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Abstract 
Caching on the edge of the Internet is 

becoming a popular technique to improve the 

scalability and efficiency of delivering dynamic 

web content and it is rising. These clouds inturn 

helps in providing good quality query services.In 

order to query the data users pay for the 

infrastructure they use required for the query. 

The goal of cloud economy is to optimize user 

satisfaction and cloud profit.To increase the cloud 

profit an oppropriate price demand model should 

guarantee the user satisfaction that enables the 

best possible pricing of query services. The model 

should be reliable in that it reflects the correlation 

of cache structures involved in the queries. Best 

possible pricing is achieved based on a dynamic 

pricing scheme that adapts to time changes. This 

paper proposes a new price-demand model 

designed for a cloud cache and a dynamic pricing 

scheme for queries executed in the cloud cache. 

The pricing solution employs a new method that 

estimates the correlations of the cache services in 

an time-efficient manner. The experimental study 

shows the efficiency of the solution. 

 

Index terms -- Cloud data management, data 

services, cloud service pricing,price demand 

modeling,Dynamic Pricing 

.  

INTRODUCTION 
The leading trend for service infrastructures 

in the IT domain is called cloud computing, a style of 

computing that allows users to access information 

services. Cloud providers trade their services on 

cloud resources for money.The quality of services 

that the users receive depends on the utilization of the 

resources. The operation cost of used resources is 

amortized through user payments. Cloud resources 

can be anything, from infrastructure (CPU,memory, 

bandwidth, network), to platforms and applications 

deployed on the infrastructure. Cloud management 

necessitates an economy, and, therefore, 

incorporation of economic concepts in the provision 

of cloud services. The goal of cloud economy is to 

optimize:1) user satisfaction and 2) cloud profit. 

While the success of the cloud service depends on the 

optimization of both objectives, businesses typically 

prioritize profit. To maximize cloud profit we need a 

pricing scheme that guarantees user satisfaction while 

adapting to demand changes. Recently, cloud 

computing has found its way into the provision of 

web services  Information, as well as software is  

 

 

 

permanently stored in Internet servers and probably 

cached temporarily on the user side. Current 

businesses on cloud computing such as Amazon Web 

Services  and Microsoft Azure  have begun to offer 

data management services: the cloud enables the 

users to manage the data of back-end databases in a 

transparent manner. Applications that collect and 

query massive data, like those supported by CERN, 

need a caching service, which can be provided by the 

cloud. The goal of such a cloud is to provide efficient 

querying on the back-end data at a low cost, while 

being economically viable, and furthermore, 

profitable. Fig. 1 depicts the architecture of a cloud 

cache. Users pose queries to the cloud through a 

coordinator module, and are charged on the- go in 

order to be served. The cloud caches data and builds 

data structures in order to accelerate query execution. 

Service of queries is performed by executing them 

either in the cloud cache (if necessary data are 

already cached) or in a back-end database. Each 

cache structure (data or data structures) has an 

operating (i.e., a building and a maintenance) cost. A 

price over the operating cost for each structure can 

ensure profit for the cloud. In this work, we propose a 

novel scheme that achieves optimal pricing for the 

services of a cloud cache. 

 

1.1 Price Setting for Cloud Cache Services 

The cloud makes profit from selling its 

services at a price that is higher than the actual cost. 

Setting the right price for a service is a nontrivial 

problem, because when there is competition the 

demand for services grows inversely but not 

proportionally to the price. There are two major 

challenges when trying to define an optimal pricing 

scheme for the cloud caching service. The first is to 

define a simplified enough model of the price 

demand dependency, to achieve a feasible pricing 

solution, but not oversimplified model that is not 

representative. For example, a static pricing scheme 

cannot be optimal if the demand for services has 

deterministic seasonal fluctuations. The second 

challenge is to define a pricing scheme that is 

adaptable to 1) modeling errors, 2) time-dependent 

model changes, and 3) stochastic behavior of the 

application. 
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Fig. 1. A cloud cache. 

 

The demand for services, for instance, may 

depend in a nonpredictable way on factors that are 

external to the cloud application, such as 

socioeconomic situations. A representative model for 

the cloud cache should take into account that the 

cache structures (table columns or indexes) may 

compete or collaborate during query execution. The 

demand for a structure depends not only on its price, 

but also on the price of other structures. For example, 

consider the query select A from T where B = 5 and 

C = 10. Out of the set of candidate indexes to run the 

query efficiently,  indexes Ib =T(B), Ic = T(C), and Ibc 

= T(BC) are most important, since they can satisfy 

the conditions in the “where” clause. If the cache 

uses Ibc, then the indexes Ib and Ic, will never be used, 

since Ibc can satisfy both conditions. Therefore, the 

presence of Ibc has a negative impact on the demand 

for Ib and Ic. Alternatively, if the cache uses Ib, then Ic 

can also improve query performance via index 

intersections, hence increasing the profit for the 

cloud. Therefore, indexes Ib and Ic have positive 

impact on each other’s demand. An appropriate 

estimation method is necessary to model price-

demand correlations among cached structures. The 

peculiarity of the pricing problem for the application 

of the cloud DBMS, in comparison with other 

businesses, is that the selling good is not a 

consumable product, but a persistent service. A 

consumable product diminishes with demand and has 

to be ordered, whereas a cloud cache service can 

satisfy infinite demand as long as it is maintained. 

