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ABSTRACT 
In WSNs the existing query flooding 

based and event flooding based routing protocol, 

Query flooding can find desired events quickly but 

is also costly because many query messages are 

generated and employs precise routing hints to 

route queries that can reduce query messages at 

the expense of heavy routing overhead 

(specifically, keeping precise routing hints for 

many events is expensive) respectively.  Bloom 

filters have been used in database applications, 

web caching, and searching in peer-to-peer 

networks. In this paper, we propose a routing 

protocol in Wireless Sensor Networks (WSNs) by 

Scope Decay Bloom Filter (SDBF), that detecting 

and correcting the decaying bits of SDBF using 

Hamming Code. In SDBF, each node maintains 

some probabilistic hints about events and utilizes 

these hints to route queries intelligently. SDBF 

greatly reduces the amortized network traffic 

without compromising the query success rate and 

achieves a higher energy efficiency. 

 

Keywords - Bloom Filters, Error Correction, 

Error Detection, Hamming Code, Routing 

Protocol, Scope Decay Bloom Filters, Wireless 
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I. INTRODUCTION 
The Bloom filter a way of using hash 

transforms to determine set membership [1]. Bloom 

filters find application wherever fast set membership 

tests on large data sets are required. Such applications 

include spell checking, differential file updating, 
distributed network caches, and textual analysis. It is 

a probabilistic method with a set error rate. Errors 

can only occur on the side of inclusion | a true 

member will never be reported as not belonging to a  

 

 

set, but some non-members may be reported as 

members. 

A wireless sensor network is a collection of 

nodes organized into a cooperative network [2]. Each 

node consists of processing capability (one or more 

microcontrollers, CPUs or DSP chips), may contain 
multiple types of memory (program, data and flash 

memories), have a RF transceiver (usually with a 

single omni-directional antenna), have a power 

source (e.g., batteries and solar cells), and 

accommodate various sensors and actuators. The 

nodes communicate wirelessly and often self-

organize after being deployed in an ad hoc fashion. 

Systems of 1000s or even 10,000 nodes are 

anticipated. Such systems can revolutionize the way 

we live and work. Wireless sensor networks (WSNs) 

have been used in applications such as the health 
industry, military, warehouse, and home environment 

[3]. Sensors are typically low-cost, low power, and 

multi-functional. They communicate with each other 

through wireless media and form a wireless 

distributed network. In WSNs, routing is data-centric, 

i.e. finding data with specific attribute values [4]. In 

many WSNs applications, routing is query-based. A 

sink initiates a query for some desired data, which is 

forwarded towards the hosting sensors [5]. Sinks can 

be static or dynamic. 

In this paper, we propose a routing protocol 

in WSNs by Scope Decay Bloom Filter (SDBF), that 
detecting and correcting the decaying bits of SDBF 

using Hamming Code and utilizes probabilistic hints. 

Each sensor maintains probabilistic hints about 

events that may be found through its neighbors. Hints 

are encoded using the proposed variant of the bloom 

filter (BF) [6] [7], called scope decay bloom filter 

(SDBF).BF consists of a bit string and a group of 

hash functions. To generate a BF for a set, each set 

element is mapped by each hash function to a bit 
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position in the bit string. All mapped bits are set. To 

determine the membership of an item, the item is 

hashed similarly. If any of the hashed bits is not set, 

then the item definitely does not belong to the set. If 
all bits are set, then the item is possibly in the set. If 

in fact the set does not contain the item, a false 

positive occurs. Nevertheless, the space savings 

usually offset this shortcoming when the false 

positive rate is significantly low. Bloom filters have 

been used in database applications [6], web caching 

[8], and searching in peer-to-peer networks [9] [10]. 

The SDBF protocol uses routing hint about an event. 

The advertisement is designed such that the hint does 

not decay within the k-hop neighbourhood of an 

event source but decays outside the k-hop 

neighbourhood as the distance from the boundary of 
the k-hop neighbourhood increases. By trading off 

precise routing hints for probabilistic ones, SDBF 

achieves a higher query success rate with the same or 

less amortized routing overhead. 

 

1.1. Novel Uses 

This section reviews some of the most 

interesting applications of Bloom filters. It is perhaps 

surprising that what is essentially a set-membership 

test is of use in so many important applications. 

 Rule-based systems: Burton H. Bloom 
originally proposed filter hashing as part of a 

program to automatically hyphenate words. He 

wanted to separate words that could be 

hyphenated by the application of simple rules 

from the minority that required extensive 

analysis. He proposed using his filter method to 

separate the 10% of difficult words from the rest 

[11]. 

