
Shamim Ahmed, Ishtiaque Mahmud, A.K.M. Nazmus Sakib, Md. Habibullah Belali, Sajeeb

Saha, Quazi Emanual Alendey / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.430-436

430 | P a g e

Detection and Correction the Decayed Bits of Scope Decay Bloom

Filters In Wireless Sensor Networks (Wsns)

Shamim Ahmed*, Ishtiaque Mahmud**, A.K.M. Nazmus Sakib***, Md.

Habibullah Belali****, Sajeeb Saha*****,Quazi Emanual Alendey******

*(Completed B.Sc. in Computer Science and Engineering from Dhaka University of Engineering and

Technology (DUET), Gazipur, Bangladesh.)

**(Completed M.Sc. and B.Sc. in Computer Science and Engineering from Jahangirnagar University (JU),

Dhaka, Bangladesh.)

***(Completed B.Sc. major in Computer Science and Engineering from Chittagong University of Engineering

& Technology (CUET), Chittagong, Bangladesh.)

****(Completed B.Sc. in Computer Science and Engineering from University of Dhaka (DU), Dhaka,

Bangladesh,)

*****(Completed M.Sc. and B.Sc. in Computer Science and Engineering from University of Dhaka (DU),
Dhaka, Bangladesh,)

******(Completed B.Sc. in Computer Science and Engineering from Jahangirnagar University (JU), Dhaka,

Bangladesh.)

ABSTRACT
In WSNs the existing query flooding

based and event flooding based routing protocol,

Query flooding can find desired events quickly but

is also costly because many query messages are

generated and employs precise routing hints to

route queries that can reduce query messages at

the expense of heavy routing overhead

(specifically, keeping precise routing hints for

many events is expensive) respectively. Bloom

filters have been used in database applications,

web caching, and searching in peer-to-peer

networks. In this paper, we propose a routing

protocol in Wireless Sensor Networks (WSNs) by

Scope Decay Bloom Filter (SDBF), that detecting

and correcting the decaying bits of SDBF using

Hamming Code. In SDBF, each node maintains

some probabilistic hints about events and utilizes

these hints to route queries intelligently. SDBF

greatly reduces the amortized network traffic

without compromising the query success rate and

achieves a higher energy efficiency.

Keywords - Bloom Filters, Error Correction,

Error Detection, Hamming Code, Routing

Protocol, Scope Decay Bloom Filters, Wireless

Sensor Networks (WSNs).

I. INTRODUCTION
The Bloom filter a way of using hash

transforms to determine set membership [1]. Bloom

filters find application wherever fast set membership

tests on large data sets are required. Such applications

include spell checking, differential file updating,
distributed network caches, and textual analysis. It is

a probabilistic method with a set error rate. Errors

can only occur on the side of inclusion | a true

member will never be reported as not belonging to a

set, but some non-members may be reported as

members.

A wireless sensor network is a collection of

nodes organized into a cooperative network [2]. Each

node consists of processing capability (one or more

microcontrollers, CPUs or DSP chips), may contain
multiple types of memory (program, data and flash

memories), have a RF transceiver (usually with a

single omni-directional antenna), have a power

source (e.g., batteries and solar cells), and

accommodate various sensors and actuators. The

nodes communicate wirelessly and often self-

organize after being deployed in an ad hoc fashion.

Systems of 1000s or even 10,000 nodes are

anticipated. Such systems can revolutionize the way

we live and work. Wireless sensor networks (WSNs)

have been used in applications such as the health
industry, military, warehouse, and home environment

[3]. Sensors are typically low-cost, low power, and

multi-functional. They communicate with each other

through wireless media and form a wireless

distributed network. In WSNs, routing is data-centric,

i.e. finding data with specific attribute values [4]. In

many WSNs applications, routing is query-based. A

sink initiates a query for some desired data, which is

forwarded towards the hosting sensors [5]. Sinks can

be static or dynamic.

In this paper, we propose a routing protocol

in WSNs by Scope Decay Bloom Filter (SDBF), that
detecting and correcting the decaying bits of SDBF

using Hamming Code and utilizes probabilistic hints.

