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ABSTRACT 

In this paper, the Spinors of the physical 3-D 

Euclidean spaces of Geometric Algebras over a finite 

dimensional vector space are defined.  Action of Spinors 

on  Euclidean spaces is discussed. The technique for the 

calculation of ephemeris using Spinors is illustrated. In 

this process sequences of Spinors in their half angle form 

as well as their matrix form are used and compared.  It is 

shown that when large number of rotations is involved, 

Spinor matrix methods are advantageous over the 

Spinor half angle method. 

Keywords - Ephemeris, Euclidean space, Euler angles, 

Rotations, Spinors. 

I. INTRODUCTION 
Hestenes [1] defined Spinors as a product of two 

vectors of i-plane and also proved that they can be treated 

as rotation operators on i-plane. Spinors are also defined as 

elements of a minimal left ideal [2], [3]. Rotation operators 

play a key role in the determination of orbits of celestial 

bodies such as Satellites and Spacecrafts. Geometric 

Algebra develops a unique and coordinate free method in 

this regard. There are various techniques using Quaternions, 
Matrices and Euler angles. Geometric Algebra unifies all 

these systems into a unique system called Spinors. 

Geometric Algebra not only integrates the above mentioned 

systems but also establishes the relation among these 

systems and thus providing a clear passage to move from 

one system to the other. 

 In this paper we study different parameterizations used for 

representing Spinors and rotations. We apply the Euler 

angle parameterization of Spinors to solve the problem of 

finding the orbital ephemeris of celestial bodies [4].   

II. GEOMETRIC ALGEBRA    
 Let E  be an n - dimensional vector space over R, 

the field of real numbers and  g  be a symmetric, positive 

definite, bilinear form  →: EEg ×  R  denoted by  

yxyxg


.),( =  Eyx 


, .There exists a unique Clifford 

Algebra ( )( ),EC  which is a universal algebra in which E  

is embedded. Clifford algebra is also called Geometric 

Algebra as all elements and operation used in it can be 

interpreted geometrically. We shall identify E  with )(E . 

We choose and fix an orthonormal basis 

{ }nn eeeB ,....,, 21=
  
for E .  

Let  nN ,....,2,1 , n = dim E and   NS⊆   

 

 

 

 
 

Let 
miii ,....,, 21

  be the elements of S in the ascending 

order. We define 

miiiS eeee ........
21

    and 
Le 1

. 

We shall identify 
}{ie  with

ie . 

Note that if   is a permutation of {1, 2, ….., m}, then 

mmi iii
m

ii eeeeee ........)1-(........
21)()2()1(

=


 
m  stands for order of permutation. 

Lie 1
2
  … and 

ijji eeee        if  ji 
 
 

( ) kA⊕=EC  where        kA  }{∑

ks
s

ssea

=

=  

  dim kA  knC=    and   dim ( ) nEC 2= . 

The operation ‘Geometric Product’ of vectors denoted by   

ba


, is defined as        

      bababa


∧. +=                               ………….. (1) 

    ba-baababab


∧.∧. =+=  ……….. (2) 

Here 0. baba


=  is the scalar part and 
2

∧ baba


=  is 

the bivector part. Elements of Geometric Algebra are called 

multivectors as they are in the form A = 
0

A  +
1

A + …. 

+
n

A   .  A multivector is said to be even (odd) if   

0=
r

A   whenever r   is odd (even) [5]. 

∈
k

A kA , denotes the k - vector part of the multivector 

A. 

There exists a unique linear map  ( )EC:†  →  ( )EC   that 

takes A to  
†A  satisfying 

 (i) 
miiiS eeee ........

21
   then 

S
2

iiii
†

S e-1)(ee........eee

1)-m(m

12i-mm
==

 

(ii) ( ) ††† ABAB =  

 ‘† ’  is called the reversion operator.  

