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Abstract 
Pressure drop through sudden contraction 

in small circular pipes have been numerically 

investigated, using air and water as the working 

fluids at room temperature and near atmospheric 

pressure. Two-phase computational fluid 

dynamics (CFD) calculations, using Eulerian–

Eulerian model with the air phase being 

compressible, are employed to calculate the 

pressure drop across sudden contraction. The 

pressure drop is determined by extrapolating the 

computed pressure profiles upstream and 

downstream of the contraction. The larger and 

smaller tube diameters are 1.6 mm and 0.84 mm, 

respectively. Computations have been performed 

with single-phase water and air, and two-phase 

mixtures in a range of Reynolds number 

(considering all-liquid flow) from 1000 to 12000 

and flow quality from 3 21.9 10  to 1.6 10   . The 

contraction loss coefficients are found to be 

different for single-phase flow of air and water. 

The numerical results are validated against 

experimental data from the literature and are 

found to be in good agreement. Based on the 

numerical results as well as experimental data, a 

correlation is developed for two-phase flow 

pressure drop caused by the flow area 

contraction. 

 

Keywords: Two-phase flow; pressure drop; loss 

coefficients; flow quality; two-phase multiplier.  

 

1. Introduction 
In the recent years, several papers have been 

published on flow of two-phase gas/liquid mixtures 

through pipe fittings. Schmidt and Friedel [1] studied 

experimentally two-phase pressure drop across 

sudden contractions using mixtures of air and liquids, 

such as water, aqueous glycerol, calcium nitrate 

solution and Freon 12 for a wide range of conditions. 

Salcudean et al. [2] studied the effect of various flow 

obstructions on pressure drops in horizontal air-water 

flow and derived pressure loss coefficients and two-

phase multipliers. Many of the published studies have 

assumed the occurrence of the vena-contracta 

phenomenon in analogy with single-phase flow and 

have assumed that dissipation occurs downstream of 

the vena-contracta point [3-4]. Al’Ferov and 

Shul’zhenko [3], Attou and Bolle [4] have attempted 

to develop mechanistic models for two-phase  

 

pressure drop across sudden contractions. They 

assumed the occurrence of the vena-contracta 

phenomenon and a dispersed droplet flow pattern 

downstream of the vena-contracta point. However, 

Schmidt and Friedel [1], based on their experimental 

results indicated that the vena-contracta phenomenon 

did not occur in their system at all. Applications of 

mini and micro channels in advanced and high 

performance systems have been rapidly increasing in 

recent years. Some two-phase hydrodynamics and 

heat transfer processes in mini and micro channels 

are different from larger channels [5-7], indicating 

that the available vast literature associated with flow 

and heat transfer in larger channels may not be 

directly applicable to micro channels. Significant 

velocity slip occurs at the vicinity of the flow 

disturbance in case of mini and micro channels 

(Abdelall et al. [7]). They observed that 

homogeneous flow model over predicts the data 

monotonically and significantly and with the slip 

ratio expression of Zivi [8], on the other hand, their 

experimental data and theory were in relatively good 

agreement. Pressure drops associated with single-

phase flow through abrupt flow area changes in 

commonly-applied large systems have been 

extensively studied in the past. But little has been 

reported with respect to two-phase flow through mini 

and micro channels. In the present work, an attempt 

has been made to simulate the flow through sudden 

contraction in mini channels using two phase flow 

models in an Eulerian scheme. The flow field is 

assumed to be axisymmetric and solved in two 

dimensions. Before, we can rely on CFD models to 

study the two-phase pressure drop through such 

sections; we need to establish whether the model 

yields valid results. For the validation of results, we 

have referred to the experimental studies conducted 

by Abdelall et al. [7], who measured pressure drops 

resulting from an abrupt flow area changes in 

horizontal pipes. 

 

2. Mathematical formulation 
The Eulerian-Eulerian mixture model has 

been used as the mathematical basis for the two phase 

simulation through sudden contraction. The volume 

fractions  
q  and  

p  for a control volume can 

therefore be equal to any value between 0 and 1, 

depending on the space occupied by phase q and 
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phase p . The mixture model allows the phases to 

move at different velocities, using the concept of slip 

velocities.  