Moreover, the demand for a cache service pauses if 

this service is not available. A consumable product 

may cost to maintain depending on the stored 

amount, whereas the maintenance cost of a cache 

service depends only on time. Moreover, a cache 

service may have a setup cost each time it is loaded 

in the cloud. A big challenge for the cloud is to 

optimize the set of offered services, i.e., decide which 

services to offer and when, depending on their 

demand while they are available. Roughly, the cloud 

has to schedule online and offline periods of the 

offered services, which affects the maintenance and 

the setup cost. Furthermore, the optimization of the 

cloud profit has to be scheduled for a long period in 

time while it is flexible during this period to adjust to 

the real evolution of the service consumption. The 

long-term profit optimization is necessary in order for 

the cloud to schedule ahead associative actions for 

the maintenance of the cloud infrastructure and the 

cloud data. Moreover, the cloud can schedule the 

service availability according to the guarantees for 

the overall revenue estimated by the longterm 

optimization. Nevertheless, it is important that the 

long-term optimization process is flexible enough to 

receive corrections while it is still in progress. The 

corrections may refer to the difference between the 

estimated and the actual price influence on the 

demand of services. 

  

1.2 Related Work 

Existing clouds focus on the provision of 

web services targeted to developers, such as Amazon 

Elastic Compute Cloud (EC2) , or the deployment of 

servers, such as GoGrid . Emerging clouds such as 

the Amazon SimpleDB and Simple Storage Service 

offer data management services. Optimal pricing of 

cached structures is central to maximizing profit for a 

cloud that offers data services. Cloud businesses may 

offer their services for free, such as Google Apps  

and Microsoft Azure  or based on a pricing scheme. 

Amazon Web Service (AWS) clouds include separate 

prices for infrastructure elements, i.e., disk space, 

CPU, I/O, and bandwidth. Pricing schemes are static, 

and give the option for pay as-you-go. Static pricing 

cannot guarantee cloud profit maximization. In fact, 

as we show in our experimental study, static pricing 

results in an unpredictable and, therefore, 

uncontrollable behavior of profit.Closely related to 

cloud computing is research on accounting in wide-

area networks that offer distributed services.  

discusses an economy for querying in distributed 

databases. This economy is limited to offering budget 

options to the users, and does not propose any pricing 

scheme. Other solutions for similar frameworks focus 

on job scheduling and bid negotiation, issues 

orthogonal to optimal pricing. Pricing schemes were 

proposed recently for the optimal allocation of grid 

resources in order to increase revenue, or to achieve 

an equilibrium of grid and user satisfaction, assuming 

knowledge of the demand for resources or the 

possibility to vary the price of a resource for different 

users. These works are orthogonal to ours, as we do 

not assume that service demand is known a priori and 

all users are charged the same for the consumption of 

the same service. Similarly, dynamic pricing for web 

services focuses on scheduling user requests. This 

work is orthogonal to ours, as we require that users’ 

requests for service are satisfied right away. 

Moreover, dynamic pricing for the provision of 

network services, aims at achieving a game-theoretic 

equilibrium through price control among competitive 

Internet Service Providers. This work is orthogonal to 

ours, as we focus on the maximization of cloud profit 

in the presence of competitive services within the 

same cloud provider. The problem of revenue 

management through dynamic pricing is well 

studied.Based on the rationale that price and demand 
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are dependent qualities, numerous variations of the 

problem have been tackled, for instance businesses 

that sell products to retailers, seasonal products, 

stochastic demand. Electronic businesses, and 

therefore cloud businesses can benefit from dynamic 

pricing policies.Cache services are distinguished 

from consumable products in two major ways: 1) 

they are not exhausted while they are consumed, and 

2) the demand for a specific service pauses while this 

is not available. To the best of our knowledge, this is 

the first work that tackles the problem of optimal 

pricing of competitive data services within the same 

cloud cache provider. 

Research on the identification of 

noncorrelated indexes using the query structure  does 

not determine the negative and positive correlations. 

Identification of index correlations by modeling 

physical design as a submodular and super-modular 

problem is restricted to one-column indexes and one 

index per query. Identification of negative index 

correlation [2] does not consider the positive and no 

correlation case. A recent index interaction model 

attempts to find all index correlations. As we show in 

Section 4, it does not satisfy three critical 

requirements for the pricing scheme: 1) sensitivity to 

the range of all possible correlations, 2) production of  

ormalized values, and 3) fast computation. 

 

1.3 Our Proposal 

The cloud caching service can maximize its 

profit using an optimal pricing scheme. This work 

proposes a pricing scheme along the insight that it is 

sufficient to use a simplified price-demand model 

which can be reevaluated in order to adapt to model 

mismatches, external disturbances and errors, 

employing feedback from the real system behavior 

and performing refinement of the optimization 

procedure. Overall, optimal pricing necessitates an 

appropriately simplified price-demand model that 

incorporates the correlations of structures in the 

cache services. The pricing scheme should be 

adaptable to time changes. 

 

Simple but not simplistic price-demand modeling. 
We model the price-demand dependency employing 

second order differential equations with  constant 

parameters. This modeling is flexible enough to 

represent a wide variety of demands as a function of 

price. The simplification of using constant parameters 

allows their easy estimation based on given price-

demand data sets. The model takes into account that 

structures can be  available in the cache or can be 

discarded if there is not enough respective demand. 