 

2.1    Euclidean nature of Geometric Algebra 
2.1.1    Definition    Norm of a multivector    To every 

multivector,  A ( )EC  the magnitude or modulus of A is 

defined as  A 2

1

0
A

†
A . With this definition of norm, 
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( )EC
 
 becomes a Euclidean algebra. The inverse of a non- 

zero element of A of ( )EC , is also a multivector,  defined 

by  1A  
2

A

A†

.   

2.1.2  Definition     spacek       Every k- vector kA  

determines a spacek  .  

2.2    Euclidean space   E3    
Denote the Clifford Algebra constructed over a three 

dimensional vector space E    with  ( )EC3 . 

For a trivector 3A , designate a unit trivector ‘ i ’ proportional 

to 3A . That is 
33 AA  i .   

‘ i ’ represents the direction of the space represented by 3A .   

The set of all vectors x


 which satisfy the equation 

0 ix


 , is called the Euclidean 3- dimensional vector 

space corresponding to ‘ i ’ and is denoted by  ‘E3’.  E3   is 

also be called an  spacei ,  the trivector i   is called the 

pseudoscalar of the space as every other pseudoscalar is a 

scalar multiple of it. 

Factorize  321 i =  where 2,1  and 3  are 

orthonormal vectors. They represent a coordinate frame in 

the  spacei .  332211  xxxx 


   is a 

parametric equation of the spacei . 21, xx
 
and 3x are  

called the rectangular components  of vector x


  with 

respect to  the basis   321 ,,  . spacei  of vectors is 

a 3 – dimensional vector space with the above basis. 

2.2.1   Definition   Dual of  vector         321  == ii1 ;  

132   ii2 ;  213   ii3  

2313221321 iiiiiiiiii --, -- ====    and  

31213 iiiii -- ==  

The set of bivectors in ( )EC3  (also denoted by ( )i3C  )is a 

3-dimensional vector space with basis  321 iii ,, . Every 

bivector B  is a dual of a vector b  that is  biib ==B . 

  2.3 Spinors of Euclidean space  ( )i3C
 

  2.3.1   Definition   Spinor   The Geometric product of two 

vectors in the paces-i  is called a Spinor and is denoted by  

‘R’. Thus 

EyxyxyxyxR ∈,∀∧.


+==
  
. 

 ‘ R ’ is a multivector, has a scalar part ‘ yx


.= ’ and 

a bivector part ‘ +1i +2i yx


∧=3i ’. 

2.3.2    Definition       Spinor space-i    The Spinor 

space-i   ' 3S ’ is defined as 

== }∈,,/{ 3 space-yxyxRRS i


 

3S   can also be denoted by ( )EC +
3  or ( )i+

3C .   ‘ R ’ is a 

multivector, has a scalar part ‘ ’ and a bivector part 

‘ +1i +2i 3i ’. Spinors do not satisfy commutative 

property with respect to the operation ‘Geometric product’ 

in view of the above definition (2.2.1). 

III. ACTION OF SPINORS ON EUCLIDEAN 

SPACE - ROTATIONS 
Spinors of Euclidean space also can be treated as 

rotation operators on  space-i   of vectors.  Rotation 

operators can be constructed by considering the group 

action of Spinors by conjugation (Hestenes 1986).  

Consider a Spinor   =R  v


u


, where u


 and v


 are unit 

vectors of E. Define a rotation operatorR  on E as  

R    RxRx
 †

uvxvu


. 

 Unlike rotations in two dimensions, rotations in three 

dimensions are more complex as (i) the operation to be 

considered is the group action by conjugation, giving 

similarity transformations and (ii) the axis about which the 
rotation takes place is also to be specified. The resulting 

vector changes as the axis of rotation changes. This can be 

shown in the following examples. 

  Rotation of the vector x


 about the axis ,1  the axis 

perpendicular to the plane 32 is represented by the 

bivector   321   ii1 .  

Let x

  spacei  of vectors   and   

x
  332211  xxx   . 

   33221132332211233223

†
 xxxxxxxx 


11 ii

 

  Rotation of  the vector x


 about the axis ,2  the axis 

perpendicular to the plane 13 is represented by the 

bivector   132   ii2 .  

