 

variables in the groundwater flow and transport 
equations. For the remediation design, simulation 

model has to update the state variables, which are 

passed on to the optimization model to select the 

optimal values for the decision variables. The flow 

chart for the developed FEM-EGA model is shown 

in Fig.1. 

 

V. OPTIMAL REMEDIATION SYSTEM 

DESIGN WITH FEM-EGA MODEL – A 

CASE STUDY 
A hypothetical problem of solute mass 

transport in a confined aquifer is considered for 

remediation of contaminated groundwater. The 

aquifer is assumed to be homogeneous, anisotropic 

and flow is considered to be two-dimensional. When 
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the remediation process commences, it is reasonably 

assumed that the source of pollutants entering in to 

the aquifer system is stopped. 

Important data for the considered aquifer 

are as follows: The aquifer is discretised into finite 

element mesh with a grid spacing of 200 m   200 

m. Thickness of the confined aquifer = 25 m; Size of 
the confined aquifer = 1800 m   1000 m; storativity 

= 0.0004; aquifer is recharged through some aquitard 

in the area of 0.6 km2 (between node numbers 19 to 

42) at the rate of 0.00012 m/d; porosity = 0.2; 

longitudinal dispersivity = 150 m; transverse 

dispersivity = 15 m; rate of seepage from the pond = 

0.005 m/d; xxT
 = 300 m 2/d, and y yT

 = 200 m2/d.  

The boundary conditions for the flow model are 

constant head on east (70 m) and west sides (75 m), 

and no flow on the north and south sides. For 

transport model, the boundary conditions are zero 
concentration on west and concentration gradient is 

zero on north and south directions. Since the area of 

the aquifer is relatively small (1.8 km2) the boundary 

for the east direction is kept open.  

 

The flow region is discretised into 

triangular elements consisting of 60 nodes and 90 

elements as shown in Fig. 2. The groundwater flow 

and contaminant spread in the aquifer system is 

simulated using FEM to obtain nodal heads, velocity 

vectors and nodal concentration distribution in the 

aquifer domain. Three production wells extracting 
water at the rate of 500, 600 and 250 m3/d 

respectively are considered in the flow region. These 

wells are located at nodes 23, 33 and 35 respectively 

(Fig.2). A recharge well with inflow rate of 750 m 
3/d is located at node 21. Three observation wells are 

located in the aquifer domain at nodes 44, 47, and 52 

respectively to monitor the concentration levels 

during the remediation period. The problem involves 

seepage from a polluted pond into the underlying 

aquifer. The bottom of the pond is assumed to be 

sufficiently close to the groundwater surface so that 
seepage underneath the pond occurs in a saturated 

region. The recharge rate (0.005 m/d) from the pond 

controls the amount of solute introduced into the 

system with a certain velocity. In this problem, the 

contaminant is seeping into the flow field from the 

polluted pond (4000 ppm TDS) and is also added by 

a recharge well (1000 ppm). Initially the entire 

aquifer domain is assumed to be 

uncontaminated )0( C . This study examines the 

coupled flow and solute transport problem with 

these input sources. Pumping wells are also active 

for a simulation period of 10000 days during which 

period the aquifer continues to get contaminated. At 

the end of this simulation period the TDS 

concentration distribution is considered as initial 

concentration levels in the aquifer domain before the 

remediation begins.  Concentration distribution at 

the end of 10000 days of simulation period for these 

dynamic conditions operative on the system is 

shown in Fig. 3. Pump and treat method is applied 

for the aquifer remediation after the sources entering 

in the system are arrested (i.e., no recharge through 

the polluted pond and recharge well). From the 

existing three abstraction wells, the contaminants in 

the system are pumped out for the treatment. Based 
on the concentration distribution at the end of the 

simulation period in the system, the location of 

pumping wells has been changed, so that the 

pumping wells are situated in the highly polluted 

area. Therefore for the aquifer remediation the 

recharge well at node 21 is converted as a pumping 

well (pumping well at node 23, 35 closed).  

