
Urvashi Sanadhya / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com Vol. 2, Issue4, July-august 2012, pp.2392-2398

2392 | P a g e

Avoid SQL Injection Attacks

Urvashi Sanadhya
Department of Computer Science,

Mewar University, Chittorgarh

Tel: 07589397539

Abstract
An SQL injection attack targets web

applications that are database-driven. The

methods using for SQL injections are easy to

learn and can cause major or significant damage

to the system. To address this problem, we

present the different types of SQL injection

attacks known to date and will look at a selection

of the methods available to a SQL injection

attacker and how they are best defend against

them. For each type of attack, we provide

descriptions and examples of how attacks of that

type could be performed. We also present and

analyze existing detection and prevention

techniques against SQL injection attacks.

Keywords-SQL injection, SQL injection attacks,
Authentication attacks

1. Introduction
SQL Injection Attacks are one of the

topmost threats for web application security,and

SQL injections are one of the most serious

vulnerability types. The SQL Injection attacks are

easy to learn and exploitable, so this method of
attack is easily used by attackers and hackers. Also

many major and traditional security systems having

different security layers like firewall, encryption,

intrusion detection systems, Antivirus and anti

malware are not able to detect this type of attack.

Also database mechanism for authentication and

authorization can be bypassed by tricky methods

and using set of rules of that type of database.

SQL Injection is something related to web-

hacking, but using some SQL knowledge and legal

SQL commands to make it vulnerable. Its take the
advantage of the fact over which a poorly secured

web-application is developed. Also its takes the

advantage of how data engines process the

query/insecure code in database. Many SQL takes

the advantage of errors/error message generated by

systemon some query responses. SQL Injection

attacks

employed by malicious users for different reasons, e.

g. financial fraud, theft confidential data, deface

website, sabotage, espionage, cyber terrorism, or

simply for fun. Furthermore, SQL Injection attack
techniques have become more common, more

ambitious, easy to learn/implement, and increasingly

sophisticated, so there is a need to find an effective

and feasible solution for this problem in the

computer security community.

2. Survey of SQL injection
SQL injection is a vulnerability that allows

an attacker to alter backend SQL statements by

manipulating the user input. An SQL injection occurs

when web application accepts user input that is

directly placed into SQL statements and does not

property filter out dangerous characters.

(more) Advanced SQL Injection by Chris

Anley [chris@ngssoftware.com] in 18/06/2002

suggested that the best defence against SQL injection

is to apply comprehensive input validation, use a

parameterised API, and never to compose query
strings on an ad-hoc basis. In addition, a strong SQL

Server lockdown is essential, incorporating strong

passwords.

SQL Injection Signature Evasion

Whitepaper (Imperva) concludes that reliance upon

signature protections alone is not a practical defence

against SQL injections attacks. A reasonably sized

signature database does not provide reliable

protection while a comprehensive signature database

results in excessive management overhead, dramatic

performance limitations, and false positives.

Lateral SQL Injection Revisited by David
Litchfield suggest that an attacker needs the

CREATE PUBLIC SYNONYM system privilege as

a prerequisite to effect this attack, which helps to

mitigate the risk. One should not place faith solely in

this prerequisite to afford protection, as methods may

be found that bypass the need for this privilege in the

future. Instead, it is best practice to use variable

binding in order to completely mitigate the risk this

technique poses.

Lateral SQL Injection A new Class of

Vulnerability in Oracle conclude that those functions
and procedures that don‘t take user input can be

exploited if SYSDATE is used. The lesson here is

always, always validate and don‘t let this type of

vulnerability get into your code. The second lesson is

that no longer should DATE or NUMBER data types

be considered as safe and not useful as injection

vectors.

Analysis of SQL injection prevention using

a filtering proxy server by David Rowe conclude

that

 Independent of flaws in application coding and

database privileges

Urvashi Sanadhya / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com Vol. 2, Issue4, July-august 2012, pp.2392-2398

2393 | P a g e

 Can operate on a separate server with real time

analysis

 Another layer of protection

Secure Query Processing By Blocking SQL

injection by Dibyendu Aich descreibed that SQL
injection is a common technique hackers employ to

attack these web-based applications. These attacks

reshape the SQL queries, thus altering the behavior

of the program for the benefit of the hacker. Show a

technique for detecting and preventing SQL Injection

Attacks incidents. The technique abstracts the

intended SQL query behaviour in an application in

the form of an ordered sequence of tokens, as a one-

time offline procedure using static analysis of the

application code. This database is then validated

against the entire different incoming SQL query at
runtime to capture all malicious SQL queries, before

they are sent to the database server for execution. To

minimize searching time and response time it uses

the modern processor architecture by perform the

searching in a multi threaded way as well as it

predict the possible correct list for an incoming query

by introducing hit count calculation.

