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ABSTRACT 

 The effects of radiation on unsteady MHD 

free convection flow of a viscous incompressible 

electrically conducting fluid past an exponentially 

accelerated vertical plate in the presence of a 

uniform transverse magnetic field on taking 

viscous and Joule dissipations into account have 

been studied. The governing equations have been 

solved numerically by the implicit finite difference 

method of Crank- Nicolson's type. The variations 

of velocity and fluid temperature are presented 

graphically. It is found that both the magnetic 

field and radiation decelerate the fluid velocity. 

An increase in Eckert number leads to rise in fluid 

velocity and temperature. Further, it is found that 

the magnitude of the shear stress at the plate 

increases with an increase in either radiation 

parameter or magnetic parameter. The the rate of 

heat transfer at the plate decreases with an 

increase in radiation parameter. 

 

Keywords: MHD free convection, radiative heat 

transfer, Prandtl number and Grashof number, 

viscous and Joule dissipations.  

 

I.  INTRODUCTION 
 The most common type of body force on a 

fluid is gravity defined in magnitude and direction by 

the corresponding acceleration vector. Sometimes, 

electromagnetic effects are important. The electric 

and magnetic fields themselves obey a set of physical 

laws, which are expressed by Maxwell's equations. 

The solution of such problems requires the 

simultaneous solution of the equations of fluid 

mechanics and of electromagnetism. One special case 

of this type of coupling is the field known as 

magnetohydrodynamics (MHD). The hydromagnetic 

flows and heat transfer have become more important 
in recent years because of its varied applications in 

agricultural engineering and petroleum industries. 

Recently, considerable attention has also been 

focused on new applications of 

magnetohydrodynamics (MHD) and heat transfer 

such as metallurgical processing. Melt refining 

involves magnetic field applications to control 

excessive heat transfer rate. Other applications of 

MHD heat transfer include MHD generators, plasma  

 

propulsion in astronautics, nuclear reactor thermal 

dynamics and ionized-geothermal energy systems.  

 

An excellent summary of applications can be found 

in Hughes and Young [1]. Abd-El-Naby et al.[2] 

have studied the finite difference solution of radiation 

effects on MHD free convection flow over a vertical 

plate with variable surface temperature. The transient 

radiative hydromagnetic free convection flow past an 

impulsively started vertical plate with uniform heat 
and mass flux have been investigated by 

Ramachandra Prasad et al. [3]. Takhar et al.[4] have 

analyzed the radiation effects on MHD free 

convection flow of a radiating fluid past a semi-

infinite vertical plate using Runge-Kutta-Merson 

quadrature. Samria et al. [5] studied the 

hydromagnetic free convection laminar flow of an 

elasto-viscous fluid past an infinite plate. Recently, 

the natural convection flow of a conducting visco-

elastic liquid between two heated vertical plates 

under the influence of transverse magnetic field has 
been studied by Sreehari Reddy et al.[6]. In all these 

investigations, the viscous dissipation is neglected. 

The viscous dissipation heat in the natural convective 

flow is important, when the flow field is of extreme 

size or at low temperature or in high gravitational 

field. Such effects are also important in geophysical 

flows and also in certain industrial operations and are 

usually characterized by the Eckert number. A 

number of authors have considered viscous heating 

effects on Newtonian flows. Maharajan and Gebhart 

[7] reported the influence of viscous dissipation 

effects in natural convective flows, showing that the 
heat transfer rates are reduced by an increase in the 

dissipation parameter. Israel-Cookey et al. [8] have 

investigated the influence of viscous dissipation and 

radiation on unsteady MHD free convection flow past 

an infinite heated vertical plate in a porous medium 

with time dependent suction. Zueco Jordan [9] has 

used network simulation method (NSM) to study the 

effects of viscous dissipation and radiation on 

unsteady MHD free convection flow past a vertical 

porous plate. Suneetha et al. [10] have analyzed the 

effects of viscous dissipation and thermal radiation 
on hydromagnetic free convection flow past an 

impulsively started vertical plate. Suneetha et al.[11] 
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have studied the effects of thermal radiation on the 

natural convective heat and mass transfer of a viscous 

incompressible gray absorbing-emitting fluid flowing 

past an impulsively started moving vertical plate with 

viscous dissipation. Ahmed and Batin [12] have 

obtained an analytical model of MHD mixed 

convective radiating fluid with viscous dissipative 
heat. 