   331122133322113113131

†
 xxxxxxxx 


22 ii

 

3.1 Composition of  Rotations  

Two rotations 1

†

11
RxRx


R  and 

2

†

22
RxRx


R  can be combined to give a new rotation 

3

†

321

†

1

†

2 RxRRRxRRxx



1
R
2
R

3
R  

Note that the order of rotations 
1
R
2
R   is opposite to that 

of the corresponding Spinor 21RR . 
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3.2    Proposition     Product of two rotations is also a 

rotation. 

Proof: As Geometric product of Spinors is a binary 

operation, 3R  is also a Spinor. 

121

†

1

†

23

†

3  RRRRRR  as 2

†

21

†

1 1 RRRR   

Hence 3R  is also a unitary Spinor and it can be proved that 

determinant of 
3
R  is one (Hestenes 1986). As a 

consequence of this  
3
R  is a rotation. 

Product of two rotations in three dimensional spaces is not 

commutative in general. 

The rotations determined by 
2
R
1
R  and 

1
R
2
R  are 

considered as two different rotations as their sequential 

order is not the same. 

3.2.1   Spinors of the space-i
  

in half angle form 

As a unit vector is treated as a representation of the 

direction of a vector, a unit bivector can be treated as a 

representation of an angle, which is a relation between two 

directions. 

Hence for ( )i3∈, Cyx


, let  yx ˆ,ˆ  be their directions which 

are elements of the  space-i . 

From the definition of a Spinor of the space-i , the Spinor 

yxyxyxR ˆ∧ˆˆ.ˆˆˆ +== . 

( ) ( )AA A 2/1sinˆ2/1cos +=  is the half angle form of the 

Spinor R . 

S  = ( )EC+
  if dim 3≤E . ' S ’ can be related to complex 

numbers for dim E  = 2  and it can be related to Quaternion 

Algebra  for   dim E  = 3.    

( ) ( )AA A 2/1sinˆ2/1cos +=R  can also be written as 
 

 A2/1e . 

Here ŷx̂ˆ ∧=A , the bivector representing the plane of 

rotation and A  gives the magnitude of the angle through 

which the rotation takes place. 

3.2.2      Matrix form of a Spinor 

 There are different matrices to represent rotations. Instead, 
the use of Spinors to represent a rotation gives the matrix 

elements directly by the formula 

( )kjkjjk ee  R.. == . 

There are also other forms such as Exponential form, 

Quaternion form etc. The advantages in using Spinor 

Algebra as a substitute for all the above algebras  
(i) The coordinate free nature of Spinors. 

(ii) The existence of Spinors in every dimension facilitating 

to perform rotations in higher dimensional spaces. 

(iii) Representation of rotations using Spinors enables us to 

find the magnitude of the angle of rotation as well as the 

orientation of the rotation which is not the case with the 

matrix representation. 

(iv) Spinors can be converted into other forms easily as and 

when required. 

3.3   Representing a rotation using Euler angles  

Rotations are orthogonal transformations. They transform 

one coordinate frame XYZ into another coordinate frame 

xyz preserving the angle between them. Euler stated that 

every rotation can be expressed as a product of two or three 

rotations about fixed axes of a standard basis in such a way 

that no two successive rotations have the same axis of 

rotation. This theorem is known as ‘Euler’s theorem’. Thus 

every Spinor can be divided further into a product of two or 

three Spinors that represent rotations about base vectors.  

Euler angles are widely used to represent rotations. 

To represent the rotation using Euler angles, we select an 

axis for the first rotation among the three axes in the 

sequence.  Then according to the rule that no two successive 

rotations have the same axis of rotation,  we will have two 
axes to choose for the second rotation , and for the third, 

again two options are there to choose a different one from 

the previous. Thus we get totally  3 x 2 x 2 = 12 sets of 

Euler angles. Hence, one can represent the same rotation 

using different sets of Euler angles.  If the axes chosen for 

the first rotation is same as that of third, such a sequence is 

called a Symmetric set or a Classical set of Euler angles. 