Optional structure availability allows for optimal 

scheduling of structure availability, such that the 

cloud profit is maximized. The model of price-

demand dependency for a set of structures 

incorporates their correlation in query execution.  

Price adaptivity to time changes. Profit 

maximization is pursued in a finite long-term 

horizon. The horizon includes sequential 

nonoverlapping intervals that allow for scheduling 

structure availability. At the beginning of each 

interval, the cloud redefines availability by taking 

offline some of the currently available structures and 

taking online some of the unavailable ones. Pricing 

optimization proceeds in iterations on a sliding time 

window that allows online corrections on the 

predicted demand, via reinjection of the real demand 

values at each sliding instant. Also, the iterative 

optimization allows for redefinition of the parameters 

in the price-demand model, if the demand deviates 

substantially from the predicted.  

 

1.3 Contributions 

This paper makes the following contributions: 

 A novel demand-pricing model designed for 

cloud caching services and the problem 

formulation for the dynamic pricing scheme that 

maximizes profit and incorporates the objective 

for user satisfaction.  

 An efficient solution to the pricing problem, 

based on nonlinear programming, adaptable to 

time changes. 

 A correlation measure for cache structures that is 

suitable for the cloud cache pricing scheme and a 

method for its efficient computation. 

 An experimental study which shows that the 

dynamic pricing scheme out performs any static  

one by achieving 2 orders of magnitude more 

profit per time unit.  

The rest of the paper is structured as 

follows: Section 2 presents the query execution 

model, Section 3 models the optimal pricing problem, 

and Section 4 models the price demand correlations 

for data structures in the cloud cache. Section 5 

describes the solution of the pricing optimization 

problem and Section 6 presents the experimental 

study. Section 7 concludes the paper. 

 

2. QUERY EXECUTION MODEL 

The cloud cache is a full-fledged DBMS 

along with a cache of data that reside permanently in 

back-end databases. The goal of the cloud cache is to 

offer cheap efficient multiuser querying on the back-

end data, while keeping the cloud provider profitable. 

Our motivation for the necessity of such a cloud data 

service provider derives from the data management 

needs of huge analytical data, such as scientific data, 

for example physics data from CERN and astronomy 

data from SDSS . Furthermore, a viable, and 

moreover, profitable data service provider can 

achieve cost and time efficient management of 

smaller scientific collections or any type of analytical 

data, such as digital libraries, multimedia data, and a 

variety of archived data. Users pose queries to the 

cloud, which are charged in order to be served. 

Following the business example of Amazon and 

Google, we assume that data reside in the same data 

center and that users pay on-the-go based on the 
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infrastructure they use, therefore, they pay by the 

query. Service of queries is performed by executing 

them either in the cloud cache or in the back-end 

database. Query performance is measured in terms of 

execution time. The faster the execution, the more 

data structures it employs, and therefore, the more 

expensive the service. We assume that the cloud 

infrastructure provides sufficient amount of storage 

space for a large number of cache structures. Each 

cache structure has a building and a maintenance 

cost. 

 

Alogorithm: 

Global: cache structures S, prices P, availability Δ 

Query Execution ( ) 

if q can be satisfied in the cache then 

(result, cost)←runQueryInCache (q) 

else 

(result, cost)←runQueryInBackend (q) 

end if 

S←addNewStructures () 

return result, cost 

optimalPricing (horizon T, intervals t[i], S) 

(Δ,P)←determineAvailability&Prices (T,t,S) 

return Δ,P 

main () 

execute in parallel tasks T1 and T2: 

T1: 

for every new i do 

slide the optimization window 

OptimalPricin (T, t[i], S) 

end for 

T2: 

While new query q do 

(Result, cost)←query Execution (q) 

end while 

if q executed in cache then 

Charge cost to user 

else 

Calculate total price and charge price to user 

end if 

fig 2. Qurey Execution Model for cloud cache 

 

Fig. 2 presents at a high level the query 

execution model of the cloud cache. The names of 

variables and functions are self-explanatory. The user 

query is executed in the cache iff all the columns it 

refers to are already cached. Otherwise it is executed 

in the back-end databases. The result is returned to 

the user and the cost is the query execution cost (the 

cost of operating the cloud cache or the cost of 

transferring the result via the network to the user). 

The cloud cache determines which structures (cached 

columns, views, indexes) S to build in order to 

accelerate query execution and reduce the query 

execution cost. Initially S is empty and gradually it is 

filled with structures that would have or have 

benefitted past queries. How S is populated and how 

the costs of building and maintaining cache structures 

as well as the query execution cost are computed is 

an input to the presented optimal pricing 

scheme.Periodically (on predefined time intervals 

𝑡[𝑖]) the cloud performs the pricing scheme proposed 

in this work. The pricing scheme schedules the 

availability and sets the prices P of the structures S 

for a time horizon T as described in the rest of the 

paper. The goal is to maximize the provider’s profit 

and at the same time ensure that the user is not 

overcharged. 

 

 

3.MODELING  DYNAMIC PRICING 
This section describes the problem 

formulation of maximizing the cloud profit. The 

presentation of the pricing scheme is guided by 

propositions that state the main rationale of our 

approach. 

 

3.1 Problem Formulation 

This section defines the objective and the 

constraints of the problem, and gives the 

mathematical problem definition.  