Each sensor maintains probabilistic hints about

events that may be found through its neighbors. Hints

are encoded using the proposed variant of the bloom

filter (BF) [6] [7], called scope decay bloom filter

(SDBF).BF consists of a bit string and a group of

hash functions. To generate a BF for a set, each set

element is mapped by each hash function to a bit

Shamim Ahmed, Ishtiaque Mahmud, A.K.M. Nazmus Sakib, Md. Habibullah Belali, Sajeeb

Saha, Quazi Emanual Alendey / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.430-436

431 | P a g e

position in the bit string. All mapped bits are set. To

determine the membership of an item, the item is

hashed similarly. If any of the hashed bits is not set,

then the item definitely does not belong to the set. If
all bits are set, then the item is possibly in the set. If

in fact the set does not contain the item, a false

positive occurs. Nevertheless, the space savings

usually offset this shortcoming when the false

positive rate is significantly low. Bloom filters have

been used in database applications [6], web caching

[8], and searching in peer-to-peer networks [9] [10].

The SDBF protocol uses routing hint about an event.

The advertisement is designed such that the hint does

not decay within the k-hop neighbourhood of an

event source but decays outside the k-hop

neighbourhood as the distance from the boundary of
the k-hop neighbourhood increases. By trading off

precise routing hints for probabilistic ones, SDBF

achieves a higher query success rate with the same or

less amortized routing overhead.

1.1. Novel Uses

This section reviews some of the most

interesting applications of Bloom filters. It is perhaps

surprising that what is essentially a set-membership

test is of use in so many important applications.

 Rule-based systems: Burton H. Bloom
originally proposed filter hashing as part of a

program to automatically hyphenate words. He

wanted to separate words that could be

hyphenated by the application of simple rules

from the minority that required extensive

analysis. He proposed using his filter method to

separate the 10% of difficult words from the rest

[11].

 Spell Checkers: Bloom filters have been

successfully applied in spell checking programs

such as cspell [12][13][14]. They are employed
to determine if candidate words are members of

the set of words in a dictionary. In the case of

cspell, suggested corrections are generated by

making all single substitutions in rejected words

and then checking if the results are members of

the set [12]. Bloom filters perform very well in

such cases [12]. The filter size was chosen to be

large enough to allow the inclusion of additional

words added by the user.

 Estimating Join Sizes: Mullin [15][16]

suggested using Bloom filters to estimate the

size of joins in databases. This is of particular
advantage in the case of distributed databases

where communications costs are to be kept to a

minimum. He presented a method by which

filters that are too large to fit in memory can be

used [16]. The method is essentially to use a

representative sample of a filter for testing and

ignore all hashes outside the range of the sample.

Since hash transforms are pseudo-random, any

significantly large portion of a filter can act as a

sample.

 Differential Files: A major area of interest in the

application of Bloom filters has been their use in
differential file access [13][14]. A differential

file is essentially a separate file which contains

records that are modified in the main file [13].

Differential files are used as caches in large

databases: when a change is made to a record in

the main database the differential file is updated;

when all the changes have been made to the

database then the differential file is used to

update the database. When the differential file is

much smaller than the database, changes to it can

be made without the overhead needed to search
the main file. Of course, it would be best to keep

the entire set of records in memory at once, but

this is not feasible for large data sets and so the

probabilistic approach offered by Bloom filters is

used. Bloom filters in core memory are used to

predict if a record will be found in the

differential file.

1.2. Related Works

The simplest way to route queries is to flood

queries from the sink over the entire WSN and set up

the reverse paths for desired data to be sent back to
the sink. Various query flooding schemes differ in the

manner in which they set up and use reverse paths.

Directed diffusion [17] tries to find an optimal path

between the sink and the event sources by flooding

an exploratory query that is initiated at a sink. Each

node sets gradients between neighboring nodes, and

reinforces the best route for real data while

transferring the exploratory events on the reverse

query path. The gradients are only used for sending

the real data from the discovered event source to the

sink that initiates the exploratory query. Gradient-
based routing [18] is another scheme based on query

flooding. It associates each node with a height, which

is the minimum distance in terms of the number of

hops from the sink. The scheme also assigns a

gradient to the link between a node and its neighbor.