 Spell Checkers: Bloom filters have been 

successfully applied in spell checking programs 

such as cspell [12][13][14]. They are employed 
to determine if candidate words are members of 

the set of words in a dictionary. In the case of 

cspell, suggested corrections are generated by 

making all single substitutions in rejected words 

and then checking if the results are members of 

the set [12]. Bloom filters perform very well in 

such cases [12]. The filter size was chosen to be 

large enough to allow the inclusion of additional 

words added by the user. 

 Estimating Join Sizes: Mullin [15][16] 

suggested using Bloom filters to estimate the 

size of joins in databases. This is of particular 
advantage in the case of distributed databases 

where communications costs are to be kept to a 

minimum. He presented a method by which 

filters that are too large to fit in memory can be 

used [16]. The method is essentially to use a 

representative sample of a filter for testing and 

ignore all hashes outside the range of the sample. 

Since hash transforms are pseudo-random, any 

significantly large portion of a filter can act as a 

sample. 

 Differential Files: A major area of interest in the 

application of Bloom filters has been their use in 
differential file access [13][14]. A differential 

file is essentially a separate file which contains 

records that are modified in the main file [13]. 

Differential files are used as caches in large 

databases: when a change is made to a record in 

the main database the differential file is updated; 

when all the changes have been made to the 

database then the differential file is used to 

update the database. When the differential file is 

much smaller than the database, changes to it can 

be made without the overhead needed to search 
the main file. Of course, it would be best to keep 

the entire set of records in memory at once, but 

this is not feasible for large data sets and so the 

probabilistic approach offered by Bloom filters is 

used. Bloom filters in core memory are used to 

predict if a record will be found in the 

differential file. 

 

1.2. Related Works 

The simplest way to route queries is to flood 

queries from the sink over the entire WSN and set up 

the reverse paths for desired data to be sent back to 
the sink. Various query flooding schemes differ in the 

manner in which they set up and use reverse paths. 

Directed diffusion [17] tries to find an optimal path 

between the sink and the event sources by flooding 

an exploratory query that is initiated at a sink. Each 

node sets gradients between neighboring nodes, and 

reinforces the best route for real data while 

transferring the exploratory events on the reverse 

query path. The gradients are only used for sending 

the real data from the discovered event source to the 

sink that initiates the exploratory query. Gradient-
based routing [18] is another scheme based on query 

flooding. It associates each node with a height, which 

is the minimum distance in terms of the number of 

hops from the sink. The scheme also assigns a 

gradient to the link between a node and its neighbor. 

A gradient is defined as the height difference 

between a node and its neighbor. A node always 

forwards desired data through the link with the 

highest gradient among all links to its neighbors. 

Energy aware routing [19] is also based on query 

flooding. This scheme tries to maintain multiple 

paths between a data source and the sink. Desired 
data is propagated through a route that is 

probabilistically selected. The probability of a route 

is set based on its energy consumption. To reduce the 

cost of query flooding, gossiping [20] can be used for 

query-based routing in WSNs. It is essentially a 

random walk where each node forwards a received 

query to a randomly chosen neighbor. 
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II. STANDARD BLOOM FILTERS 
The Bloom filter is used to test whether an 

element is a member of a set and is a space-efficient 

probabilistic data structure, false negatives are not 

possible but false positives are possible. Elements 

can only be added to the set and cannot be removed. 

The probability of false positives increases when 

more elements are added to the set. 

An empty Bloom filter is a bit array of m 

bits, all set to 0. There must also be k different hash 

functions defined, each of which maps or hashes 

some set element to one of the m array positions with 

a uniform random distribution. To add an element, 
feed it to each of the k hash functions to get k array 

positions. Set the bits at all these positions to 1. The 

requirement of designing k different independent 

hash functions can be prohibitive for large k. For a 

good hash function with a wide output, there should 

be little if any correlation between different bit-fields 

of such a hash, so this type of hash can be used to 

generate multiple “different” hash functions by 

slicing its output into multiple bit fields. 

Alternatively, one can pass k different initial values 

(such as 0,1, ,,, k-1) to a hash function that takes an 

initial value, or add these values to the key. For larger 
m and/or k, independence among the hash functions 

can be relaxed with negligible increase in false 

positive rate. Removing an element from this simple 

Bloom filter is impossible. The element maps to k 

bits, and although setting any one of these k bits to 

zero suffices to remove it, this has the side effect of 

removing any other elements that map on-to that bit, 

and we have no way of determining whether any such 

elements have been added [21]. Such removal would 

introduce a possibility for false negatives, which are 

not allowed. 
An example of Bloom filter is shown in Fig 

1. This is representing the set {e1,e2}. The coloured 

lines show the positions in the bit array that each set 

element is mapped to. For this figure m=16 and k=3. 