 

Continuity Equation: 

Continuity equation for the mixture is given by: 

   

    . 0m m mv
t
 


 




  (1) 

where, 
mv


 is the mass averaged velocity: 
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and 
m  is the mixture density: 

   

 
m q q p p        (3) 

and 
q is the volume fraction of phase q . 

 

Momentum Equation: 

The momentum equation for the mixture can be 

obtained by summing the individual momentum 

equations for all phases. It can be expressed as (Drew 

[9]; Wallis[10])  
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where, 
m   is the viscosity of the mixture: 

   

 
m q q p p        (5) 

,dr pv


 is the drift velocity for the secondary phase p : 

 
,dr p p mv v v 

  
     (6) 

 

Energy Equation: 

The energy equation for the mixture takes the 

following form: 
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where  
effk   is the effective conductivity: 

   

     eff q q t p p tk k k k k      (8) 

and  tk   is the turbulent thermal conductivity. The 

first term on the right hand side of Equation (7)    

represents energy transfer due to conduction. 
ES  

includes any other volumetric heat sources. For the 

compressible phase, 

   

 

2
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q

q q
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vp
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and  
p pE h  for the incompressible phase, where 

qh  

is the sensible enthalpy for phase q .  

 

Relative (Slip) Velocity and the Drift Velocity: 

The slip velocity is defined as the velocity of a 

secondary phase p  relative to the velocity of the 

primary phase q : 

pq p qv v v 
  

    (10) 

The mass fraction for any phase p is defined as  

p p

p

m

c
 


     (11) 

The drift velocity and the relative velocity (
pqv


) are 

connected by the following expression:  

,dr p pq p qpv v c v 
  

    (12) 

The basic assumption of the algebraic slip mixture 

model is to prescribe an algebraic relation for the 

relative velocity so that a local equilibrium between 

the phases should be reached over short spatial length 

scale.  
 p mp

pq

drag p

v a
f

 




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 
 (13) 

where 
p  is the particle relaxation time and is given 

by:  
2

18

p p

p

p

d



     (14) 

where 
pd is the diameter of the particles (or droplets 

or bubbles) of secondary phase p , a


 is the 

secondary-phase particle’s acceleration. The drag 

function 
dragf  is taken from Schiller and Naumann: 

0.6871 0.15Re

0.0183Re
dragf

 
 


   
Re 1000

Re 1000




 (15) 

and the acceleration a


 is of the form: 
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In turbulent flows the relative velocity should contain 

a diffusion term due to the dispersion appearing in 

the momentum equation for the dispersed phase.  
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where (
m ) is the mixture turbulent 

viscosity and (
D ) is a Prandtl dispersion coefficient. 

It may be noted that, if the slip velocity is not solved, 

the mixture model is reduced to a homogeneous 

multiphase model. 

 

Volume Fraction Equation for the 

Secondary Phase: 
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From the continuity equation for the secondary phase

p , the volume fraction equation for the secondary 

phase p can be obtained: 

     ,. .p p p p m p p dr pv v
t
     
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Turbulence modeling:  

The k  and   equations used in this model are as 

follows (FLUENT 6.2 Manual [11]): 
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where the mixture density and velocity 
m  and 

mv


, 

are computed from 
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The turbulent viscosity 
,t m  is computed from  

2

,t m m

k
C 


    (23) 

and the production of turbulent kinetic energy, 
,k mG  

is computed from 

 

  , , :
T

k m t m m m mG v v v    
  

 (24) 

The constants in the above equations are  

1 21.44;  1.92;  0.09;  1.0;  1.3kC C C          

3. Results and discussion 
3.1. Single phase flow pressure drop 

Idealized course of boundary stream lines 

and pressure profile for single phase flow of water 

through sudden contraction is shown in Fig. 1. 