3.4    Finding the Matrix form of the Euler angle sequence 

of Spinors 

We consider the 3-2-1 symmetric sequence of rotations; the 

Spinor that represents the required rotation is given as a 
sequence of three rotations about the base vectors 

 321 ,,    is defined by 

 RQRR =  , 

Where
( )

2
sin

2
cos 21

2/1 3





 +== i
eR , 

( )
2

sin
2

cos 13
2/1 2





 +== i

eQ , 

( )
2

sin
2

cos 32
2/1 1





 +== i

eR  

The new set of axes after rotation are given by  

RRe kkk  †R
 

  RQRRQR k

†††

=  

This can be converted into the matrix form by calculating 

the elements of the matrix ][ jke  given as  

kkjjk ee  R== .                           

  RQRRQRe
†††

111 ==R

 

  RQRRQR )( 1

†††

=  

  RQQR ))sin(cos( 211

††

+=  
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  RQQR )sincos( 21

††

+=  

  RQQQQR ]sin)(cos)[( 21

†††

+=  

  RR ]sincos)sin(cos[ 2131

†

++=  

  RR )sincossin-coscos( 231

†

+=  

  sin)(cossin)(-coscos)( 231

†††

RRRRRR +=

 

 sin)sin(coscossin)sin(cos-coscos 3223231 +++=

 

 sinsinsincoscossinsincossincos-coscos 32231 +++=

 

)cossincos-sin(sin)sincoscossin(sin)cos(cos 321  +++=

 

  RQRRQRe 222

†††

==R

 

  RQRRQR )( 2

†††

=  

  RQQR )]sin(cos[ 212

††

+=  

  RQQR )sin-cos( 12

††

=

 

  RQQQQR )sin)(-cos)( 12

†††

=  

  RR )sin)sin(cos-cos( 1312

†

+=  

  RR )sinsinsincos-cos( 312

†

+=  

  sinsin)(sincos)(-cos)( 312

†††

RRRRRR +=

 

 sinsin)sin(cossincos-cos)sin(cos 3231322 +++=

 

 sinsinsin-sinsincossincos-cossincoscos 23132 ++=

 

)sinsincoscos(sin)sinsinsin-cos(cos)sincos-( 321  +++=

 

  RQRRQRe 333

†††

==R  

  RQRRQR )( 3

†††

=  

  RQQR )( 3

††

=  









RR

RQQR

)]sin(cos[

)(

133

3

†

††

+=

=

 

  RR )sincos( 13

†

+=  

  sin)(cos)( 13

††

RRRR +=  

 sincos)sin(cos 1323 ++=  

 sincossin-coscos 123 +=  

 coscoscossin-sin 321 +=  

 

The matrix obtained is as follows  

+

+







coscossinsincoscossincossincos-sinsin

cossin-sinsinsin-coscossincoscossinsin

sinsincos-coscos

 
This sequence is used in aerospace applications and to find 

orbital ephemeris. 

IV     EULER ANGLES AND EQUIVALENT 

ROTATIONS 
The set of Euler angles that represent a particular 

rotation are not unique. Representing the same rotation by 
two different Euler angle sequences gives Equivalent 

rotations. In this paper we use sequences of Spinors in their 

matrix form and also in their half angle form  in place of 

rotation sequences to obtain the relationship between the 

two sets of angles  (i) orbital ephemeris set ( ,L     and 

 )  and (ii) orbital parameters ( ,   and  ) set. Thus 

established the equivalence between Spinor methods and 

Quaternion methods. 
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                               Figure 1:  ephemeris sequence 

L
 
= Earth-Latitude of orbiting body  

  0     

  = Ephemeris path direction angle 

 Earth-Longitude of orbiting body 

0 Greenwich with respect to X axis 

  = Angle to the orbit ascending node, also called ‘Right 
Ascension of the ascending node’. It is the angle subtended 

at the center of the Earth from the Vernal Equinox (positive 

X axis) to the ascending node ‘N’. 

   The angle of inclination. It is the angle between orbital 

plane and equatorial plane.  