 

3.1.1 Objective 

The cloud cache offers to the users query 

services on the cloud data. The user queries are 

answered by query plans that use cache structures, 

i.e., cached columns and indexes. We assume that the 

set of possible cache structures is S = {S1, . . . , Sm}. 

Whenever a structure S is built in the cache, it has a 

one time building cost Bs. While S is maintained in 

the cache it has a maintenance cost which depends on 

time, Ms(t). We assume that each structure is built 

from scratch in the cloud cache, as the cloud may not 

have administration rights on existing back-end 

structures. Nevertheless, cheap computing and 

parallelism on cloud infrastructure may benefit the 

performance of structure creation. For a column, the 

building cost is the cost of transferring it from the 

backend and combining it with the currently cached 

columns. This cost may contain the cost of 

integrating the column in the existing cache table. For 

indexes, the building cost involves fetching the data 

across the Internet and then building the index in the 

cache. Since sorting is the most important step in 

building an index, the cost of building an index is 

approximated to the cost of sorting the indexed 

columns. In case of multiple cloud databases, the cost 

of data movement is incorporated in the building 

cost. The maintenance cost of a column or an index is 

just the cost of using disk space in the cloud. Hence, 

building a column or an index in the cache has a one-

time static cost, whereas their maintenance yields a 

storage cost that is linear with time.In any case, the 

cost of a structure S as soon as it is built at time tbuilt 

in the cache and until it is discarded is 

  Cs(t) = Bs + Ms(t – tbuilt).                       (1)                                 
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Cache services are offered through query execution 

that uses cache structures. The demand for cache 

structures is defined as follows: 

 

Definition 1. The demand for a cache structure S, 

denoted as  λs(t), is the number of times that S is 

employed in query plans selected for execution at 

time t. 

Naturally, in realistic situations the demand 

for a structure is measured in time intervals. If a 

structure S is built in the cache then query plans that 

involve it can be selected, i.e., λs(t) ≥  0. otherwise 

not, i.e., λs(t) = 0. Intuitively, there is a trade-off 

between 1) keeping a structure in the cache and 

paying the maintenance cost, and 2) building and 

discarding the structure occasionally. This trade-off is 

reinforced toward the one or the other direction by 

the demand of the structure: if the demand is low, it 

is possible that it is cheaper to discard the structure 

from the cache and pay the building cost multiple 

times,  than pay the maintenance cost; if the demand 

is high, then the opposite tactic may be more 

profitable for the cloud. The cloud makes profit by 

charging the usage of structures in selected query 

plans for a price. Let us assume that the price of a 

structure S at time t is ps(t). Then the profit of the 

cloud at a specific time is 

                            𝑟 𝑡 =  𝛿𝑖 . (𝑚
𝑖=1 𝜆𝑠𝑖 𝑡 . 𝑝𝑠𝑖 𝑡 −

𝑐𝑠𝑖(𝑡)), 𝛿𝑖 = 0,1,                                    (2) 

 

where 𝛿𝑖  represents the fact that the structure 𝑆𝑖  is 

present in the cloud cache. Specifically, a structure 

may be present or not in the cache at any time point 

in [0, T] and not present before the beginning of 

optimization time, i.e., 

𝛿𝑖 𝑡 =  
0 𝑜𝑟 1, 𝑖𝑓 𝑡 ∈  0, 𝑇 ,
0,          𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒.

  

 

 

Based on this, the cost of a structure w.r.t. time 

becomes 

 𝑐𝑠 𝑡 =  1 − 𝛿𝑖 𝑡0  𝐵𝑠 + 𝑀𝑠 𝑡 − 𝑡0 , (3)                                           

where t0 is the start time of cost observation.  

  Structures can be built and discarded at any 

time 𝑡 ∈  0, 𝑇  and the total profit of the cloud is 

𝑅 𝑇 =  𝑟 𝑡 𝑑𝑡.
𝑇

0
 The goal is to maximize the total 

profit in  0, 𝑇  by choosing which structures to build 

or discard and which price to assign to each built 

structure at any time 

                                 

                                         

                (4)                                                                                                                   

3.1.2 Problem Constraints 

It is necessary to constrain the optimization 

of the objective 4, so that a reasonable and correct 

solution can be found.  

Value constraints. It is straightforward that both the 

demand and the price of a structure must be positive 

numbers. Furthermore, it is necessary to impose an 

upper bound on the price. The reason is that the 

optimum solution is to instantaneously raise the price 

of at least one structure to infinity, if this is 

allowed.These bounds can be formulated as follows: 

 

  0 ≤ 𝜆𝑖 ,     𝑖 = 1, … , 𝑚,                             (5)                                                                          

 

   0 ≤ 𝑝𝑖 ≤ 𝑝𝑚𝑎𝑥 ,     𝑖 = 1, … , 𝑚.              (6)                                                                        

                                    

Dynamics of the demand. Naturally, the demand 

and the price of a structure are connected variables: 

intuitively, as the price for a structure increases the 

demand decreases and vice versa. In order to to solve 

the optimization problem (4), a mathematical 

relationship, which models the interaction between 

demand and price, is necessary. However, this 

mathematical relationship should have a structure as 

flexible as possible, so that, upon a proper 

identification of its parameters, it is able to represent 

as many as possible functions of demand and price. 