Additionally one pumping well and one observation 

well which is located at nodes 33 and 52 are 

considered for pumping out the contaminated water 

for treatment on the ground surface. 

 
The FEM simulation and EGA optimization 

techniques have been used for obtaining an optimal 

pumping pattern to cleanup the contaminated 

aquifer. The optimization of pump and treat 

remediation design requires that the flow and solute 

transport model is run repeatedly, in order to 

calculate the objective function associated with the 

possible design, and to evaluate whether various 

hydraulic and concentration  constraints are met. In 

the present work, the compliance requirement for the 

contaminants concentration level is considered to be 
lower than 750 ppm everywhere in the aquifer at the 

end of 3960 days. The objective of the present study 

is to obtain optimal pumping rates for the wells to 

minimize the total lift cost of groundwater involving 

in definite volume of contaminated groundwater for 

treatment for the specified time period. Three 

pumping wells scenario is considered for this 

remediation period to cleanup the aquifer for a fixed 

cleanup period of 3960 days. The optimal pumping 

pattern (least cost) for the chosen scenario has been 

obtained by the coupled simulation optimization 

model.  
 

Three scenarios have been considered in 

this study to cleanup the contaminated aquifer for a 

fixed cleanup period of 3960 days. Three pumping 

wells, two wells and one well respectively are 

considered for this remediation period to treat these 

scenarios. The optimal pumping pattern (least cost) 

for three scenarios has been obtained by the coupled 

simulation optimization model. 

 

VI. TUNING OF GENETIC ALGORITHM 

PARAMETERS 
Important genetic algorithm parameters 

such as size of population, crossover, mutation, 

number of generations, and termination criterion 

affect the EGA performance. Hence appropriate 

values have to be assigned for these parameters 

before they are used in the optimization problem. 
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For some parameters several trial runs may be 

needed to “tune” these parameters. Each parameter 

was varied to determine its effect on the system 

within reasonable bounds while keeping remaining 

parameters at a standard level. The obtained optimal 

values are used in the simulation optimization model 

for these scenarios.       
 

Rate of mutation   

In the present study for three scenarios, the 

mutation rate was varied between 0.1%, 1.0%, and 

10% per bit. Probability of mutation   is usually 

assigned a   low value between 0.001 and 0.01., 

since it is only a secondary genetic operator. 

Mutation is needed to introduce some random 

diversity in the optimization process. However if 

probability of mutation   is too high, there is a 

danger of losing genetic information too quickly, 

and the optimization process approaches a purely 
random search 

 

Rate of crossover  

Probability of crossover between 0.60 and 

1.0 is used in most genetic algorithm 

implementations. Higher the value of the crossover, 

higher is the genetic recombination as the algorithm 

proceeds, ensuring higher exploitation of genetic 

information.  

 

 Population size 
The optimal value of maximum population 

for binary coding increases exponentially with the 

length of the string [7]. Even for relatively small 

problems, this would lead to high memory storage 

requirements. Results have shown that larger 

population performs better. This is expected as 

larger populations represent a large sampling of the 

design space.  

 

Minimum reduction in objective function for 

termination 

The selection of this parameter is problem 
dependent, and its appropriate value depends on how 

much improvement in objective function value may 

be considered significant. The value of this 

parameter is determined by trial and error, and a 

value of 3 to 4 usually quite sufficient. Larger values 

of this parameter increase the chances of converging 

to the global optimum, but at the cost of increasing 

the computational time  

 

 Penalty function  

Specifying a penalty coefficient is a 
challenging task. A high penalty coefficient will 

ensure that most solutions lie with in the feasible 

solutions space, but can lead to costly conservative 

system designs. A low penalty coefficient permits 

searching for both feasible and infeasible regions, 

but can cause convergence to an infeasible system 

design [30]. 

 

 Number of generations 

From practical considerations, the selection 

of maximum generation is governed by the limits 

placed on the execution time and the number of 

function evaluations. In each generation, the 

objective function is calculated maximum 
population times, (except in the first generation in 

which the fitness of the initial population is also 

calculated) and the various genetic operators are also 

applied several times.  