Using a Web Server Test Bed to Analyze

the Limitations of Web Application Vulnerability

Scanners by David A. Shelly suggested a method to

analyze the flaws and limitations of several of the
most popular commercial and free/open-source web

application scanners by using a secure and insecure

version of a custom-built web application. Using this

described method, key improvements that should be

made to web application scanner techniques to

reduce the number of false-positive and false-

negative results are proposed.

Techniques and Tools for Engineering

Secure Web Applications By Gary Michael this

dissertation describes the first formal, realistic
characterization of SQL injection and the analyses

can detect and block real attacks and uncover

unknown vulnerabilities in real world code.

3. Related Work and Observations of SQL

Injection Attack
There are four main categories of SQL

Injection attacks against databases:

1. SQL Manipulation: manipulation is process of

modifying the SQL statements by using various

operations such as UNION. Another way for

implementing SQL Injection using SQL

Manipulation method is by changing the where

clause of the SQL statement to get different

results.

2. Code Injection: Code injection is process of

inserting new SQL statements or database

commands into the vulnerable SQL statement.
One of the code injection attacks is to append a

SQL Server EXECUTE command to the

vulnerable SQL statement. This type of attack is

only possible when multiple SQL statements per

database request are supported.

3. Function Call Injection: Function call injection is

process of inserting various database function

calls into a vulnerable SQL statement. These
function calls could be making operating system

calls or manipulate data in the database.

4. Buffer Overflows: Buffer overflow is caused by

using function call injection. For most of the

commercial and open source databases, patches

are available. This type of attack is possible when

the server is un-patched.

Mostly web-application developing technologies

are susceptible to this attack:

They are JSP, XML, XSL, ASP, JavaScript etc.

which can access database.

Detection of SQL Injection vulnerability
Detection of SQL injection vulnerability in

a system is very tough task, as SQL Injection is

nothing but simple logical game of valid SQLs. So

this can be doing by enter each and every possible

way the attacker can input the query.

To detect SQL Injection we must have to

know about how SQL Injection is possible in an

application and what different types of SQL Injection
attacks are.

Mainly it can categorize in two stages:

There are two main types of attacks. First-order

attacks are when the attacker receives the desired

result immediately, either by direct response from the

application they are interacting with or some other

response mechanism, such as email. Second-order

attacks are when the attacker injects some data that

will reside in the database, but the payload will not

be immediately activated.

Furthermore the classification is also based on
commonly two types of attacks:

1. Login authentication attack:
Many web-sites or web-application which deals with

transaction/view of user related data must have login

panel or login page. They must have mainly two field

:UserName or UserID and :password and an

login/sign in button to login into database. There is

also an ‗forget password link‘ which sends password

to the user who make a request by clicking and input

desired fields.

For our example of SQL injection, we will use a
hypothetical form which many people have probably

dealt with before: the ―email me my password‖ form,

which many websites have in case one of their users

forgets their password.

Urvashi Sanadhya / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com Vol. 2, Issue4, July-august 2012, pp.2392-2398

2394 | P a g e

Figure 1- Login
authentication attack

The way a typical ―email me my password‖

form/link works is this: it takes the email address as

an input from the user, and then the application does

a search in the database for that email address. If the

application does not find anything in the database for

that particular email address, then it simply does not

send out an email with a new password to anyone.

However, if the application does successfully find
that email address in its database, then it will send

out an email to that email address with a new

password, or whatever information is required to

reset the password.

(Here below the dark background and with red font is

always user input.)

i) First test we do here is to check what error it give

on inserting a single quote.

The query become SELECT <column> FROM

<table> WHERE <emailfield>=‘ <desiredEmail >‘.

ii) Here an attacker does not know the mail-ID so he

made his mind to manipulate the query which can

give some result. He use tautology query, in which

the where condition is always true. i.e.

SELECT <column> FROM <table> WHERE

<emailfield>=‘abc‘ and ‗1‘=‘1‘;

But unlike the actual query which should return only

a single value, this query will return every values of

the column since query‘s where condition is always

true. But the actual record taken for operational

purpose is the first record returned by the query, or a
value taken at random.

