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ABSTRACT 
In this paper, the natural frequencies of 

vibration of a transmission line subjected to three 

unequal and equal concentrated masses at equal 

interval are compared. The natural frequencies of 

vibration in both cases are predicted based on the 

assumption that the total kinetic and potential 

energy of the vibrating masses is constant in the 

course of the system’s oscillation. The natural 

frequencies of vibration of a transmission line 

subjected to unequal masses (control) were 

compared with those of equal concentrated 

masses. The natural vibration frequency was 

found to increase by 29% in the first vibration 

mode, 27% in the second vibration mode but 

deceased by 4.96% in the third vibration mode 

when the transmission line was subjected to equal 

concentrated masses. 

 

Keywords: Natural frequencies, transmission line, 

degree of freedom, concentrated masses, vibrating 
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1.0 INTRODUCTION 

An overhead transmission line is the 

medium through which electricity moves from the 

point of generation to the points of utilization. The 

distribution system moves electricity from the 

transmission line to where it is used by customers at 

home and business areas. Transmission lines are 

made from cables of aluminium alloy which are 
suspended by towers in a row. 

Vibration of transmission lines in due to 

wind excitation causes oscillation of large amplitude 

in overhead transmission lines [1-8]. This large 

amplitude vibration is a very dangerous phenomenon 

that causes instability of the overhead transmission 

lines [9-13]. For example, the large amplitude 

displacement of transmission lines resulting from 

wind excitation normally occurs when one of the 

natural frequencies of vibration is excited leading to 

resonance. This  short circuits the overhead 
transmission lines  as a result of entanglement of 

lines. Dynamic analysis of a transmission line 

subjected to wind induced forces is of paramount 

importance to engineers as the end result is 

devastating to human lives. 

The lumping of concentrated masses on the 

transmission line as vibration dampers results in 

discretizing the transmission line in to segments. The  

 

 

 

concentrated masses are assumed to undergo vertical 

oscillation about their mean positions. The degree of 

freedom of the transmission line is equal to the 

number of concentrated masses. 

In this paper, the dynamic analysis of a 
single span transmission line subjected to unequal 

and equal concentrated masses is carried out using 

energy approach. The results of the dynamic analysis 

of a transmission line subjected to unequal 

concentrated masses are serving as the control points. 

The formulated energy model is computationally 

simple and can be handled manually most specially 

when fewer number of concentrated masses are 

involved. 

 

2.0 MODEL DEVELOPMENT 
Consider a transmission line of span L 

suspended between two transmission towers and 

carrying concentrated masses nmmm ,...,, 21  as 

shown in Figure 1. The tension T in the transmission 

line is assumed to be constant in the course of the 

system‟s oscillation. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1: A transmission line and subjected to n 
concentrated masses 

nmmm ,...,, 21 . 

Let NiX i ,...,3,2,1,   represents the chosen 

coordinate  that describes the configuration of the 

transmission line in Figure 1. iX  is assumed to be 

zero at equilibrium position. During self-excited 

vibration, the various parts of the above transmission 

line undergo instantaneous velocities given by: 
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 TNi XXXV  ,...,, 21      

     (1) 

For small amplitude vibration of the 
transmission line, the potential and kinetic energy of 

vibration can be approximated by a quadratic surface 

given by: 

j

n

i

n

j

iij XXaEK .     

     (2) 

j

n

i

n

j

iij XXbEP 
 


1 1

.     

     (3) 

In matrix form, equation (2) and (3) can be written 

as: 

XAXEK T .      

     (4) 

AXXEP T.      

     (5) 

where  

ijij ba ,  represent the elements  in the ith row and jth 

column  of the matrix respectively. 

A, B = n X n symmetric matrices corresponding to 

kinetic and potential energies of the oscillating 

masses. 

Applying the conservation of mass, the total energy 

of the oscillating masses is constant. 

Therefore, 

 EPEK ..  constant    

     (6) 
The rate of change of total energy  given by equation 

(6) w.r.t. time is zero. 

  0..  EPEK
dt

d
    

     (7) 

Substituting for K.E. and P.E. in equation (7) using 

equations (4) and (5) transforms equation (7) to: 

  0 BXXXAX
dt

d TT     

     (8) 

Differentiating equation (8) w.r.t. t gives: 

  0 XBXBXXXAXXAXBXXXAX
dt

d TTTTTT 

   (9) 

Without loss of generality, it is assumed that: 

XXandXXXX TTT   ,,  and simplifying 

transforms equation (9) to : 

    0222  BXXAXBXXXAXBXXXAX
dt

d TTTTT 

   (10) 
Therefore, 

02 TX      

     (11) 

or 

0 BXXA       

     (12) 

Let 

tytX j cos)(      

     (13) 

be the solution of equation (12). 

where: 

yj = Amplitude of displacement of a particular 
concentrated mass. 