 The argument of the latitude to orbiting body 

The position vector of the object is given by the vector  

OR .  ‘P’ is the point on the surface of the Earth in the 

radial direction of the object. The reference frame XYZ is 

the Equatorial frame of reference that is the plane that 

contains the Earth’s equator. X, Y axes are contained in the 

equatorial plane of the Earth. The Z axis is normal to this 

XY plane such that XYZ frame forms a right handed frame 

of reference. ‘NOR’  is the orbital plane.  The trajectory of 

the object is as indicated in the figure 1. ON is the line 

segment in which the orbit trajectory and the reference 

frame intersect each other.   

4.1   Matrix method: 

4.1.1  Orbit ephemeris sequence 

 A tabulation of data of the Earth longitude and Latitude of 

a body, as a function of time is called the orbit ephemeris of 

the body.  

 In this sequence the body frame (xyz) of the object will be 

related to an inertial frame of reference (XYZ) through the 

orbital Ephemeris ( ,L    0  ,   ). This requires 

the 3-2-1 symmetric sequence of rotations; the Spinor that 

represents the required rotation is given as a sequence of 

three rotations about the base vectors is defined by  

  RQRRQR LkL  
†††

RR QR  , 

Where
( )

2
sin21

2
cos3

2/1 




 +==
i

eR ,  

( )
( ) ( )

( ) ( )
2

sin13-
2

cos
2

-
sin13

2

-
cos

-
2

2/1
-

LLLL

L
eLQ





=+=

=
i

,  

( )

2
sin32

2
cos1

2/1 



 +==

i
eR  

 

The matrix is obtained is as follows 

( ) ( )
( ) ( )
( )

=
+

++

LLL

LLL

LLL

coscossinsincos-cossincossincossinsin

cossin-sinsinsincoscossincoscossinsin-

sin-sincos-coscos







 

In this application we relate the body frame (xyz) of a 

spacecraft or a near earth orbiting satellite to an inertial 

frame of reference (XYZ, NED frame of reference) through 

the orbital parameters ( ,   and  ). This can be done by 

using 3-1-3 sequence of Euler angles.  

  

                           Figure 2: Orbital sequence  

   4.1.2     Orbital parameter sequence 

In this application, the aircraft’s body frame xyz is related 

to the NED reference coordinate frame XYZ (refer fig 3) 

defined as XY plane is the Tangent plane to the Earth 

pointing towards North and East directions respectively. Z 

axis points towards the centre of the Earth (NED frame of 
reference).  The positive x axis of the body frame is directed 

along the longitudinal axis. The positive y axis is directed 

along its right wing and the positive z axis is perpendicular 

to the xy plane such that xyz forms a right handed system. 

These two frames are related by the heading and attitude 

sequence of rotations followed by a third and final rotation 

about the newest x axis which is the position vector of the 

spacecraft through an angle    as depicted by the figure 2.  

This requires the 3-1-3 symmetric sequence of rotations; the 

Spinor that represents the required rotation is given as a 

sequence of three rotations about the base vectors is defined 

by  

  RQRRQR k  
†††

RR QR  ,  

Where 
( )

2
sin

2
cos 21

2/1 3





 +== i
eR , 

( )
2

sin
2

cos 32
2/1 1





 +== i

eQ , 

 

2
sin

2
cos 21

2/1 3





 
i

eR  

The matrix obtained is 

+







coscossinsinsin

sincos-sinsin-coscoscossincoscossincos

sinsincossin-coscossin-sincossin-coscos

 

As the orbital sequence and ephemeris sequence represent 

the same body frame of reference, they can be equated to 

get the relations between the orbital ephemeris in terms of 

the orbital elements. Thus we obtain  
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                 sinsinsin L  





 tancos

cos

sincos
tan   










tancostan -1

)costan(tan

coscos

sincos
tan

+
==

L

L
 

4.2     Spinor half angle method 

Equating the orbit sequence with Ephemeris sequence 

  RQRRQR L 

,
 

 
;

2
sin21

2
cos32/1 




 
i

eR

   