A gradient is defined as the height difference

between a node and its neighbor. A node always

forwards desired data through the link with the

highest gradient among all links to its neighbors.

Energy aware routing [19] is also based on query

flooding. This scheme tries to maintain multiple

paths between a data source and the sink. Desired
data is propagated through a route that is

probabilistically selected. The probability of a route

is set based on its energy consumption. To reduce the

cost of query flooding, gossiping [20] can be used for

query-based routing in WSNs. It is essentially a

random walk where each node forwards a received

query to a randomly chosen neighbor.

Shamim Ahmed, Ishtiaque Mahmud, A.K.M. Nazmus Sakib, Md. Habibullah Belali, Sajeeb

Saha, Quazi Emanual Alendey / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.430-436

432 | P a g e

II. STANDARD BLOOM FILTERS
The Bloom filter is used to test whether an

element is a member of a set and is a space-efficient

probabilistic data structure, false negatives are not

possible but false positives are possible. Elements

can only be added to the set and cannot be removed.

The probability of false positives increases when

more elements are added to the set.

An empty Bloom filter is a bit array of m

bits, all set to 0. There must also be k different hash

functions defined, each of which maps or hashes

some set element to one of the m array positions with

a uniform random distribution. To add an element,
feed it to each of the k hash functions to get k array

positions. Set the bits at all these positions to 1. The

requirement of designing k different independent

hash functions can be prohibitive for large k. For a

good hash function with a wide output, there should

be little if any correlation between different bit-fields

of such a hash, so this type of hash can be used to

generate multiple “different” hash functions by

slicing its output into multiple bit fields.

Alternatively, one can pass k different initial values

(such as 0,1, ,,, k-1) to a hash function that takes an

initial value, or add these values to the key. For larger
m and/or k, independence among the hash functions

can be relaxed with negligible increase in false

positive rate. Removing an element from this simple

Bloom filter is impossible. The element maps to k

bits, and although setting any one of these k bits to

zero suffices to remove it, this has the side effect of

removing any other elements that map on-to that bit,

and we have no way of determining whether any such

elements have been added [21]. Such removal would

introduce a possibility for false negatives, which are

not allowed.
An example of Bloom filter is shown in Fig

1. This is representing the set {e1,e2}. The coloured

lines show the positions in the bit array that each set

element is mapped to. For this figure m=16 and k=3.

Removal of an element from a Bloom filter can be

simulated by having a second Bloom filter that

contains items that have been removed. However,

false positives in the second filter become false

negatives in the composite filter, which are not

permitted.

Fig.1: Standard Bloom Filter

This approach also limits the semantics of removal

since re-adding a previously removed item is not

possible. However it is often the case that all the keys

are available but are expansive to enumerate. When
the false positive rate gets too high, the filter can be

regenerated. This should be a relatively rare event.

III. PROBABILITY OF FALSE POSITIVE
Assume that a hash function selects each

array position with equal probability. If m is the

number of bits in the array, the probability that a

certain bit is not set to one by a certain hash function

during the insertion of an element is then

The probability that it is not set by any of the hash

functions is

If we have inserted n elements, the probability that a

certain bit is still 0 is

the probability that it is 1 is therefore

Now test membership of an element that is

not in the set. Each of the k array positions computed

by the hash functions is 1 with a probability as above.

The probability of all of them being 1, which would

cause the algorithm to erroneously claim that the

element is in the set, is often given as

This is not strictly correct as it assumes

independence for the probabilities of each bit being

set. However, assuming it is a close approximation
we have that the probability of false positives

decreases as m (the number of bits in the array)

increases, and increases as n (the number of inserted

elements) increases. For a given m and n, the value

of k (the number of hash functions) that minimizes

the probability is

which gives the false positive probability of

The required number of bits m, given n (the

number of inserted elements) and a desired false

positive probability p (and assuming the optimal

value of k is used) can be computed by substituting

the optimal value of k in the probability expression

above:

http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Algorithm

Shamim Ahmed, Ishtiaque Mahmud, A.K.M. Nazmus Sakib, Md. Habibullah Belali, Sajeeb