 

VII. RESULTS AND DISCUSSION  
Although the specific test cases are 

synthetic and relatively idealized, the overall 

approach is realistic. The installation of pumping 

wells at appropriate locations may be necessary to 
prevent further spreading of the contaminants to 

unpolluted areas. At the end of the remediation 

period, the concentration levels everywhere in the 

system are expected to be lower than the specified 

concentration limit of 750 ppm. In all scenarios a 

fixed management period of 3960 days is used. 

Various design strategies for the remediation period 

are presented in Table.1. The following section 

provides the details of the results obtained for the 

chosen problem for various scenarios. 

 

Three wells scenario 

In this three well scenario, three pumping 

wells are considered for pumping out the 

contaminated groundwater.  Lower and upper 

bounds on the pumping capacity are chosen as 250 

m3/d and 1000 m3/d respectively. The pumping rates 

of the three wells are encoded as a 30 bit binary 

string with 10 bits for each pumping rate. The 

optimal GA parameters as discussed earlier sections 

are used in this study. The optimal size of the 

population is chosen as 30. A higher probability of 
crossover of 0.85 and lower mutation probability is 

set at 0.001. A converged solution is obtained after 

128 generations. Fig. 4 shows the final concentration 

contours at the end of 3960 days of remediation 

period based on the optimal pumping rates achieved 

by simulation–optimization model (FEM-EGA).  A 

best value of objective function versus number of 

generations for three well scenarios is presented in 

Fig.6. The optimal pumping rates for the three wells 

are 300.58, 260.26 and 275.65 m3/d respectively as 

shown in Fig.5.  

  
Although the three wells scenario performs 

good to cleanup the system to the required 

concentration level everywhere in the system, as 

expected it leads to a higher system cost.  Also it 

needs to be emphasized that an increase in the 

number of pumping wells to pump out the 

contaminated groundwater is not the first choice. 

However, if the pumping wells are placed at an 

appropriate location, a further spreading of the 
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contaminant plume can be minimized. This means 

that more effective remediation can be achieved by 

appropriately locating the pumping well.  These 

investigations show that an appropriately designed 

pump and treat system can have a significant effect 

on the decontamination of a polluted aquifer and 

preclude further spreading of contaminant plume. 

 

Two wells scenario 

During the remediation period, two 

abstraction wells are considered for pumping out the 

contaminated groundwater. The lower and upper 

bounds of the abstraction wells are 250 m3/d and 

1000 m3
/d respectively. The pumping rates of the 

two abstraction wells are encoded as a 20 bit binary 

string with 10 bits for each pumping rate. The 

optimal size of the population is taken as 30. A 

higher probability of crossover of 0.85 is chosen and 

lower mutation probability is set at 0.001. A 
converged solution is obtained after 30 generations.  

The progress of the aquifer decontamination for this 

scenario is shown in Fig 6. The optimal pumping 

rates obtained for the two wells are 252.199 m3/d 

and 260.263 m3/d respectively. Best values of the 

objective function versus number of generations for 

two well scenario is presented in Fig.7.  

 

One well scenario  

For this case, the length of the management 

period is same as that of three and two well 
scenarios. One pumping well is considered for 

pumping out the contaminated groundwater during 

the remediation period. The lower and upper bounds 

of the pumping well are kept same as for the above 

two scenarios. The pumping rate of the one 

abstraction well is encoded as a string length of 10 

bits. The optimal size of the population is chosen to 

be 20. A moderate crossover probability of 0.85 is 

taken and lower mutation probability is set at 0.001. 