Always there are mostly three responses for various

input :

 ‗Your password has been send to

<desiredEmail>‘.

 ‗The entered Email is incorrect‘.

 Some server error.

The first and second responses are sure

about that there is a valid SQL run. Or there is no
error in the query passed, while the third one is a bad

SQL since it will return a server/SQL error.

iii) Guessing column name:

Here in the mind of attacker is sure that

there must be email-ID and password in query along

with other user login information.

Let he guess a field name as ‗email‘ and try in the

query and find out if the SQL is valid or not.

SELECT <column> FROM <table> WHERE field

=‘x‘ and email is null; --

He don't care about matching the email

address (which is why use a dummy 'x'), and the --
marks the start of an SQL comment. This is an

effective way to "consume" the final quote provided

by application and not worry about matching them.

It gives response. If it is a server error, that‘s means

SQl is invalid and syntax error can be thrown. So

there must be wrong field name guess, try it for other

as ‗email_address‘, ‗emailID‘ etc.

If the response is valid, it makes surety that

the guessing field is a valid one.

Here ‗AND‘ is use in query to ensure that

on valid response there should not be generated

response like ‗here is your password‘ and emails
from the application to the random user. So to avoid

this suspicious activity ‗and‘ is used in query which

will always sure that mail is never generated to any

user while getting a valid response.

Similarly other fields/columns are also detected

through hit and trial method. Say email, password,

e_id, name.

iv) Finding the table name:

Table name can be retrieve through several

approaches. To accomplish this a ‗hit and trial‘
method is use with using SQL functionality of

accessing the fields.

For example, here ‗email‘ is known field and

guessed table is ‗emp_master‘. So the executable

query be like :

SELECT <column> FROM <table> WHERE field

=‘x‘andemp_master.email is null; --

If the response of this query is valid or returned as

‗Unknown email‘ then SQL was well formed and

table name is properly guessed.

v) Finding some users
Till now table name, column name is

guessed. For getting clues about some user, the first

place to start, of course, is the company's website to

find who is who: the "About us" or "Contact" pages

often list who's running the place. Many of these

contain email addresses. So the ‗LIKE‘ keyword of

SQL helps most to get username. The targeted SQL

is build some as :

SELECT <column> FROM <table> WHERE field

=‘x‘ORname like ‗%ram%‘; --

So gradually by refining name a good guess of user
name can be achieve.

2. URL query based attack:

a) Finding vulnerable/target web-site:

The vulnerable website have URL ending

with queried field like ‗id=‘ or ‗fieldno=‘ etc. We

take an example: www.garo.cc

Urvashi Sanadhya / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com Vol. 2, Issue4, July-august 2012, pp.2392-2398

2395 | P a g e

b) Checking the Vulnerability:

In order to check the vulnerability, add the

single quotes(') at the end of the url and hit enter. (No

space between the number and single quotes).

For eg. http://www.garo.cc/text.php?pageid=16‘

If the page remains in same page or showing that
page not found or showing some other webpage, then

it is not vulnerable.

BUT if it showing any errors which is related to SQL

query, then it is vulnerable.

Figure 2-URL query based attack

c) Finding numbers of columns:

With the help of simple and basic

commands of SQL we can exploit furthermore.

Put ‗order by n‘ at the end of the URL string. Where

‗n‘ is the number from 1,2,3,4,5, ... and so on.

Change the numbers until we get the error like

‗Unknown column‘. The number on which you get

the error, you make sure the number of column in the

table which is used in that query is previous one

which give no error.
For eg: http://www.garo.cc/text.php?pageid=1 order

by 1 -- (no error)

http://www.garo.cc/text.php?pageid=1 order by 2

-- (no error)

http://www.garo.cc/text.php?pageid=1 order by 3

-- (no error)

http://www.garo.cc/text.php?pageid=1 order by 4

-- (no error)

http://www.garo.cc/text.php?pageid=1 order by 5

-- (no error)

http://www.garo.cc/text.php?pageid=1 order by 6

-- (unknow error)
The error may occur when we put ‗order by 6‘, then

we must say that there are 5 columns in that table.

d) Displaying the displayable/vulnerable

columns:

For finding columns which is used to

display its values on web-page, we have to use

‗union select <column 1> ... ‗

The column which is displayable on the web-page is

automatically displays its sequence number in its

column field.