We make the following assumption: 

 
 

Proposition 1. The demand of a structure S has 

memory: the demand at time t depends on the 

demand before t. Consequently, the relationship 

between price and demand can be modeled as an 

ordinary differential equation, which can be written 

in the general case in its implicit form 

                  

  

                                                                  (7) 

where m ≤ n, to respect the causality 

principle, as m > n would imply that demand could 

change (due to a change of price) before the price has 

changed. In particular, since there is no inertia in 

setting a price for a structure, m = 0 and (7) can be 

rewritten in its explicit form 
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Justification 1. Economies as well as societies tend 

to behave in a way that reflects past experience. More 

formally, an economic system, such as the cloud 

cache and its users has inertia, which means that the 

current system behavior depends on past and 

influences future  behavior. Concerning the cloud 

cache, this means that the demand for structures has a 

time-resistant effect. For example, assume that the 

demand for a structure built in the cloud cache does 

not drop as fast as expected in a memory-less system 

w.r.t. price increase. Two intuitive exemplifying 

reasons for this are: 1) the structure is already built 

and remains available because the building cost is 

already amortized, while the maintenance cost is not 

very high; and 2) the structure, for example a cached 

column is requested for the execution of numerous 

queries, because it involves information that is 

currently very popular to users. 

Associating the price with the nth derivative 

of demand for a structure, guarantees n degrees of 

freedom for the shape of their relationship. Therefore, 

the bigger the order n is, the more flexible the price-

demand relationship is. Yet, as the order n increases, 

the number of parameters of the price-demand 

relationship increase and more information is needed 

in order to  identify their values. We choose to 

consider a second order differential equation as it is 

versatile enough to represent a price-demand 

relationship, where the demand drops smoothly at the 

beginning of time,3 as depicted in Fig. 3, while 

keeping the number of parameters to identify low. 

Therefore, the constraint is: 

 
                          

We constrain f to be an ordinary differential relation 

between price and demand 

  𝑝𝑠 𝑡 = 𝛼
𝑑2𝜆𝑠

𝑑𝑡2 + 𝛽
𝑑𝜆𝑠

𝑑𝑡
+ ϒ. 𝜆𝑠 𝑡 .         (9)                                              

 

The parameters α,β,ϒ are constrained to be 

constants. This means that the price model considers 

a static relation between demand and price. In order 

to make the pricing model realistic, we have to 

consider the influence of the price of one structure to 

the demand of the rest. Therefore, it is necessary to 

extend (9) so that it captures correlations of demand 

and prices between pairs of structures. Let us assume 

that V is a m × m matrix where the row and the 

column i corresponds to the structure Si i = 1, . . .,m. 

Each element vij,i, j = 1, . . .,m corresponds to the 

correlation of the price of Sj to the demand of Si. We 

call V the correlation matrix of prices and demands. 

If ˄ and P are the m ×  1 matrices of demands and 

prices for the respective structures in S, and A, B, Γ 

are m × 1 matrices of parameters, then the constraint 

in (9) becomes 

  𝑉. 𝑃 = 𝐴𝑇 𝑑2˄

𝑑𝑡 2 + 𝐵𝑇 𝑑2˄

𝑑𝑡
𝛤𝑇˄,                (10)                                                       

is actually a set of constraints of the form:       

 𝑏𝑖 .𝑗 . 𝑝𝑠 𝑡 = 𝛼𝑖

𝑑2𝜆𝑠𝑖

𝑑𝑡

𝑗 =𝑚
𝑗 =1 + 𝛽𝑖

𝑑𝜆𝑠𝑖

𝑑𝑡
+ 𝛾𝑖 . 𝜆𝑆𝑖

(𝑡) 

 

Problem definition. The previous discussion leads to 

the following problem formulation for optimal 

pricing: The maximization of the cloud DBMS profit 

is achieved with 

the solution of the following optimization problem: 

                             

 
 

3.2 Generalization of Optimization Objective 

The problem of dynamic pricing as 

formulated in Section 3.1 consists of a sole objective: 

the maximization of the cloud profit, subject to some 

constraints. From a mathematical point of view, we 

expect a solution that is on the boundaries of the 

feasible area, meaning a solution along the 

constraints of the problem that satisfies the objective. 

The constraints on the price-demand dependency in 

(10) do not actually constrain the sought solution, but 

only the value of the optimal profit, if the solution is 

applied; therefore, the sought solution is expected to 

be on the boundaries of the allowed price, (6), and 

demand values, (5), meaning maximum price 

selections as long as the demand for structures is 

above zero. This is called a bang-bang solution and 

the mathematical reason for this expectation is that 

the objective of the problem is linear w.r.t. the 

control variables: the price p and the structure 

availability _. Intuitively, the objective of 

optimization is the purely egoistic and 

straightforward maximization of cloud profit. The 

optimization procedure shall try to achieve this goal 

as soon as possible, resulting in charging the highest 

possible prices as long as there is structure demand. 

Of course, the freedom of choosing the availability of 

structures complicates the optimization goal, but does 

not change the decision for maximum charge 

whenever availability for a structure is decided. 

Naturally, one would expect that the user 

dissatisfaction from high service charge, which is the 

actual reason for the demand drop, should be taken 

into consideration in a real cloud business. Simply, 

the cloud risks to permanently lose the dissatisfied 
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users in an open-market world. The user satisfaction 

is an altruistic tend of the optimization that is 

opposite to the egoistic tend of cloud profit.  