Saha, Quazi Emanual Alendey / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.430-436

433 | P a g e

which can be simplified to:

This results in:

This means that in order to maintain a fixed

false positive probability, the length of a Bloom filter

must grow linearly with the number of elements

being filtered. While the above formula is asymptotic

(i.e. applicable as m, n → ∞), the agreement with

finite values of m,n is also quite good; the false

positive probability for a finite bloom filter with m

bits, n elements, and k hash functions is at most

So we can use the asymptotic formula if we

pay a penalty for at most half an extra element and at

most one fewer bit Goel & Gupta (2010) [22].

Fig.2: The false positive probability p as a function

of number of elements nin the filter and the filter

size m. An optimal number of hash functionsk =
(m / n)ln 2 has been assumed.

IV. OPERATION ON BLOOM FILTERS
For the purposes of the analysis, we are

presenting only the essentials of Bloom filters- the

algorithms are for single bit elements. The analysis of

filters with more complicated cells is essentially the

same as for the simple case [23]. Blustein has shown

how to efficiently implement these operations using
C. IsMember is presented immediately below.

Fig. 3: Algorithm for Operation on Bloom Filter

V. SCOPE DECAY BLOOM FILTERS (SDBF)
A SDBF is designed as a lossy channel

coding scheme to reduce the amount of network

traffic. An SDBF can represent the set membership

information and the different amount of information

about an element in the set. Similar to a BF, an SDBF

also has a bit string of width m and d hash functions,

h1, h2, ..., and hd. An SDBF encodes the information

about an element similarly to the way a BF inserts an

element. Given an element e, the SDBF sets all bits

h1(e), h2(e), ..., and hd(e) in the bit string. An SDBF
differs from the basic BF in the decoding procedure.

A BF obtains the membership information by

checking whether all mapped d bits are set or not. An

SDBF decodes the information about an element e by

computing the number of 1s among the d mapped

bits, denoted by I(e). This number ranges from 0 to d.

The more bits are set to 1, the larger I(e) is, and there

is more information about e.

Fig.4: The structure of Scope Decay Bloom Filter

(SDBF)

Bloom_filter.htm#CITEREFGoelGupta2010#CITEREFGoelGupta2010

Shamim Ahmed, Ishtiaque Mahmud, A.K.M. Nazmus Sakib, Md. Habibullah Belali, Sajeeb

Saha, Quazi Emanual Alendey / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.430-436

434 | P a g e

In this SDBF where, a bit string of width m=16 and

hash functions d=3. There are 3 hash functions, they

are h1, h2, and h3. When the SDBF initially encodes

the information about element e1, the hash functions
h1, h2, and h3 hash e1 to bits 3, 8, and 12

respectively and set these bits to 1s. Then decode the

e1, and compute the number of 1s, that is I(e1)=3.

During the decay process, some bits in the initial

SDBF are probabilistically reset to 0s. In the decayed

SDBF in Fig 4, bit 8 is reset to 0, bits 3 and 12

remain 1s. When we decode e1 from this decayed

SDBF, I(e1) = 2, which means that this decayed

SDBF probably has less information about e1 than

the initial SDBF. There are many design choices for

decreasing the information about an element in an

SDBF. To simplify the decay process, we choose two
stateless decay schemes that do not need to remember

the specific event contributing to a particular bit.

These two models are the exponential decay and the

linear decay.

VI. DETECTING AND CORRECTING THE

DECAYED BIT IN THE SDBF BY USING

HAMMING CODE
The Hamming code can be applied to data

units of any length and uses the relationship between

data and redundancy bits. In the Hamming code, each

r bit is the parity bit for one combination of data bits,

as shown below:

r1: bits 1, 3, 5, 7, 9, 11

r2: bits 2, 3, 6, 7, 10, 11
r4: bits 4, 5, 6, 7

r8: bits 8, 9, 10, 11

Fig.5: Position of redundancy bits in Hamming Code

Each data bit may be included in more than one

calculation.

Fig.6: The initial non-decayed SDBF and decayed

SDBF, the bit position 4 is decayed.