Computational domain with boundary conditions is 

shown in Fig. 2. The flow field is assumed to be 

axisymmetric and solved in two dimensions. The 

Pressure profiles for the single-phase flow of water 

and air through sudden contraction is depicted in 

Figs. 3 and 4 respectively, for different mass flow 

rates. It can be seen that the pressure profiles are 

nearly linear up to 5 pipe diameters, both upstream 

and downstream from the contraction plane. Because 

there is a change in pipe cross-section and hence a 

change in mean velocity, the slopes of the pressure 

profiles before and after contraction are different. The 

gradients are greater in the smaller diameter pipe. It 

can be observed from figs.3 and 4 that very close to 

the contraction plane the static pressure in the inlet 

line decreases more rapidly than in fully developed 

flow region. It attains the (locally) smallest value at a  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: (a) Idealized course of boundary stream lines 

and (b) pressure profile for a sudden contraction. 
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Fig. 2: Computational domain for contraction section  

Fig. 3: Pressure profiles for single-phase water 

flow through sudden contraction 
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Fig. 4: Pressure profiles for single-phase air 

flow through sudden contraction 

Fig. 5: (a) Velocity vectors & (b) Stream lines for single-

phase flow through sudden contraction ( 3.69 g/sLm  ) 
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Fig. 6: Contraction loss coefficient for 

single phase water flow 
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Fig. 7: Contraction loss coefficient for 

single phase air flow 

 

Fig. 8: Pressure profiles for flow of two-phase 

air-water through sudden contraction 
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distance of about L/D = 0.5 after the contraction 

section and depends only slightly on the mass flow 

rates. The same is also demonstrated by the velocity 

vectors and streamline contours in fig. 5, which 

shows that the flow has minimum cross-sectional 

area at about 0.5D downstream of pipe contraction, D 

being the diameter of the smaller pipe. Then, the 

pressure gradually increases and, after reaching its 

maximum, it merges into the curve of the pipe 

frictional pressure drop downstream of contraction. 

This local minimum value of pressure corresponds to 

the vena-contracta position. So, it can be concluded 

that vena-contracta is always obtained in the single-

phase flow of water and air through sudden 

contraction at a distance of 0.5D from the contraction 

plane in the downstream direction. Simulated 

velocity vectors are shown in fig. 5(a), which clearly 

shows that eddy zones are formed in the separated 

flow region. The pressure change at the contraction 

plane  cP  is obtained by extrapolating the 

computed pressure profiles upstream and downstream 

of the pipe contraction (in the region of fully 

developed flow) to the contraction plane. It is 

observed that the pressure drop increases with the 

mass flow rates for single phase flow of both water 

and air through sudden contraction.  

Assuming uniform velocity profiles at cross-

section 1 and 3, the contraction loss coefficient can be 

found by applying one-dimensional momentum and 

mechanical energy conservation equations (Abdelall 

et al.[7]; Kays [12]): 

 

   
2 2 2

1 2,3 2,1 1

1 1
1

2 2
cK u P P u  
 

    
 

(25) 

 

Where (
2,3 2,1P P )  is obtained numerically. 

The contraction loss coefficients for single-phase 

water and air flows are depicted in Figs. 6 and 7, 

respectively, where the experimental data [7] and 

theoretical predictions are also shown. The data 

points for water, although few and scattered, are 

higher than that of the theoretical predictions and 

in relatively close agreement with the 

experimental data. For turbulent flow in the smaller 

channel, contraction loss coefficient for single 

phase water flow (Kc) is found to be 0.5 (Fig. 6). 

The contraction loss coefficient obtained for 

single phase air flow (depicted in Fig. 7), on the 

other hand, agree with the aforementioned theoretical 

predictions as well as experimental data [7] well. 