 

Proposition 2. The altruistic tend of pricing 

optimization is expressed as: 1) a guarantee for a low 

limit on user satisfaction, or 2) an additional 

maximization objective. 

 

Justification 2. There are two policies in order to 

incorporate an altruistic tend in pricing optimization. 

The first is to give a much lower priority to user 

satisfaction than cloud profit, which results into a 

constraint (static or time dependent) that passively 

restricts the maximization of profit, i.e., expression 

(4). The second is to handle it as a secondary goal of 

the pricing optimization, which results into a new 

objective that actively restricts profit maximization. 

“Passive” restriction means that the altruistic tend 

turns down pricing solutions proposed by the 

optimization procedure, while “active” restriction 

means that the altruistic tend is involved in the 

proposition of pricing solutions. If the altruistic tend 

is expressed as low-limit guarantee on 

user satisfaction, then it can be formulated as an 

additional constraint of the optimization problem of 

Section 3.1 on the demand drop 

 
where λmin  is the selected minimum value of 

demand drop rate. Alternatively, the user satisfaction 

can be defined as the difference of the structure price 

and the actual cost 

 

        𝑢 𝑡 ≡ 𝑝𝑠 𝑡 − 𝑐𝑠(𝑡)                      (12)                                               

In this case, the problem can accommodate, either a 

new constraint or a new optimization objective. In the 

first case, the constraint can be 

 

         𝑢 𝑡 ≤ 𝑟𝑚𝑖𝑛 ,                                  (13)                              

 

where rmin  is the selected minimum value of 

cloud profit. Adding one of the constraints (11) or 

(12) to the optimization problem does not change the 

objective of the optimization, which attempts to 

maximize the prices while satisfying the new 

constraints, (see Fig. 4b). 

If the altruistic tend is expressed as a new 

maximization goal, the optimization objective is a 

combination of (4) and (12) 

                                 

  

 

where w is a weight that calibrates the 

influence of the altruistic tend to the optimization 

procedure. The augmented optimization objective 

(14) leads the optimization procedure to seek a 

trajectory that balances the opposite egoistic and 

altruistic tends. 

 

4 SOLVING THE DYNAMIC PRICING     

PROBLEM 
The problem of optimal pricing is an 

optimal control problem with a finite horizon, i.e., the 

maximum time of optimization T is a given finite 

value. The free variables are the prices of the cache 

structures, pis, called the control variables, and the 

dependent variables, called state variables, is the 

demand for the structures, λis and the availability of 

the structures δis. The problem is augmented with 

bounds on the values of both the control and the state 

variables and by a constraint on the dependency type 

of the state on the control variables. 

 

4.1 Design of the Solution 

The objective function of the problem is the 

maximization of an integral, i.e., 𝑚𝑎𝑥   𝑟 𝑡 −
𝑇

0

𝑤.𝑢𝑡𝑑𝑡. The optimality scope of the sought solution 

depends on the convexity of  the objective function. 

The latter is bilinear w.r.t. the demand and the price 

(this is the result of factor λs(t).ps(t)  in (2) and ps(t) in 

(12)). It is not possible to prove that the objective 

function is convex and, therefore, there is no 

guarantee of global optimality of the solution. 

Due to: 1) the nonlinearity of the objective 

function, 2) the presence of both integer inputs (the 

δis  control binary variables) and continuous inputs 

and states (the pis and the δis, respectively), and 3) 

the potentially large scale of the system (when m is 

high), it is almost impossible to find an analytical 

solution to the optimization problem. This calls for 

numerical optimization techniques, such as 

mixedinteger nonlinear programming, which present 

the advantage of being implementable online. A way 

to implement dynamic optimization tools on real 

systems is to 

proceed as follow: 

 1. Solve the MINLP problem along a fixed  

    prediction horizon to compute a sequence    

    of values for the control variables. 

 2. Apply the first values to the system. 

 3. Slide the prediction horizon and go back    

     to 1. 

 

This approach, referred to as Optimal 

Control with Receding Horizon or as Model Prective 

Control (for which a trajectory is tracked) in the 

control literature, has been successfully applied to a 

very large number of uncertain, complex, and 

nonlinear systems, in simulation as well at lab or 

industrial scales. This methodology has shown its 

ability to improve the performances of a large class 

of systems, despite the use of simplified models, the 
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presence of uncertainty on model parameters, model 

mismatch, and process disturbances. 

We propose the division of the prediction 

horizon [0,T] into time intervals: let us assume that 

there are time points 𝑡𝑗  𝜖  0, 𝑇 , 𝑗 = 0, … , 𝑘,  such that 

t0 = 0 and tk = T on which built structures can be built 

or discarded. Therefore, the problem is to maximize 

the total profit in [0,T] by choosing  

 
Fig.4.optimization procedure divided into   

 short time intervals and iterations on a sliding time  

window 

 

 which structures to built or discard on each  

𝑡𝑗  𝜖  0, 𝑇 , 𝑗 = 0, … , 𝑘, and which price to assign to 

each built structure 

                               

                                                                 (15) 

Fig. 4 depicts the proposed repeated optimization 

over a sliding time prediction horizon of length T. 