Calculating the r values: Fig.7 shows a Hamming
code implementation for decayed SDBF of Fig.6. In

the first step, we place each bit of the original

character in its appropriate position in the 11-bit unit.

In the subsequent steps, we calculate the even parities

for the various bit combinations. The parity value for

each combination is the value of the corresponding r

bit.

Fig.7: Redundancy bit calculation of Fig.5 SDBF

Error Detection and Correction: Now imagine that

by the time the above transmission is received, the

number 7 bit has been changed from 1 to 0. The

receiver takes the transmission and recalculates 4

new parity bits, using the same sets of bits used by

the sender plus the relevant parity r bit for each set.

Then it assembles the new parity values into the

binary number in order of r position (r8, r4, r2, r1). In
our example, this steps gives us the binary number

0111 (7 in decimal (the bit in position 4 is decayed of

Fig.6 SDBF)), which is the precise location of the bit

in error

Shamim Ahmed, Ishtiaque Mahmud, A.K.M. Nazmus Sakib, Md. Habibullah Belali, Sajeeb

Saha, Quazi Emanual Alendey / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.430-436

435 | P a g e

Fig.8: Error detection using Hamming code, the bit

in position 7 (the bit in position 4 is decayed of Fig.6

SDBF) is in error.

VII. PROBABILISTIC ROUTING HINTS

CREATION AND MAINTENANCE
Probabilistic routing hints are represented by

SDBFs. Each sensor maintains an SDBF for each

neighbour. An SDBF encodes hints about events that

may be found through a neighbour. To create these

hints, each sensor first creates a local SDBF that

encodes all local events detected by itself. Then these

local SDBFs are propagated according to the decay

model. At each sensor, the SDBF hints from different
neighbours are first decayed if they contain

information outside the k-hop neighbourhood of

event sources, then aggregated (including the non-

decayed local SDBF), and propagated further to other

neighbours. A sensor first creates a local SDBF,

encoding the set of events detected by itself. This

SDBF is broadcast to all its neighbors. A neighbor

combines this SDBF with the SDBFs from its own

neighbours and propagates the aggregated SDBF. To

reduce the routing traffic further, incremental updates

to SDBFs are actually disseminated.
The figure shows how a node X propagates

updates to its neighbors Y. X ORs its own SDBF and

the SDBFs it receives from neighbour A, B, and C

and sends the combined SDBF as hints to neighbour

Y. If a sensor notices some change to its local SDBF,

the changes are incrementally spread out to nearby

nodes.

Fig. 9: Event hint update from X to its neighbour Y.

A, B, C and Y are X’s neighbours. LOCAL: X’s local

SDBF.

VIII. CONCLUSION
In this paper, we propose a routing protocol

that detecting and correcting the decaying bits of

SDBF using Hamming Code and utilize probabilistic

hints. Each node maintains some probabilistic hints

about events and utilizes these hints to route queries

intelligently. The Bloom Filter is very important in

WSNs. There are many important applications of BF

in WSNs, such as Rule-based systems, Spell

Checkers, Estimating Join Sizes, Differential Files,

etc. SDBF greatly reduces the amortized network

traffic without compromising the query success rate
and achieves higher energy efficiency. SDBF

generates less query traffic and achieves a

significantly higher query success rate than SQR. In

the future, we plan to explore scope decay bloom

filters models, that decaying based on node degrees

and intend to do analytical and simulation study in

extending SDBF to clustered Wireless Sensor

Networks (WSNs).

REFERENCES
[1] Burton H. Bloom. Space/time trade-offs in

hashing coding with allowable errors.

Communications of the ACM, 13(7):422-

426, July 1970. URL

hhttp://doi.acm.org/10.1145/362686.362692i

[2] J. Hill, R. Szewczyk, A, Woo, S. Hollar, D.

Culler, and K. Pister, System

Architecture Directions for Networked

Sensors, ASPLOS, November 2000.

[3] I. Akyildiz, W. Su, Y. Sankarasubramaniam,

and E. Cayirci, “A survey on sensor
networks,” IEEE Communications

Magazine, pp. 102–114, Aug. 2002.