For eg.

http://www.garo.cc/text.php?pageid=1 union select

1,2,3,4,5 --

here from previous method we have found that there

are 5 numbers of columns used, so we take column
sequence upto 5 with the union in the URL.

The ‗--‘ sign denote the comment part from which

the database engine can not read further coded query.

On carefully observing the front face of the web-

page, we can find one or more numbers as a column

sequence which are given and executed by us

through union query. Say for example we get number

3 on the web-page, then we concluded that the

column number 3rd of the used table is the one

which is used for displaying data of that table. So

that column is vulnerable. An attacker can get many

more information from the help of that column.

e) Finding version, database, user:

Let say if in step ‗b‘ the error appeared is

related to SQL query and have mention the error

message with database as MySQL, then according to

MySQL : database(), version()/@@version, user()

can be used for getting database, its version and

currently login user name.

For example:

http://www.garo.cc/text.php?pageid=1 and union

select 1,2,database(),4,5 –
will give the database name on the front face of that

web-page where ‗3‘ number is displayed.

Similarly for getting version we have to write URL

as :

http://www.garo.cc/text.php?pageid=1 and union

select 1,2,database(),4,5 --

and for user information:

http://www.garo.cc/text.php?pageid=1 and union

select 1,2,user(),4,5 –

f) Finding the table name:

This is the very dangerous situation when
for simply using MySQL‘s SQL commands, we can

get the tables used in that schema which is using in

the web-site.

For example:

http://www.garo.cc/text.php?pageid=1 and union

select 1,2,group_concat(table_name),4,5 from

information_schema.tables where table_schema =

database() --

Say output of query is admin,garo_news,

garo_categories, etc.

Here attacker may take interest in ‗admin‘ table.

Here an attacker has used various MySQL feature as

group_concat(table_name), it will concat all the

tables name in a string,

information_schema.tables, it has stored all

information of tables which is used for the particular

schema.

Urvashi Sanadhya / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com Vol. 2, Issue4, July-august 2012, pp.2392-2398

2396 | P a g e

table_schema=database(), it is a where clause which

takes only currently held schema.

g) Finding the column name:

Here also an attacker can take full use of

SQL commands of MySQL. In order to get column
name it gives URL as :

http://www.garo.cc/text.php?pageid=1 and union

select group_concat(column_name) from

information_schema.columns WHERE

table_name=<The table name which we get from

previous step> —

Here also the output of the above URL execution

would give all the column name in that particular

table.From here the attacker may peek into the data

of that table, If he take ‗admin‘ table then probably

he can get login information(username,passwordetc).

4. Prevention of SQL Injection
From the previous section, we have seen

that there are various methods and types that are

used by attacker to get modified SQL query

executed. They put some new idea and put it as a

valid SQL they use full valid functionality of SQL

database used and flaws of developers.

The prevention methods for the above type of attack

are discussed as follows.
Prevention for Login Authentication attack and URL

based attack:

a. Reject BAD Input:

First thing is to sanitize the input before it

goes into the application for further query execution.

If the input is check before entering in application,

then the major part of prevention is done. So in

general, the BAD input must be restricted.

b. Input Datatype:
 In the further series of sanitize input data, we

have to check for the datatype of user ID – input

variable. Many web-application/database dependent

application requires user_ID as a numeric field. Then

at those application must implement the user_ID

field to be always inputted as numeric values by

setting the datatype as number type. It should restrict

the input for the characters other than numbers only.

For eg. SELECT <columns> from emp_master

where userid=:user_id; Here :user_id is a numeric

type variable which always allows only numeric type

input data.
So no one can write or inject SQL code in those

fields.

c. Input length

It is wiser to set the input length of input

field/variable‘s length. It always restrict the input

parameters/variables to of fixed length and restrict

the attacker too for injecting unusual SQL.

For eg. User_ID can be put to maximum 20

characters. Also the Password field‘s length must

also restricted to 15 characters only.

Definitely these restrictions may not allow any

attacker to put long injected SQL in LOGIN fields.

d. Data-type conversion must be explicit:

Always if required the datatype conversion must be
of explicitly done before query execution.

For example: If the username is of numeric type in

database. But requirement of field(username) on the

LOGIN form is of string type. Then just before query

execution the username is explicitly converted into

numeric type then pass into query variables for

further execution.