The objective of the present work is to study the 

effects of radiation on unsteady MHD free convective 

flow of a viscous incompressible electrically 

conducting fluid past an exponentially accelerated 

vertical plate in the presence of a uniform transverse 

magnetic field on taking viscous and Joule 

dissipations into account. At time 0t  , both the 

fluid and plate are at rest with constant temperature 

T . At time > 0t , the plate at = 0y  starts to move 

in its own plane with a velocity 0
a tu e


, a  being a 

constant and the plate temperature is raised to wT . A 

uniform magnetic field 0B  is applied perpendicular 

to the plate. The governing equations have been 
solved numerically using Crank- Nicolson's method. 

It is found that the fluid velocity u  decreases with an 

increase in either magnetic parameter 2M  or 

radiation parameter Ra . It is observed that the fluid 

velocity u  increases with an increase in either 

magnetic parameter 2M  or Eckert number Ec . It is 

also found that the fluid temperature   decreases 

with an increase in radiation parameter Ra . Further, 

it is found that the absolute value of the shear stress 

x  at the plate ( = 0)  increases with an increase in 

either Ra  or 2M  or Ec . The rate of heat transfer 

=0

d

d






 
 
 

 at the plate ( = 0)  decreases with an 

increase in Ra . 

 

II. FORMULATION OF THE PROBLEM 

AND ITS SOLUTION 

Consider the unsteady hydrodynamic flow 
of a viscous incompressible radiative fluid past an 

exponentially accelerated vertical plate in the 

presence of a uniform transverse magnetic field on 

taking into account viscous and Joule dissipations. 

The x -axis is taken along the vertical plate in an 

upward direction and y -axis is taken normal to the 

plate (see Fig.1). At time 0t  , both the fluid and 

plate are at rest with constant temperature T . At 

time > 0t , the plate at = 0y  starts to move in its 

own plane with a velocity 0
a tu e


, a  being a 

constant and wT  is the plate temperature . A uniform 

magnetic field 0B  is applied perpendicular to the 

plate. It is also assumed that the radiative heat flux in 

the x - direction is negligible as compared to that in  

 

the y - direction. As the plate are infinite long, the 

velocity and temperature distribution are functions of 

y  and t  only. We assume that the magnetic 

Reynolds number is much less than unity and hence 

the induced magnetic field can be neglected in 

comparison with the applied magnetic field in the 

absence of any input electric field.  

          

         
 

Fig.1: Geometry of the problem 

 

Under the above assumptions and using the usual 

Boussinesq's approximation, the equations of 

momentum and energy can be written as  
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 
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   

 
              (1) 

     

22
2 2
02

,r
p

qT T u
c k B u

t y yy
  

    
    

    
 (2) 

where u  is the velocity in the x -direction, T  the 

temperature of the fluid, g  the acceleration due to 

gravity,   the coefficient of thermal expansion,   

the kinematic coefficient of viscosity,   the fluid 

density, k  the thermal conductivity, pc  the specific 

heat at constant pressure and rq  the radiative heat 

flux. 

    The initial and boundary conditions are  

     0, for all 0 and 0,u T T y t      

      0 , at 0 at > 0,a tu u e T T y t



                (3) 

      0, as for > 0.u T T y t     

    It has been shown by Cogley et al.[13] that in the 

optically thin limit for a non-gray gas near 

equilibrium, the following relation holds  

           
0

00

4( ) ,
pr

eq
T T K d

y T


 





 
      
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where K  is the absorption coefficient,   is the 

wave length, pe  is the Plank's function and 

subscript '0  indicates that all quantities have been  
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evaluated at the temperature T  which is the 

temperature of the plate at time 0t  . Thus, our 

study is limited to small difference of plate 

temperature to the fluid temperature. 

On the use of the equation (4), equation (2) becomes  

        
2

2
4p

T T
c k T T I

t y
 

 
  

 
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 where  
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Introducing non-dimensional variables  
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equations (1) and (5) become  
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 where 
2

2 0

2

B
M
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


  is the magnetic parameter, 

4IT
Ra

k

  the radiation parameter, 
pc

Pr
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Prandtl number, 
)

3
0

( wg T T
Gr

u
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  the Grashof 

number and 
2
0

( )p w
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Ec

c T T
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
 the Eckert number. 