Removal of an element from a Bloom filter can be 

simulated by having a second Bloom filter that 

contains items that have been removed. However, 

false positives in the second filter become false 

negatives in the composite filter, which are not 

permitted. 

 
Fig.1: Standard Bloom Filter 

This approach also limits the semantics of removal 

since re-adding a previously removed item is not 

possible. However it is often the case that all the keys 

are available but are expansive to enumerate. When 
the false positive rate gets too high, the filter can be 

regenerated. This should be a relatively rare event. 

 

III. PROBABILITY OF FALSE POSITIVE 
Assume that a hash function selects each 

array position with equal probability. If m is the 

number of bits in the array, the probability that a 

certain bit is not set to one by a certain hash function 

during the insertion of an element is then 

 
The probability that it is not set by any of the hash 

functions is 

 
If we have inserted n elements, the probability that a 

certain bit is still 0 is 

 
the probability that it is 1 is therefore 

 
Now test membership of an element that is 

not in the set. Each of the k array positions computed 

by the hash functions is 1 with a probability as above. 

The probability of all of them being 1, which would 

cause the algorithm to erroneously claim that the 

element is in the set, is often given as 

 
This is not strictly correct as it assumes 

independence for the probabilities of each bit being 

set. However, assuming it is a close approximation 
we have that the probability of false positives 

decreases as m (the number of bits in the array) 

increases, and increases as n (the number of inserted 

elements) increases. For a given m and n, the value 

of k (the number of hash functions) that minimizes 

the probability is 

 
which gives the false positive probability of 

 
The required number of bits m, given n (the 

number of inserted elements) and a desired false 

positive probability p (and assuming the optimal 

value of k is used) can be computed by substituting 

the optimal value of k in the probability expression 

above: 

http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Algorithm
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which can be simplified to: 

 
This results in: 

 
This means that in order to maintain a fixed 

false positive probability, the length of a Bloom filter 

must grow linearly with the number of elements 

being filtered. While the above formula is asymptotic 

(i.e. applicable as m, n → ∞), the agreement with 

finite values of m,n is also quite good; the false 

positive probability for a finite bloom filter with m 

bits, n elements, and k hash functions is at most 

 
So we can use the asymptotic formula if we 

pay a penalty for at most half an extra element and at 

most one fewer bit Goel & Gupta (2010) [22]. 

 

 
Fig.2: The false positive probability p as a function 

of number of elements nin the filter and the filter 

size m. An optimal number of hash functionsk = 
(m / n)ln 2 has been assumed. 

 

IV. OPERATION ON BLOOM FILTERS 
For the purposes of the analysis, we are 

presenting only the essentials of Bloom filters- the 

algorithms are for single bit elements. The analysis of 

filters with more complicated cells is essentially the 

same as for the simple case [23]. Blustein has shown 

how to efficiently implement these operations using 
C. IsMember is presented immediately below. 

 
Fig. 3: Algorithm for Operation on Bloom Filter 

 

V. SCOPE DECAY BLOOM FILTERS (SDBF) 
A SDBF is designed as a lossy channel 

coding scheme to reduce the amount of network 

traffic. An SDBF can represent the set membership 

information and the different amount of information 

about an element in the set. Similar to a BF, an SDBF 

also has a bit string of width m and d hash functions, 

h1, h2, ..., and hd. An SDBF encodes the information 

about an element similarly to the way a BF inserts an 

element. Given an element e, the SDBF sets all bits 

h1(e), h2(e), ..., and hd(e) in the bit string. An SDBF 
differs from the basic BF in the decoding procedure. 

A BF obtains the membership information by 

checking whether all mapped d bits are set or not. An 

SDBF decodes the information about an element e by 

computing the number of 1s among the d mapped 

bits, denoted by I(e). This number ranges from 0 to d. 

The more bits are set to 1, the larger I(e) is, and there 

is more information about e. 

 
Fig.4: The structure of Scope Decay Bloom Filter 

(SDBF) 

Bloom_filter.htm#CITEREFGoelGupta2010#CITEREFGoelGupta2010
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In this SDBF where, a bit string of width m=16 and 

hash functions d=3. There are 3 hash functions, they 

are h1, h2, and h3. When the SDBF initially encodes 

the information about element e1, the hash functions 
h1, h2, and h3 hash e1 to bits 3, 8, and 12 

respectively and set these bits to 1s. Then decode the 

e1, and compute the number of 1s, that is I(e1)=3. 