This method just filters out any unwanted injected

SQL.

e. Exception handling: The major flaws in

developing the code is that it should not properly
handled for all type of errors. Each and every code

must be properly handled for any type of exception

occurs.

Major SQL Injection Attackers rely on errors occurs.

They are always waiting for responses occur when

any SQL or related query is injected. With the help

of responses and errors they obtain much important

information as we have seen in previous chapters.

f. Avoid ‘LIKE’ in query structure:

Developer should avoid using ‗LIKE‘ in SQL code.
As it gives attacker an ease to guess values and data.

For Eg: SELECT <column_name> FROM

emp_master WHERE name like '%ADMIN%'. The

attacker attempts to manipulate the SQL statement to

execute as – SELECT <column_name> FROM

emp_master WHERE name like '%'.

Above query will substitute the input string ADMIN

to the query and will search for all the records that

have input string anywhere in the name values. If the

attacker injects the string then he can get all the

sensitivedata.

g. System monitoring: A full time DBA can

monitor the suspicious query execution and

transaction in the system. He might be monitoring or

auditing sp_tracexxx files time to time.

h. Only necessary grant and access are

made for application account in database: If the

application running with database administrator‘s

account then it has potential for an attacker to

perform crucial commands with database. He can

then able to inject many operating system level
commands to explore hard disk of server.

Similarly if possible where ever only SELECT rights

are granted would be only granted. This will greatly

helpful to restrict injected transaction or other SQL

in system.

i. Update Server by applying time-to-time

patches: It will avoid buffer overflow. Many

Urvashi Sanadhya / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com Vol. 2, Issue4, July-august 2012, pp.2392-2398

2397 | P a g e

attackers if access systems call then using system

calls they make buffer overflow condition. These can

be avoided by applying patches and keep server

update.

j. Using Parameterised Queries: Many other
people may suggest it to prevent SQL Injection

attack while LOGIN. In this type, the query is passed

in prepared statements where it is executed using

procedure call. This is standard procedure call which

is much trusted.

5. Algorithm of Proposed Solution
a. Escaping keywords, quotes and

comments: In most of the SQL injection attacks,
attacker uses the SQL keywords, quotes and

comments in the SQL query and makes the final

query as infected. The SQL keywords, quotes and

comments are legal and are unsuspected, so the

attacker make use of them.

So before query execution the input variables must

be sanitize by an procedure which can detect SQL

keywords, quotes and comments.

For eg:username field is given as ‘ ; DROP TABLE

emp_master; --

The legitimate query becomes:
SELECT <column_name> FROM emp_master

WHERE name=‘‘ ;DROP TABLEemp_master; -- ‗

and password=‘‘;

The above query is too much dangerous, since it can

delete the LOGIN table as well as user_information

table. So before this variable is set into the query for

further execution. An algorithm of a procedure which

can detect SQL keywords, comments, is developed

as follows:

procedureis_validate_field(v_input_fieldvarchar)
begin

 declare

 v_checkvarchar;

 begin

 if (v_input_field in

(‗SELECT‘,‘INSERT‘,‘DELETE‘,‘UPDATE‘,‘MER

GE‘,‘SHUTDOWN‘,‘DROP‘,‘ALTER‘,‘CREATE‘,‘

WHERE‘,‘AND‘,‘OR‘,‘EXEC‘,‘ORDER

BY‘,‘UNION‘,‘GROUP BY‘,‘HAVINH‘,‘/‘,‘--‘))

then

 v_check=‘TRUE‘;

 else
 v_check=‘FALSE‘;

 end if;

 if v_check=‘TRUE‘ then

 message(‗Retry entries.‘);

(terminate the process/action and clear the login form

and go to first field.);

 endif;

 end;

end procedure is_validate_field;

b. Escaping all encoding in query execution:

If SQL keywords are escaped before query

application, then the attackers put the encoding

method for injecting SQL in legitimate query. Since

simple keywords can be caught then the attackers

make their ascii code and put the encoding along
with as injected SQL.

Also for an example:

‗; INSERT

INTOemp_masterVALUES(101,char(0x68)+char(0x

61)+char(0x82)+char(0x64)+char(0x70)); --can

insert an attacker‘s oriented user.

So if char,hex,ascii etc encoding are

detected in input and then the good input is allow to

pass in query for execution, then the effort of

attacker got waste. For this an algorithm is developed

and coded in a procedure. In which different
encodings are detected and prevent the infected data

for further execution in query.