The corresponding boundary conditions for u  and   

are  

0, 0 for 0 and 0,u        

, 1 at 0 for > 0,au e             (10) 

0, 0 as for > 0,u       

 where 
2
0

a
a

u

 
  is the accelerated parameter. 

 

III.  NUMERICAL SOLUTION 

 

One of the most commonly used numerical methods 
is the finite difference technique, which has better 

stability characteristics, and is relatively simple, 

accurate and efficient. Another essential feature of 

this technique is that it is based on an iterative 

procedure and a tridiagonal matrix manipulation. 

This method provides satisfactory results but it may 

fail when applied to problems in which the 

differential equations are very sensitive to the choice  

 

 

of initial conditions. In all numerical solutions the 

continuous partial differential equation is replaced 

with a discrete approximation. In this context the 

word  discrete means that the numerical solution is 

known only at a finite number of points in the 

physical domain. The number of those points can be 

selected by the user of the numerical method. In 
general, increasing the number of points not only 

increases the resolution but also the accuracy of the 

numerical solution. The discrete approximation 

results in a set of algebraic equations that are 

evaluated (or solved) for the values of the discrete 

unknowns. The mesh is the set of locations where the 

discrete solution is computed. These points are called 

nodes and if one were to draw lines between adjacent 

nodes in the domain the resulting image would 

resemble a net or mesh. 

 When time dependent solutions are 

important, the Crank-Nicolson scheme has significant 
advantages. The Crank-Nicolson scheme is not 

significantly more difficult to implement and it has a 

temporal truncation error that is 2( )O   as 

explained by Recktenwald [14]. The Crank-Nicolson 

scheme is implicit, it is also unconditionally stable 

[15- 17]. In order to solve the equations (8) and (9) 

under the initial and boundary conditions (10), an 

implicit finite difference scheme of Crank-Nicolson's 

type has been employed. The right hand side of the 

equations (8) and (9) is approximated with the 
average of the central difference scheme evaluated at 

the current and the previous time step. The finite 

difference equation corresponding to equations (8) 

and (9) are as follows:  
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The boundary conditions (10) become  

,0 ,00, 0 for all 0,i iu i    

0, 0,, 1,a j
j ju e                                (13) 

, ,0, 0,N j N ju    
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where N  corresponds to  . Here the suffix i  

corresponds to y  and j  corresponds to  . Also 

1j j      and 1i i     . Knowing the 

values of , u  at a time   we can calculate the 

values at a time    as follows . We substitute 

1,2,..., 1i N  , in equation (12) which constitute a 

tri-diagonal system of equations, the system can be 

solved by Thomas algorithm as discussed in 

Carnahan et al.[18]. Thus   is known for all values 

of   at time  . Then knowing the values of   and 

applying the same procedure with the boundary 

conditions, we calculate, u  from equation (11). This 

procedure is continued to obtain the solution till 

desired time  . The Crank-Nicolson scheme has a 

truncation error of    2 2O O    , i.e. the 

temporal truncation error is significantly smaller. 

  

        
   

       Fig.2: Finite difference grids   
 

 The implicit method gives stable solutions 

and requires matrix inversions which we have done at 

step forward in time because this problem is an 

initial-boundary value problem with a finite number 

of spatial grid points. Though, the corresponding 

difference equations do not automatically guarantee 

the convergence of the mesh 0  . To achieve 

maximum numerical efficiency, we used the 
tridiagonal procedure to solve the two- point 

conditions governing the main coupled governing 

equations of momentum and energy. The 

convergence (consistency) of the process is quite 

satisfactory and the numerical stability of the method 

is guaranteed by the implicit nature of the numerical 

scheme. Hence, the scheme is consistent. The 

stability and consistency ensure convergence. 

 

IV.  RESULTS AND DISCUSSION 
We have presented the non-dimensional 

fluid velocity u  and the fluid temperature   for 

several values of the magnetic parameter 2M , 
radiation parameter R , Prandtl number Pr , Grashof  