[4] D. P. Agrawal and Q. Zeng, Wireless and

mobile systems. Thomson- Brooks/Cole,

Inc., 2003.

Shamim Ahmed, Ishtiaque Mahmud, A.K.M. Nazmus Sakib, Md. Habibullah Belali, Sajeeb

Saha, Quazi Emanual Alendey / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.430-436

436 | P a g e

[5] J. N. Al-Karaki and A. E. Kamal, “Routing

Techniques in Wireless Sensor Networks: a

Survey,” IEEE Wireless Communications,

vol. 11, no. 6, pp. 6–28, Dec. 2004.
[6] B. H. Bloom, “Space/time tradeoffs in hash

codingwith allowable errors,”

Communications of ACM, vol. 13, no. 7, pp.

422–426, July 1970.

[7] A. Broder and M. Mitzenmacher, “Network

Applications of Bloom Filters: A Survey,”

in Fortieth Annual Allerton Conference on

Communication, Control, and Computing,

2002.

[8] L. Fan, P.Cao, J. Almeida, and A. Broder,

“Summary cache: a scalable wide-area web

cache sharing protocol,” in Proc. of ACM
SIGCOMM’98, Sept. 1998, pp. 254–265.

[9] A. Kumar, J. Xu, and E. W. Zegura,

“Efficient and scalable query routing for

unstructured peer-to-peer networks,” in

Proc. of IEEE INFOCOM’05, 2005.

[10] D. Guo, H. Chen, X. Luo, and J. Wu,

“Theory and network application of

dynamic bloom filters,” in Proc. of IEEE

INFOCOM’06, 2006.

[11] Burton H. Bloom. Space/time trade-offs in

hashing coding with allowable errors.
Communications of the ACM, 13(7):422-

426, July 1970. URL

 [12] James K. Mullin and Daniel J. Margoliash.

A tale of three spelling checkers. Software –

Practice and Experience, 20(6):625 - 630,

June 1990.

[13] M. V. Ramakrishna. Practical performance

of Bloom filters and parallel free-text

searching. Communications of the ACM,

32(10):1237 { 1239, October 1989. URL

http://doi.acm.org/10.1145/67933.67941i.
[14] James K. Mullin. A second look at Bloom

filters. Communications of the ACM,

26(8):570 – 571, August 1983. URL

hhttp://doi.acm.org/10.

1145/358161.358167i.

[15] James K. Mullin. Optimal semijoins for

distributed database systems. IEEE

Transactions on Software Engineering,

16(5):558-560, May 1990. URL

http://ieeexplore.ieee.org/iel1/32/1900/0005

2778.pdfi.

[16] James K. Mullin. Estimating the size of a
relational join. Information Systems,

18(3):189 – 196, 1993. ISSN 0306-4379.

[17] C. Intanagonwiwat, R. Govindan, and D.

Estrin, “Directed Diffusion: a Scalable and

Robust Communication Paradigm for Sensor

Networks,” in Proc. of ACM Mobi-Com,

2000.

[18] C. Schurgers and M. B. Srivastava,

“Engergy efficient routing in wireless sensor

networks,” in Proc. of MILCOM

communications for networkcentric ops:

creating the information force, 2001.

[19] R. C. Shah and J. Rabaey, “Energy aware
routing for low energy ad hoc sensor

networks,” in Proc. of IEEE WCNC, 2002.

[20] L. Li, J. Halpern, and Z. Haas, “Gossip-

based ad hoc routing,” in Proc. of the 21st

Conference of the IEEE Communications

Society (INFOCOM’02), 2002.

[21] Yu Hua, Bin Xiao, “A Multi-attribute Data

Structure with Parallel Bloom Filters For

Network Services”

[22] Goel, Ashish; Gupta, Pankaj (2010), "Small

subset queries and bloom filters using

ternary associative memories, with
applications", ACM Sigmetrics 2010 38:

143, doi:10.1145/1811099.1811056

[23] Burton H. Bloom. Space/time trade-offs in

hashing coding with allowable errors.

Communications of the ACM, 13(7):422-

426, July 1970. URL

http://doi.acm.org/10.1145/362686.362692i.