A converged solution is obtained after 25 

generations which is relatively less as compared to 

the three well scenarios. Results indicate that the 
optimal pumping rate for one well for this case is 

346.77 m3/d.  This pumping rate is much lower 

compared to other two scenarios. Even for the lower 

pumping rate the mass remaining in the system (728 

ppm) is marginally less than the specified limit (750 

ppm). Therefore one well scenario is perhaps the 

best option to cleanup the aquifer within the 

specified time period. Fig. 8 shows the final 

concentration contours at the end of 3960 days of 

remediation period based on the optimal pumping 

rate. Values of objective function versus number of 
generations for one well scenario are presented in 

Fig. 9. Figure suggests marginal increase in the 

values after 5 generations and minimum at 25 

generations. 

 

The results suggest that, for the remediation 

of contaminated aquifer using three and two well 

scenarios, the concentration levels in the aquifer 

domain is less than that the required value 

everywhere in the system, where as for one well 

scenario the maximum concentration level is 

marginally less than the specified cleanup standard 

limit for the system.  Further results in Table.1 

shows that increasing the number of pumping wells 
is not feasible, since it involves high system cost and 

less performance. Hence the optimal pumping rate 

obtained in this one well scenario is the best 

pumping policy for the chosen problem to cleanup 

the aquifer with in the specified time period. These 

investigations show that an appropriately designed 

pump and treat system can have a significant effect 

on the decontamination of a polluted aquifer and 

preclude further spreading of contaminant plume. 

 

VIII. CONCLUSIONS 
Here an integrated simulation–optimization 

model is developed for the remediation of a confined 

aquifer that is polluted by a recharge pond and 

injection well operational for a prolonged period of 

time. The two-dimensional model consists of three 

scenarios for remediation of contaminated aquifer. 

Studies demonstrate the effectiveness and robustness 

of the simulation optimization (FEM-EGA) model. 

The problem used a cost based objective function for 

the optimization technique that took into account the 
costs of pumping and treatment of contaminated 

groundwater for the aquifer system. Optimal 

pumping pattern is obtained for cleanup of the 

aquifer using FEM and EGA for a period of 3960 

days.  Comparing the total extraction and pumping 

patterns for the three scenarios, it was found that the 

one well scenario reduces the total pumping rate and 

shows the dynamic adaptability of the EGA based 

optimization technique to achieve the cleanup 

standards. The total remediation cost for the two 

well scenarios is relatively less as compared to three 
and one well scenario.  This is due to the pumping 

well locations which are placed in the highly 

polluted area, so that removal of contaminant from 

these pumping wells is effective.  The total 

extraction of contaminated groundwater gives an 

indication of costs associated with pumping and 

treatment costs in the system. Hence the optimal 

pumping rate obtained in this one well scenario is 

the best pumping policy for the chosen problem to 

cleanup the aquifer within the specified time period. 

The important advantage of using EGA in 

remediation design optimization problem is that the 
global or near global optimal solutions can be found. 

Since there is no need to calculate the derivatives of 

the objective function which often creates a 

numerical instability, the GA based optimization 

model is robust and stable. However, the study 

found that application of genetic algorithms in 

remediation design optimization model are 

computational intensive for tuning of EGA 

parameters. 
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Fig. 2.   Finite element discritization 
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Fig.4. Concentration distribution at the end of 3960 

days remediation for three well scenario  

 

Fig.3. Concentration distribution at the end of 10000 days of 

simulation (Initial concentration before remediation commences) 

 

Fig.5. Values of objective function versus number 

of generations for three well scenario 
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Design 

strategies 

Pumping rates 

for each well  

(m
3
/d) 

Total pumping for 

the remediation 

period.  (m
3
) 

Evaluated 

cost 

(Rupees) 

Three 

well  

289.58 

264.66 
279.32 

3300897 25459830 

 

Two  well  252.19 

260.26 

2029302 15384529 

 

One well  346.77 1373209 10774175 

Table.1. Various design strategies for the remediation period 
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Fig.6. Concentration distribution at the end of 3960 

days remediation for two well scenario  

 

Fig.7. Values of objective function versus number 

of generations for two well scenario 
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Fig.8. Concentration distribution at the end of 3960 

days remediation for one well scenario  

 

Fig.9. Values of objective function versus number 

of generations for  one  well scenario 

 