 

number Gr , Eckert number Ec , accelerated 

parameter a  and time   in Figs.3-13. It is seen from 

Fig.3 that the velocity u  decreases with an increase 

in magnetic parameter 2M . This implies that the 

magnetic field has retarding influence on the velocity 

field. The presence of a magnetic field in an 

electrically-conducting fluid introduces a force called 

Lorentz force which acts against the flow if the 

magnetic field is applied in the normal direction as 

considered in the present problem. This type of 

resistive force tends to slow down the motion of 

electrically conducting fluid. It is revealed from Fig.4 

that the fluid velocity u  decreases with an increase in 

radiation parameter R . The radiation parameter 

arises only in the energy equation in the thermal 

diffusion term and via coupling of the temperature 

field with the buoyancy terms in the momentum 
equation, the velocity is indirectly influenced by 

thermal radiation effects. An increase in R  clearly 

reduces the fluid velocity. Fig.5 displays that the 

velocity u  increases with an increase in Prandtl 

number Pr . Fig.6 shows that the velocity u  

increases with an increase in Grashof number Gr . It 

is due to the fact that an increase of Grashof number 

has a tendency to increase the thermal effect. This 

gives rise to an increase in the induced flow. Fig.7 

reveals that the fluid velocity u  increases with an 

increase in Eckert number Ec . It is seen from Figs.8 

and 9 that the velocity u  increases with an increase 

in either accelerated parameter a  or time  . It is 

illustrated from Fig.10 that the fluid temperature   

increases with an increase in magnetic parameter 
2M . Fig.11 display that the fluid temperature   

decreases with an increase in radiation parameter R . 

This is due to the fact that the radiation provides an 

additional means to diffuse energy. Fig.12 shows that 

the fluid temperature   increases with an increase in 

Prandtl number Pr . It is seen from Fig.13 that the 

fluid temperature   increases with an increase in 

Eckert number Ec . This is due to the fact that Eckert 

number is the ratio of the kinetic energy of the flow 

to the boundary layer enthalpy difference. The effect 

of viscous dissipation on flow field is to increase the 

energy, yielding a greater fluid temperature. 
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 Fig.3: Velocity profiles for different 2M  when 

5Gr  , 2Ra  , 0.5a  , 0.5Ec  , 0.25Pr   and 

0.2    

 
 Fig.4: Velocity profiles for different R  when 

2 5M  , 5Gr  , 0.5a  , 0.5Ec  , 0.25Pr   and 

0.2    

  

Fig.5: Velocity profiles for different Pr  when 
2 5M  , 5Gr  , 0.5a  , 0.5Ec   and 0.2    

 Fig.6: Velocity profiles for different Gr  when 
2 5M  , 2R  , 0.5a  , 0.5Ec  , 0.25Pr   and 

0.2    

 
Fig.7: Velocity profiles for different Ec  when 

2 5M  , 5Gr  , 0.5a  , 2R  , 0.25Pr   and 

0.2    

 
Fig.8: Velocity profiles for different a  when 

2 5M  , 5Gr  , 2R  , 0.5Ec  , 0.25Pr   and 

0.2    



Maitree Jana, Sanatan Das, Rabindra Nath Jana / International Journal of Engineering 

Research and Applications (IJERA) ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 5, September- October 2012, pp.270-278 

275 | P a g e  

 
Fig.9: Velocity profiles for different time   when 

2 5M  , 5Gr  , 0.5a  , 0.5Ec  , = 0.25Pr  and 

2R    

 

Fig.10: Temperature profiles for different 2M  when 
2R  , 0.5Ec  , 0.25Pr   and 0.2     

 
Fig.11: Temperature profiles for different R  when 

2 5M  , 0.5Ec  , 0.25Pr   and 0.2    

 
Fig.12: Temperature profiles for different Pr  when 

2 = 5M , = 0.5Ec , = 2R  and = 0.2   

  

 
Fig.13: Temperature profiles for different Ec  when 

2 5M  , 2R  , 0.25Pr   and 0.2    

 

Numerical values of the rate of heat transfer  0   

at the plate 0   are presented in Tables 1 and 2 for 

several values of radiation parameter Ra , Prandtl 

number Pr , time  , magnetic parameter 2M  and 

Eckert number Ec . It is seen from Table 1 that the 

rate of heat transfer  0   at the plate 0   

decreases with an increase in either Prandtl numbe 
Pr  or time  . It is also seen that the rate of heat 

transfer  0   at the plate 0   increases with an 

increase in radiation parameter R . Further, it is seen 

from Table 2 that the rate of heat transfer  0   

increases with an increase in magnetic parameter 
2M  while it decreases with an increase in time   for 

fixed values of radiation parameter Ra . 
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Table 1. Rate of heat transfer  0   at the plate 0    