For simplicity, we consider equal time intervals, 

𝑡𝑗 +1 − 𝑡𝑗 = 𝑡𝑗 +2 − 𝑡𝑗 +1, 𝑖 = 0, … . , 𝑘 − 2. The  

ptimization is performed repeatedly for k  prediction 

horizons beginning at tstart  and ending at tend, such 

that:     𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑  , 𝑡𝑠𝑡𝑎𝑟𝑡 = 0, 𝑡1, … . , 𝑇   and 

𝑡𝑒𝑛𝑑 = 𝑇, 𝑇 + 𝑡1, 2𝑇,  respectively. In this way we 

achieve, on one hand, to optimize by taking into 

account the inertia of the cloud behavior in a long 

prediction horizon, and on the other, to improve the 

optimization by tuning the initial values of both the 

control and the state variables at each time interval 

[tj, tj+1]  to the values predicted by the current 

optimization results. We can further improve the 

optimization procedure, by injecting the real values 

of the state variables, if these are available. 

Specifically, if the actual time is close to the starting 

time tstart of an optimization phase, then the real 

demand values of the structures are available; if the 

real values are different than the values predicted by 

the previous optimization phase, then the real values 

can substitute the predicted ones in the new 

optimization phase, calibrating the procedure toward 

an improved overall result. We transform the 

problem into a MINLP one by substituting each 

control and state variable into a of k-arity set of 

variables, where k is the number of time intervals of 

control variable  einitialization in the optimization 

horizon, as well as the number of optimization 

repetitions. Formally 

                                                                (16) 

For simplification, we consider all the 

control variables in a time interval to be static, which 

means that prices and availability of structures are 

constant. Application-wise, we assume that the 

availability of structures and their prices are set at the 

beginning time of each repetition of the optimization 

procedure. Of course, we could refine this 

simplification by considering prices to be functions 

of time in each interval. Yet, this would augment the 

number of variables dramatically, reducing the 

efficiency of the method. For example, even for 

linear dependency of price on time: p  =  a.t + b with 

static a, b, the number of variables in the problem is 

doubled. 

 

4.2 Parameters Estimation 

Concerning the constraints on the price-

demand dependency in (10), it is necessary to 

estimate the parameters A, B, Γ. For this, the 

nonhomogeneous m order system of second order 

differential equations in (10), has to be solved. One 

way to do is to transform the system into a  2 × m 

order system of first order differential equations, by 

breaking each second order equation into a set of 

two. The result in both cases is a set of equations that 

show the dependency of demand on price involving 

the parameters 

                               

                                               
                                                             (17) 

where F is a m × m matrix of functions on 

time and elements of the parameter matrices  A, B, Γ, 

as well as the initial values of the demand and the 

rate of demand at the beginning of time. The solution 

of the system is possible, if the m constraints in (10) 

are independent, i.e., if the m differential equations 

are independent. 

  

Proposition 3. It is always possible to manage the 

cache structures in a way that the constraints in (10) 

are independent differential equations. 

 

Justification 3. Independency of the constraints in 

(10) means that there are no pair of cache structures 

for which the demand depends in the exact same way 

from the prices of all the cache structures. Intuitively, 

this is not a problem: assume two structures S1 and 

S2. If these are competitive, each one has a negative 

dependency on its own price and a positive 

dependency on the price of the other; therefore, it is 
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not possible that they create the same constraint. If S1 

and S2 are collaborative, creating the same constraint 

means that they depend on the exact same way on 

each other’s price and on the price of the rest of the 

structures; this fact implies that S1 and S2 are always 

employed together in the cloud; therefore, they can 

be represented as a set of structures with a single 

price. The parameters A, B,Γ, can be estimated by 

performing curve fitting (e.g., the least square 

method), on (17). The fitting is performed based on a 

sample data set of pricedemand values. Ideally, we 

need a data set with the values for ˄ for all 

combinations of a set of price values 𝑝𝑣𝜖  0, 𝑚𝑎𝑥𝑝  ,  

where maxp is a maximum value, for all price 

variables P. The fitting of (17) necessitates the initial 

values of demand and demand rate at the beginning 

of time. Since time is an orthogonal issue to the curve 

fitting problem, we can order Pv and assume that for 

the fitting of each pair of data that consists of price 

values of all structures and the respective demand 

value   𝑝𝑣1 ,…,𝑝𝑣𝑚
 , 𝜆𝑣𝑖

 , 𝑖 = 1, … . . , 𝑚, 𝜆𝑣𝑖
 is the 

initial value of demand w.r.t. time. In order to get the 

initial value of demand rate at t = 0, we need another 

measurement of demand for each structure 𝜆΄𝑣𝑖
  that 

is really close to  𝜆𝑣𝑖
, i.e., 𝜆𝑣𝑖

− 𝜆΄𝑣𝑖
< 𝑒𝜆𝑖

≈ 0. This 

can be achieved by slightly changing the values in 𝑝𝑣 , 

producing 𝑝΄
𝑣

= ( 𝑝𝑣𝑖
+ 𝑒1, … . 𝑝𝑣𝑚

+ 𝑒𝑚  , 𝑒𝑖 ≈

0, 𝑖 = 1, … . , 𝑚. We propose to estimate the demand 

rate as  
𝑑𝜆 𝑖

𝑑𝑡
 
𝑡=0

= 𝑒𝜆𝑖
, assuming that the smallest price 

change in two consequent observation time points is 

ei. 