2
sin13

2
cos22/1 LL

eQ
L

L 







i

     

   

 
;

2
sin32

2
cos12/1 




 
i

eR

 
;

2
sin21

2
cos12/1 




 
i

eR  

( )
2

sin21
2

cos22/1 



 +== i

eQ                and          

( )
2

sin21
2

cos32/1 



 +== i

eR

 

⇒ RQRRLQR =  

 RQRRQRRRQRRRQRLQR ==== --
1-

-  

 RQRQR L =-⇒
 

To avoid half angles  

 2,2,2,2,2,2 ======= L  

 2222-2- ⇒ RQRQRRQRQR L ==  

Gives  

)sin21)(cossin32)(cossin21(cos

)sin13)(cossin32(cos





+++=

++

 

 cossin13-cossin32sinsin21coscos⇒ ++

 

( )[ ] sinsin13cossin32sincos21coscossin21cos ++++=

 





sinsinsin32cossinsin31sincossin-coscossin21

sinsincos13cossincos32sincoscos21coscoscos

++

++++=
 

( )
( ) ( )



cossinsin-sinsincos13sinsinsincossincos32

coscossinsincoscos21sincossin-coscoscos

+++

++=
 

)1)....(cos(cossincossin-coscoscoscoscos⇒  +==

)2)....(sin(coscoscossinsincoscossinsin-  +=+=
 

)3)...(-cos(sinsinsinsincossincoscossin  =+=
 

)4)...(-sin(sincossinsin-sinsincoscossin  ==
 

Dividing (3) by (1) and (2) by (4) gives  

)cos(

)-cos(
tantan






+
=

 
)5....(

)cos(

)-cos(

tan

tan
⇒









+
=  

)-sin(

)sin(

tan

1
tan-








+
=

 
)6...(

)-sin(

)sin(

)-sin(

)sin(
tantan-⇒










+
=

+
=  

Multiplying (5) and (6) gives 

)7.....(
)-tan(

)tan(

)cos()-sin(

)sin()-cos(
tan- 2










+
=

+

+
=  

dividing  (6) by (5) gives 

)-(2sin

)(2sin

)-cos()-sin(

)cos()sin(
tan- 2










+
=

++
=

 














2tan

2tan
-

)(2sin-)-(2sin

)(2sin)-(2sin

tan1

tan-1
2cosbut

2

2

=
+

++
=

+
=

 

 2tan2cos-2tan =  

substituting  2,2,2 
 

gives 

 tancos-tan =  






tantan1

tan-tan
)-tan(tantancos-

+
===  

After simplification we get 






tancostan1

tantancos
tan





-

+
=  

Similarly we get the other relations. 

4.3 Singularities in Euler sequences  

A singularity occurs in every sequence of Euler angles. For 

example in the 3-1-3 sequence, 
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








cos

sin

coscos

cossin
tan

11

12 ===
e

e
 . Singularity occurs at 

2


 = .  

But Euler angles work well for small angles or Infinitesimal 

rotations. Hence in the problems like finding the orientation 

of the spacecraft and tracking an aero plane employment of 

Euler angles is advantageous. 

 

V. DISCUSSIONS           
Even though there are many representations for 

rotations in 3-D namely Quaternions, Spinors, Euler axis-

angle and sequences of Euler angles, each one can be 

transformed into the other. Each system has its own merits 

or demerits over the other systems. Singularities occur for 

every set of Euler angles but they work well in infinitesimal 

rotations.  Comparatively, the other methods of using 
Quaternions and Euler axis and angle for representing 

rotations provide a better procedure as they need four 

parameters to be defined and they can be converted into any 

other convenient form depending upon the information 

available.  In the case of Spinors, whose parametric form is 

given as 


is , the number of parameters reduce 

further as the parameter   is not independent of 


.  

 

VI. CONCLUSIONS 
The technique of using Spinors can replace the 

conventional methods and also provide a richer formalism. 

If large number of rotations is involved Spinor matrix 

methods are advantageous over the Spinor half angle 

method. 
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