 Pr    

R  0.5 0.71 1.25 1.5 0.2 0.4 0.6 0.8 

2 

3 

4 

5 

1.45461 

1.52588 

1.64211 

1.75135 

1.44657 

1.47031 

1.57474 

1.69003 

1.38121 

1.34243 

1.40540 

1.51410 

1.28118 

1.23809 

1.29520 

1.40561 

1.40435 

1.64988 

1.71077 

1.82159 

1.39435 

1.64132 

1.70500 

1.81524 

1.37435 

1.63123 

1.69877 

1.80802 

1.35435 

1.62598 

1.69085 

1.80165 

  

  

 Table 2. Rate of heat transfer  0   at the plate 0    

 2M  Ec  

R  6 8 10 12 0.1 0.2 0.3 0.4 

2 

3 

4 

5 

1.39768 

1.60759 

1.72446 

1.81566 

1.41948 

1.61302 

1.73223 

1.81893 

1.43180 

1.61810 

1.73737 

1.82207 

1.43987 

1.62216 

1.74145 

1.82467 

1.47126 

1.66308 

1.76149 

1.84589 

1.46680 

1.64587 

1.75448 

1.83635 

1.45627 

1.63179 

1.74503 

1.82810 

1.44450 

1.61808 

1.73485 

1.82001 

  

 

The non-dimensional shear stress x  at the plate 

 0   due to the flow is given by  

 

0

.x

du

d

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                        (14) 

Numerical values of the non-dimensional shear stress 

x  due to the flow at the plate ( 0)   are presented 

in Figs.14-19 against radiation parameter R  for 

several values of magnetic parameter 2M , Grashof 

number Gr , Prandtl number Pr , Eckert number 

Ec , accelerated parameter a  and time  . Fig.14 

shows that for the fixed values of the radiation 

parameter R , the absolute value of the shear stress 

x  increases with an increase in magnetic parameter 

2M . On other hand, it is observed that the absolute 

value of the shear stress x  decreases for < 1R  and 

it increases for 1R   for fixed values of 2M . Fig.15 

reveals that the absolute value of the shear stress x  

decreases for < 0.75R  and it increases for 0.75R   

with an increase in Prandtl number Pr . Fig.16 shows 

that the absolute value of the shear stress x  

decreases with an increase in Grashof number Gr . It 

is illustrated from Fig.17 that the absolute value of 

the shear stress x  increases with an increase in 

accelerated parameter a . It is revealed from Fig.18 

that the absolute value of the shear stress x  

decreases with an increase in Eckert number Ec . 

Fig.19 displays that the absolute value of the shear 

stresses x  increases with an increase in time  . 

 

Fig.14: Shear stress x  for different 2M  when 

0.71Pr  , 5Gr  , 0.5a  , 0.5Ec   and 0.2     

 
Fig.15: Shear stress x  for different Pr  when 

2 5M  , 5Gr  , 0.5a  , 0.5Ec   and 0.2    
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Fig.16: Shear stress x  for different   when 

2 5M  , 0.71Pr  , 0.5a  , 0.5Ec   and 0.2    

 
 Fig.17: Shear stress x  for different a  when 

2 5M  , 0.71Pr  , 5Gr  , 0.5Ec   and 0.2    

 
Fig.18: Shear stress x  for different Ec  when 

2 5M  , 0.71Pr  , 5Gr  , 0.5a   and 0.2    

 
Fig.19: Shear stress x  for different   when 

2 5M  , 0.71Pr  , 5Gr  , 0.5a   and 0.5Ec    

 

V. CONCLUSION 

The radiation effects on unsteady MHD free 

convection flow of a viscous incompressible 

electrically conducting fluid past an exponentially 

accelerated vertical plate in the presence of a uniform 

transverse magnetic field by taking into account 

viscous and Joule dissipations have been studied. The 
governing equations have been solved numerically by 

the implicit finite difference method of Crank- 

Nicolson's type. It is found that the fluid velocity u  

decreases with an increase in either magnetic 

parameter 2M  or radiation parameter Ra . It is 

observed that the fluid velocity increases with an 

increase in either Grashof number Gr  or time  . It 

is also found that the fluid temperature   decreases 

with an increase in radiation parameter Ra . Further, 

it is found that the absolute value of the shear stress 

x  at the plate ( 0)   increases with an increase in 

either Ra  or 2M  or  . The rate of heat transfer 

 0   at the plate ( 0)   increases with an 

increase in Ra  or  . It is also found that the rate of 

heat transfer falls with increasing Eckert number Ec . 
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