The procedure which can detect different encoding is

as follows:

procedureis_encoded_field(v_input_fieldvarchar)

begin

 declare

 v_checkvarchar;

 begin

if (v_input_field in
(‗CHAR‘,‘ASCII‘,‘HEX‘,‘NUMBER‘,‘(‘,‘)‘)) then

 v_check=‘TRUE‘;

 else

 v_check=‘FALSE‘;

 end if;

 if v_check=‘TRUE‘ then

 message(‗Retry entries.‘);

(terminate the process/action and clear the login form

and go to first field.);

 endif;

 end;

end procedure is_encoded_field;

c. Applying Encrypted data technique:

For LOGIN form, there are two fields: 1. Username

2. Password.

But for LOGIN/sign in one should be a registered

member. Here in the technique when user register

himself then server receives request from user and

register as a new user. This is maintain in a user

information table. For eg.we take that table as

‗emp_master‘. The table contains three fields, 1.

Username 2.Password 3.Encrypted key.
Here the ‗Encrypted key‘ is generated by system and

must be unique for all registered users.

This ‗Encrypted key‘ is generated and saved in table

at the time of user registration and use the ‗username

and password‘ field in its forming, its formation is

initiated through calling a function:

For example: At the time of user registration, the

following insert query is execute for inserting new

Urvashi Sanadhya / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com Vol. 2, Issue4, July-august 2012, pp.2392-2398

2398 | P a g e

user.

INSERT INTO

emp_masterVALUES(‘RAM‘,‘ram_password‘,functi

on_en_key(‗RAM‘,‘ram_password‘));

Here ‗function_en_key‘ is a function which

generates ‗Encrypted key‘. The function‘s algorithm
is as follows:

char function_en_key(:username, :password)

begin declarev_enc_keyvarchar; begin v_enc_key

:= any_encryption_technique(:username||:password);

 RETURN(v_enc_key);

 end;

end function_en_key;

At the time of user login or sign in, username and

password should be matched with the username and

password in table stored in server, along with the

‗Encrypted key‘ which is also resides in the table.
If comparison is successful then the user is allow to

Login into the application otherwise make him retry.

The comparison procedure is as follows:

-- :username and :password are user supplied fields.

procedureis_encoded_field(:username, :password)

begin declare v_checkvarchar; begin

 SELECT ‗x‘ INTO v_check

FROM emp_master

 WHERE

encrypted_key=function_en_key(:username,

:password) and name=:username and
password=:password;

 (exception handling)

 if (v_check = ‗x‘) then

 message(‗Successful

login‘);

 else

 message(‗Try again.‘);

(terminate the process/action and clear the login form

and go to first field.);

end if;

 end;

end procedure is_encoded_field;

6. Conclusion and Future work

 In this paper, we have described a brief

study of SQL injection as well as a solutionfor

preventing SQLInjection Attacks. To perform this

assessment firstly identified the detection of SQL

Injection vulnerability. SQLInjection Attacks can be

introduced into anapplication and identified which

method was able to hold which mechanism. Lot of
the techniques have trouble handling attacks that

acquire advantage of poorlycodedstored procedures

and SQL queries cannot handleattacks. This variation

could be clarified by the detailthat focused on

Prevention of sql injection.

Future work should focus on optimized and

evaluating thetechniques correctness and usefulness

in practice. Practicalestimation will be performing

which permitcomparing the performance of the

different techniqueswhen they are subjected to real

world attacks andvalidinputs.

REFERENCES

[1] Advanced SQL Injection in SQL Server

Applications
[2] SQL Injection Attack and Defense

PacketSource Security White Papers

[3] Useful stuff_ SQL-Injection Attacks on the

example

[4] SQL Injection Cheat Sheet

[5] An Authentication Mechanism to prevent

SQL Injection Attacks

[6] Lateral SQL Injection Revisited Final (1)

[7] SQL Injection Signature Evasion

Whitepaper

[8] Data-Mining with SQL Injection and

Inference
[9] Steve Fried‘s Unixwiz.net Tech Tips

[10] Prevent SQL Injection in Asp.net

[11] Prevent SQL Injection in Asp.net

[12] Robert J. Hansen MeredithL.Patterson

[13] SQL injection Attacks and Defense

[14] An Authentication Mechanism against

SQL Injection