 = Natural vibration frequency of a transmission 

line. 

)(tX = - ty j  sin     

     (14) 

)(tX = - ty j  cos2
    

     (15) 

Equations (14) and (15) represent the velocity and 

acceleration of a particular concentrated mass on the 

transmission line. 

Substituting equations (14) and (15) into equation 

(12) and factorizing gives: 

  0cos2  tByAy jj     

     (16) 

Therefore, 

0cos t      

     (17) 
or 

02  jj ByAy     

     (18) 

From equation (18), we have: 

  02  jyAB      

     (19) 

For non-trivial solution, the determinant of equation 

(19) must be zero. 

Therefore, 

02  AB       

     (20) 

Equation (20) is the frequency equation of a 

transmission line under self-excited oscillation. 

For a transmission line carrying n concentrated 

masses (Figure 2), 
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Figure 2: A Transmission line with constant tension 

carrying n concentrated masses. 

 

3.0 RESULTS OF DYNAMIC ANALYSES 
A transmission line subjected to three 

unequal and equal concentrated masses for numerical 

study. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: An overhead transmission carrying 

unequal concentrated masses for numerical study 

(control). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: An overhead transmission carrying equal 

concentrated masses for numerical study. 

From Figure 3, the equations of motion of 

the vibrating unequal concentrated masses are; 

 21112 yyTTyym     

     (23) 

   32212 yyTyyTym    

     (24) 

  33233 TyyyTym     

     (25) 

Simplifying and arranging equations (23) – (25) 

gives: 

022 2111  TyTyym      

     (26) 

02 31222  TyTyTyym     

     (27) 

023 233  TyTyym      

     (28) 

In matrix form, equations (26) – (28) can be written 

as: 
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     (29) 

From equations (21) and (22) and using equation (29) 

the kinetic and potential energy of symmetric 

matrices A and B are given by: 
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 and  
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Substituting for A and B in equation (20) gives: 
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Let 

T

ml 2
       

     (33) 

Equation (32) now transforms to: 
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     (35) 

From equation (35), 

033.133.567.4 23     

     (36) 

Using Newton Raphson approximation, the roots of 

equation (36) are: 

78.3,24.1,352.0 321    

From equation (33), 

T

ml 2
   
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T
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T
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From Figure 4, mmmm  321  

The frequency equation is: 
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Again, using equation (33), 
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    (39) 

Expansion and evaluation of the above determinant 

gives: 

04106 23      

     (40) 

From equation (40), 

414.3,2,586.0 321    

For .sec/7655.0,586.0 11 Rad
ml

T
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For .sec/4142.1,2 22 Rad
ml

T
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For .sec/8477.1,414.3 33 Rad
ml

T
   

4.0 DISCUSSION OF RESULTS 

Table 1: Comparison of results of dynamic analysis 
of a transmission line subjected to unequal and equal 

concentrated masses. 

 NATURAL FREQUENCY 

(RAD/SEC) 

 
1  2  3  

Unequal 

concentrat

ed 

masses(co

ntrol) 
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1
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
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
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

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The dynamic analyses of a transmission 

subjected to unequal and equal concentrated masses 

has been presented. From Table 1, it can be seen that 

for a transmission line subjected to unequal 

concentrated masses (control), the natural frequency 

of vibration is improved by 29% in the first vibration 

mode, 27% in the second vibration mode but 

decreased by 4.96% in the third vibration mode when 

unequal concentrated masses are replaced by equal 
concentrated masses. 

 

5.0 CONCLUSION 
The dynamic analyses of a transmission line 

subjected to unequal and equal concentrated masses 

using energy approach has been presented. From the 

results, it can be concluded that to improve the 

natural frequency of vibration, equal concentrated 

masses at equal spacing should be lumped on the 
transmission line at equal interval as the obtained 

results showed a significant improvement compared 

with those of the control, most especially in the first 

and second vibration modes. The damping 

characteristic of the transmission line is thus 

improved. 

The formulated model can be used in the 

dynamic analysis of a multistory building having 

irregular floor masses and column stiffnesses. 
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