 

3.2 Two-phase flow pressure drop 

Fig. 8 depicts the two-phase pressure drop 

through sudden contraction for different mass flow 

rates of air keeping the mass flow rate of water 

constant. Similarly for different mass flow rates of 

water several numerical experiments are performed 

and it is observed that the pressure drop through 

sudden contractions increases with increasing the 

mass flow rates of either water or air. The velocity 

vectors and stream lines for a particular mass flow 

rate of water and air are illustrated in Fig.9. It clearly 

demonstrates that unlike single phase flow, the two-

phase flow does not contract behind the edge of 

transition and there is no change in the flow direction 

i.e; a zone of recirculation is not observed. Thus 

vena-contracta is not a relevant term in two-phase 

flow through sudden contractions. The computed 

two-phase flow pressure drops caused by flow area 

contractions are displayed in Figs. 10 (a) and (b) as 

functions of Reynolds number (
0,1ReL

). 

 

 Where  0,1 1
Re ,L LGD                          (26) 

 

Here G1 is the total mass flux 

corresponding to the smaller diameter pipe. The 

computed as well as the experimental data are 

compared with analytical model calculations 

assuming homogeneous flow, and slip flow (Abdelall 

et al.[7])  with the aforementioned slip ratio of 

 
1

3
L GS   . The homogeneous flow and the slip 

flow models are considered assuming a vena-

contracta, and no vena-contracta (i.e., Cc=l). It is 

observed that calculations with the homogeneous 

flow assumption over predict the data monotonically 

and significantly. The computational and the 

experimental data ([7]) are found to be in relatively 

good agreement with the predictions of slip flow 

model..  

An attempt is made to correlate the two-phase pressure 

change data in terms of the Martinelli factor: 

 
0.1 0.50.9

1
,GL

M

G L

x
X

x



 

    
     

    
                    (27) 

Fig. 11 shows the graph 
0,L c MX  verses 

0,1ReM LX  considering both computational as well as 

the experimental data for sudden contraction. The 

resulting correlation for two-phase multiplier for 

sudden contraction is given by: 

 
0.68770,

0,1160 Re
L c

M L

M

X
X


                            (28) 

 

The comparison between the predicted 

values of the two-phase pressure drops (calculated 

from Eq. 28) with the computed as well as 

experimental data [7] are depicted in Fig. 12. The 

agreement is found to be quite good. It is notable that 

the correlation can predict the two-phase pressure 

drop quite well within 16% error. The correlation is 

valid in the range of 1000 < ReL0,1 < 12000. 
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Fig. 9: (a) Velocity vectors and (b) Stream lines for 

 2.319 g/s and 0.0203 g/sL Gm m    

(a) 

(b) 

Fig. 10(b): Two-phase flow pressure drop caused 

by flow area contraction 
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Fig. 11: Correlation for two-phase multiplier 

through sudden contraction 
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Fig. 10(a): Two-phase flow pressure drop caused 

by flow area contraction 
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4. Conclusions 
Pressure drops caused by abrupt flow area 

contraction in mini channels using water and air 

mixtures have been numerically investigated by using 

two-phase flow model in an Eulerian scheme. For 

single phase flow of water and air through sudden 

contraction, the vena contracta is always established 

at a distance of L/D = 0.5 after the contraction section 

and its position depends only slightly on mass flow 

rates. With turbulent flow in the smaller channel, 

approximately constant contraction loss coefficients are 

obtained for single phase flow of water and air. The 

contraction loss coefficients for water are found to be 

slightly larger than the theoretical predictions and that for 

air is in good agreement with the theoretical 

predictions. The computed values of two-phase flow 

pressure drops caused by sudden flow area contraction 

are found to be significantly lower than the predictions 

of the homogeneous flow model and are in relatively 

close agreement with the predictions of slip flow 

model. It is observed that there is significant velocity 

slip in the vicinity of the flow area change. The data 

suggest that widely-applied methods for pressure 

drops due to flow area changes, particularly for 

two-phase flow is not applicable to mini and micro 

channels. It is also observed that unlike single phase 

flow, the two-phase flow does not contract behind the 

edge of transition and there is no change in the flow 

direction i.e; a zone of recirculation is not observed. 

Thus vena-contracta is not a relevant term in two-

phase flow through sudden contractions. Based on the 

computational as well as the experimental data, 

correlations have been developed (Eq.28) for two-

phase flow pressure drop caused by the flow area 

contraction.  
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