During the decay process, some bits in the initial 

SDBF are probabilistically reset to 0s. In the decayed 

SDBF in Fig 4, bit 8 is reset to 0, bits 3 and 12 

remain 1s. When we decode e1 from this decayed 

SDBF, I(e1) = 2, which means that this decayed 

SDBF probably has less information about e1 than 

the initial SDBF. There are many design choices for 

decreasing the information about an element in an 

SDBF. To simplify the decay process, we choose two 
stateless decay schemes that do not need to remember 

the specific event contributing to a particular bit. 

These two models are the exponential decay and the 

linear decay. 

 

VI. DETECTING AND CORRECTING THE 

DECAYED BIT IN THE SDBF BY USING 

HAMMING CODE 
The Hamming code can be applied to data 

units of any length and uses the relationship between 

data and redundancy bits. In the Hamming code, each 

r bit is the parity bit for one combination of data bits, 

as shown below: 

r1:  bits 1, 3, 5, 7, 9, 11 

r2: bits 2, 3, 6, 7, 10, 11 
r4: bits 4, 5, 6, 7 

r8: bits 8, 9, 10, 11 

 
Fig.5: Position of redundancy bits in Hamming Code 

Each data bit may be included in more than one 

calculation.  

 

Fig.6: The initial non-decayed SDBF and decayed 

SDBF, the bit position 4 is decayed. 

 

Calculating the r values: Fig.7 shows a Hamming 
code implementation for decayed SDBF of Fig.6. In 

the first step, we place each bit of the original 

character in its appropriate position in the 11-bit unit. 

In the subsequent steps, we calculate the even parities 

for the various bit combinations. The parity value for 

each combination is the value of the corresponding r 

bit.  

 
Fig.7: Redundancy bit calculation of Fig.5 SDBF 

 

Error Detection and Correction: Now imagine that 

by the time the above transmission is received, the 

number 7 bit has been changed from 1 to 0. The 

receiver takes the transmission and recalculates 4 

new parity bits, using the same sets of bits used by 

the sender plus the relevant parity r bit for each set. 

Then it assembles the new parity values into the 

binary number in order of r position (r8, r4, r2, r1). In 
our example, this steps gives us the binary number 

0111 (7 in decimal (the bit in position 4 is decayed of 

Fig.6 SDBF)), which is the precise location of the bit 

in error 
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Fig.8: Error detection using Hamming code, the bit 

in position 7 (the bit in position 4 is decayed of Fig.6 

SDBF) is in error. 

 

VII. PROBABILISTIC ROUTING HINTS 

CREATION AND MAINTENANCE 
Probabilistic routing hints are represented by 

SDBFs. Each sensor maintains an SDBF for each 

neighbour. An SDBF encodes hints about events that 

may be found through a neighbour. To create these 

hints, each sensor first creates a local SDBF that 

encodes all local events detected by itself. Then these 

local SDBFs are propagated according to the decay 

model. At each sensor, the SDBF hints from different 
neighbours are first decayed if they contain 

information outside the k-hop neighbourhood of 

event sources, then aggregated (including the non-

decayed local SDBF), and propagated further to other 

neighbours. A sensor first creates a local SDBF, 

encoding the set of events detected by itself. This 

SDBF is broadcast to all its neighbors. A neighbor 

combines this SDBF with the SDBFs from its own 

neighbours and propagates the aggregated SDBF. To 

reduce the routing traffic further, incremental updates 

to SDBFs are actually disseminated. 
The figure shows how a node X propagates 

updates to its neighbors Y. X ORs its own SDBF and 

the SDBFs it receives from neighbour A, B, and C 

and sends the combined SDBF as hints to neighbour 

Y. If a sensor notices some change to its local SDBF, 

the changes are incrementally spread out to nearby 

nodes. 

 
Fig. 9: Event hint update from X to its neighbour Y.  

A, B, C and Y are X’s neighbours. LOCAL: X’s local 

SDBF.  

 

VIII. CONCLUSION 
In this paper, we propose a routing protocol 

that detecting and correcting the decaying bits of 

SDBF using Hamming Code and utilize probabilistic 

hints. Each node maintains some probabilistic hints 

about events and utilizes these hints to route queries 

intelligently. The Bloom Filter is very important in 

WSNs. There are many important applications of BF 

in WSNs, such as Rule-based systems, Spell 

Checkers, Estimating Join Sizes, Differential Files, 

etc. SDBF greatly reduces the amortized network 

traffic without compromising the query success rate 
and achieves higher energy efficiency. SDBF 

generates less query traffic and achieves a 

significantly higher query success rate than SQR. In 

the future, we plan to explore scope decay bloom 

filters models, that decaying based on node degrees 

and intend to do analytical and simulation study in 

extending SDBF to clustered Wireless Sensor 

Networks (WSNs).  
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