 
  

Fig.5.The optimization procedure may give a higher 

profit if performed in a long time period 

 

4.3 Optimization Horizon 

An important issue is to estimate the 

appropriate length of the time period, in which we 

seek to optimize the cloud profit. Specifically, we 

have to determine the value of T which represents the 

optimization horizon of (4). Intuitively, a long 

horizon allows the optimization procedure to take 

into account the inertia of the system, whereas a short 

horizon may preclude the procedure from taking into 

account important long-term effects of current 

optimization decisions. 

Example 2. Assume a structure S with demand 𝜆𝑠(𝑡) 

and an optimization procedure of two short phases  

[0,Tsmall)  and  [Tsmall,Tbig)  or a procedure with one 

long phase [0,Tbig). For simplicity, the demand is a 

step function as shown in Fig. 6, i.e.,𝜆𝑠 𝑇 = 𝜆1, 𝑡 ∈
 0, 𝑇𝑠𝑚𝑎𝑙𝑙   corresponding to price p1 and 𝜆𝑠 𝑇 =
𝜆2, 𝑡 ∈ [𝑇𝑠𝑚𝑎𝑙𝑙 , 𝑇𝑏𝑖𝑔 ) corresponding to price p2 (for 

simplicity we ignore structure correlations). Assume 

that the building cost of S is Bs and the maintenance 

cost is 𝑀𝑠 𝑡 = 𝑎. 𝑡and S is built once at time t = 0. 

The cloud profit in   [0,Tsmall) is                      𝑟𝑠𝑚𝑎𝑙𝑙 =
𝜆1. 𝑝1 − 𝐵𝑠 − 𝑀𝑠 𝑇𝑠𝑚𝑎𝑙𝑙  . If 𝑟𝑠𝑚𝑎𝑙𝑙 < 0,the cloud 

decides to discard S and the second optimization 

phase starts with S not available. Since the demand is 

significant in (Tsmall,Tbig)  , th(e cloud may decide to 

build S again, at t ≥Tsmall, resulting in profit 

𝑟𝑏𝑖𝑔−𝑠𝑚𝑎𝑙𝑙 ≤ 𝜆2 . 𝑝2 − 𝐵𝑠 − 𝑀𝑠(𝑇𝑏𝑖𝑔 − 𝑇𝑠𝑚𝑎𝑙𝑙 ). For 

the long-term optimization the profit is: 𝑟𝑏𝑖𝑔 =

𝜆1. 𝑝1 + 𝜆2. 𝑝2 − 𝐵𝑠 − 𝑀𝑠 𝑇𝑏𝑖𝑔   Obviously, 𝑟𝑏𝑖𝑔 >

𝑟𝑠𝑚𝑎𝑙𝑙 + 𝑟𝑏𝑖𝑔 −𝑠𝑚𝑎𝑙𝑙  Therefore, the result of the two-

phase short-term optimization procedure is not as 

optimal as that of the one-phase long-term procedure. 

Naturally, the prediction of future behavior of a 

system is subject to unpredictable perturbations. 

Hence, the longer the horizon is, the more error-

prone the optimization procedure is, as the prediction 

accuracy of the behavior of demand, tends to 

decrease with time. 

 

4.4 Simplicity of the Model 

We have assumed that the parameters of the 

constraints in (10) are constant. Yet, it is possible that 

in a real system the dependency of demand on the 

prices changes with time, because of any reasons. 

This means that the parameters, A, B, Γ, should be 

time varying. Even though the dynamics of (10) 

would be more realistic, they would highly increase 

the complexity of the problem, as there is no way, 

without a priori knowledge to determine time-varying 

parameters with more confidence than fixed 

parameters contrary to what can happen for physical 

systems where degradation, e.g., of physical 

parameters can be modeled. Hence the problem falls 

in the scope of optimization of uncertain systems 

(potentially subject to model mismatch or parametric 

uncertainty or disturbances), which is an active 

research domain.In this context, it can be shown that 

the use of measurements and of feedback is able to 

reject a part of the detrimental impact of parametric 

uncertainty on the optimal performances. In our case, 

real demand values are fed back as the optimization 

horizon slides, which increases the robustness of the 

proposed approach. As mentioned, Model Predictive 

Control has been widely used in Industry, where 

accurate dynamic models are almost never available. 

In these situations using tendency models (i.e., 

models that capture the main trends of a process) and 

measurements is generally sufficient to improve the 

process performances up to such a level that the 

costly efforts for identifying a more accurate process 

model are not justified by the loss of optimality. 
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Finally, as the optimization proceeds, new data are 

collected and this data can clearly be used to 

reidentify the price/demand model periodically. 

 

5 CONCLUSION 
We define an appropriate price-demand 

model and we formulate the dynamic pricing 

problem. The proposed solution allows: on one hand, 

longterm profit maximization, and, on the other, 

dynamic calibration to the actual behavior of the 

cloud application, while the optimization process is 

in progress. We discuss qualitative aspects of the 

solution and a variation of the problem that allows 

the consideration of user satisfaction together with 

profit maximization. The viability of the pricing 

solution is  ensured with the proposal of a method 

that estimates the correlations of the cache services in 

an time-efficient manner. This paper proposes a 

novel pricing scheme designed for a cloud cache that 

offers querying services and aims at the 

maximization of the cloud profit. 


